Histones activate the NLRP3 inflammasome in Kupffer cells during sterile inflammatory liver injury

Cellular processes that drive sterile inflammatory injury after hepatic ischemia/reperfusion (I/R) injury are not completely understood. Activation of the inflammasome plays a key role in response to invading intracellular pathogens, but mounting evidence suggests that it also plays a role in inflam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) Jg. 191; H. 5; S. 2665
Hauptverfasser: Huang, Hai, Chen, Hui-Wei, Evankovich, John, Yan, Wei, Rosborough, Brian R, Nace, Gary W, Ding, Qing, Loughran, Patricia, Beer-Stolz, Donna, Billiar, Timothy R, Esmon, Charles T, Tsung, Allan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 01.09.2013
Schlagworte:
ISSN:1550-6606, 1550-6606
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Cellular processes that drive sterile inflammatory injury after hepatic ischemia/reperfusion (I/R) injury are not completely understood. Activation of the inflammasome plays a key role in response to invading intracellular pathogens, but mounting evidence suggests that it also plays a role in inflammation driven by endogenous danger-associate molecular pattern molecules released after ischemic injury. The nucleotide-binding domain, leucine-rich repeat containing protein 3 (NLRP3) inflammasome is one such process, and the mechanism by which its activation results in damage and inflammatory responses following liver I/R is unknown. In this article, we report that both NLRP3 and its downstream target caspase-1 are activated during I/R and are essential for hepatic I/R injury, because both NLRP3 and caspase-1 knockout mice are protected from injury. Furthermore, inflammasome-mediated injury is dependent on caspase-1 expression in liver nonparenchymal cells. Although upstream signals that activate the inflammasome during ischemic injury are not well characterized, we show that endogenous extracellular histones activate the NLRP3 inflammasome during liver I/R through TLR9. This occurs through TLR9-dependent generation of reactive oxygen species. This mechanism is operant in resident liver Kupffer cells, which drive innate immune responses after I/R injury by recruiting additional cell types, including neutrophils and inflammatory monocytes. These novel findings illustrate a new mechanism by which extracellular histones and activation of NLRP3 inflammasome contribute to liver damage and the activation of innate immunity during sterile inflammation.
AbstractList Cellular processes that drive sterile inflammatory injury after hepatic ischemia/reperfusion (I/R) injury are not completely understood. Activation of the inflammasome plays a key role in response to invading intracellular pathogens, but mounting evidence suggests that it also plays a role in inflammation driven by endogenous danger-associate molecular pattern molecules released after ischemic injury. The nucleotide-binding domain, leucine-rich repeat containing protein 3 (NLRP3) inflammasome is one such process, and the mechanism by which its activation results in damage and inflammatory responses following liver I/R is unknown. In this article, we report that both NLRP3 and its downstream target caspase-1 are activated during I/R and are essential for hepatic I/R injury, because both NLRP3 and caspase-1 knockout mice are protected from injury. Furthermore, inflammasome-mediated injury is dependent on caspase-1 expression in liver nonparenchymal cells. Although upstream signals that activate the inflammasome during ischemic injury are not well characterized, we show that endogenous extracellular histones activate the NLRP3 inflammasome during liver I/R through TLR9. This occurs through TLR9-dependent generation of reactive oxygen species. This mechanism is operant in resident liver Kupffer cells, which drive innate immune responses after I/R injury by recruiting additional cell types, including neutrophils and inflammatory monocytes. These novel findings illustrate a new mechanism by which extracellular histones and activation of NLRP3 inflammasome contribute to liver damage and the activation of innate immunity during sterile inflammation.Cellular processes that drive sterile inflammatory injury after hepatic ischemia/reperfusion (I/R) injury are not completely understood. Activation of the inflammasome plays a key role in response to invading intracellular pathogens, but mounting evidence suggests that it also plays a role in inflammation driven by endogenous danger-associate molecular pattern molecules released after ischemic injury. The nucleotide-binding domain, leucine-rich repeat containing protein 3 (NLRP3) inflammasome is one such process, and the mechanism by which its activation results in damage and inflammatory responses following liver I/R is unknown. In this article, we report that both NLRP3 and its downstream target caspase-1 are activated during I/R and are essential for hepatic I/R injury, because both NLRP3 and caspase-1 knockout mice are protected from injury. Furthermore, inflammasome-mediated injury is dependent on caspase-1 expression in liver nonparenchymal cells. Although upstream signals that activate the inflammasome during ischemic injury are not well characterized, we show that endogenous extracellular histones activate the NLRP3 inflammasome during liver I/R through TLR9. This occurs through TLR9-dependent generation of reactive oxygen species. This mechanism is operant in resident liver Kupffer cells, which drive innate immune responses after I/R injury by recruiting additional cell types, including neutrophils and inflammatory monocytes. These novel findings illustrate a new mechanism by which extracellular histones and activation of NLRP3 inflammasome contribute to liver damage and the activation of innate immunity during sterile inflammation.
Cellular processes that drive sterile inflammatory injury after hepatic ischemia/reperfusion (I/R) injury are not completely understood. Activation of the inflammasome plays a key role in response to invading intracellular pathogens, but mounting evidence suggests that it also plays a role in inflammation driven by endogenous danger-associate molecular pattern molecules released after ischemic injury. The nucleotide-binding domain, leucine-rich repeat containing protein 3 (NLRP3) inflammasome is one such process, and the mechanism by which its activation results in damage and inflammatory responses following liver I/R is unknown. In this article, we report that both NLRP3 and its downstream target caspase-1 are activated during I/R and are essential for hepatic I/R injury, because both NLRP3 and caspase-1 knockout mice are protected from injury. Furthermore, inflammasome-mediated injury is dependent on caspase-1 expression in liver nonparenchymal cells. Although upstream signals that activate the inflammasome during ischemic injury are not well characterized, we show that endogenous extracellular histones activate the NLRP3 inflammasome during liver I/R through TLR9. This occurs through TLR9-dependent generation of reactive oxygen species. This mechanism is operant in resident liver Kupffer cells, which drive innate immune responses after I/R injury by recruiting additional cell types, including neutrophils and inflammatory monocytes. These novel findings illustrate a new mechanism by which extracellular histones and activation of NLRP3 inflammasome contribute to liver damage and the activation of innate immunity during sterile inflammation.
Author Loughran, Patricia
Tsung, Allan
Rosborough, Brian R
Huang, Hai
Chen, Hui-Wei
Billiar, Timothy R
Ding, Qing
Yan, Wei
Beer-Stolz, Donna
Esmon, Charles T
Evankovich, John
Nace, Gary W
Author_xml – sequence: 1
  givenname: Hai
  surname: Huang
  fullname: Huang, Hai
  organization: Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
– sequence: 2
  givenname: Hui-Wei
  surname: Chen
  fullname: Chen, Hui-Wei
– sequence: 3
  givenname: John
  surname: Evankovich
  fullname: Evankovich, John
– sequence: 4
  givenname: Wei
  surname: Yan
  fullname: Yan, Wei
– sequence: 5
  givenname: Brian R
  surname: Rosborough
  fullname: Rosborough, Brian R
– sequence: 6
  givenname: Gary W
  surname: Nace
  fullname: Nace, Gary W
– sequence: 7
  givenname: Qing
  surname: Ding
  fullname: Ding, Qing
– sequence: 8
  givenname: Patricia
  surname: Loughran
  fullname: Loughran, Patricia
– sequence: 9
  givenname: Donna
  surname: Beer-Stolz
  fullname: Beer-Stolz, Donna
– sequence: 10
  givenname: Timothy R
  surname: Billiar
  fullname: Billiar, Timothy R
– sequence: 11
  givenname: Charles T
  surname: Esmon
  fullname: Esmon, Charles T
– sequence: 12
  givenname: Allan
  surname: Tsung
  fullname: Tsung, Allan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23904166$$D View this record in MEDLINE/PubMed
BookMark eNpNkMtLw0AYxBep2IfePckevaTuK5vmKEWtWFREz2Gz_Va3ZJO6j0L-eyNW8TQz8GMYZopGbdcCQueUzAUR5dXWOpfarplTRljB-RGa0DwnmZREjv75MZqGsCWESMLECRozXhJBpZygemVDHEoDVjravYqA4wfgx_XLM8e2NY1yToXOwRDwQ9oZAx5raJqAN8nb9h2HCN428AfHzve4sfuBs-02-f4UHRvVBDg76Ay93d68LlfZ-unufnm9zrQo85jxhdYgoWCyzosCQNUClNRMGWYKTlRBNC815XXNF0JLKspyYWADgjCtciPZDF3-9O5895kgxMrZ8D1VtdClUFHBiuGCnLIBvTigqXawqXbeOuX76vcX9gUKqWmu
CitedBy_id crossref_primary_10_1016_j_freeradbiomed_2020_09_015
crossref_primary_10_1369_0022155417740880
crossref_primary_10_1016_j_ejphar_2018_07_054
crossref_primary_10_1038_s41392_021_00816_9
crossref_primary_10_1186_s43556_025_00305_3
crossref_primary_10_2217_fmb_15_151
crossref_primary_10_3109_08916934_2014_921811
crossref_primary_10_3389_fimmu_2018_01900
crossref_primary_10_1089_ars_2014_5868
crossref_primary_10_1155_2018_4608017
crossref_primary_10_1016_j_intimp_2020_106489
crossref_primary_10_3389_fimmu_2022_1030610
crossref_primary_10_1186_s12931_017_0651_5
crossref_primary_10_1186_s12950_019_0215_1
crossref_primary_10_1007_s00204_022_03357_4
crossref_primary_10_1038_s41423_020_00558_8
crossref_primary_10_1038_s42255_021_00402_x
crossref_primary_10_1016_j_bbrc_2015_12_051
crossref_primary_10_1111_febs_14076
crossref_primary_10_3390_nu15092068
crossref_primary_10_1016_j_toxlet_2017_04_012
crossref_primary_10_2492_inflammregen_35_061
crossref_primary_10_1177_0963689720934413
crossref_primary_10_4049_jimmunol_1400368
crossref_primary_10_3390_cells14100722
crossref_primary_10_1016_j_jbc_2021_101532
crossref_primary_10_1016_j_coi_2013_12_004
crossref_primary_10_1016_j_immuni_2019_11_013
crossref_primary_10_1038_s41419_020_2582_1
crossref_primary_10_1002_eji_201344175
crossref_primary_10_1111_jth_12977
crossref_primary_10_3390_ijms19092732
crossref_primary_10_1177_1753425915593794
crossref_primary_10_1007_s00281_015_0503_7
crossref_primary_10_1039_C9RA00425D
crossref_primary_10_3389_fimmu_2020_00987
crossref_primary_10_4049_jimmunol_1900801
crossref_primary_10_1002_hep_31297
crossref_primary_10_1016_j_thromres_2015_11_022
crossref_primary_10_23736_S0392_9590_18_03987_1
crossref_primary_10_1242_jcs_262071
crossref_primary_10_1007_s10557_020_06946_6
crossref_primary_10_1111_imcb_12297
crossref_primary_10_1016_j_neures_2024_01_004
crossref_primary_10_1111_1751_2980_12918
crossref_primary_10_1111_febs_13123
crossref_primary_10_1016_j_trsl_2015_08_003
crossref_primary_10_1038_cddis_2014_337
crossref_primary_10_1155_2015_205054
crossref_primary_10_1038_nrgastro_2015_200
crossref_primary_10_1186_s12995_020_00282_z
crossref_primary_10_1016_j_jtha_2023_04_018
crossref_primary_10_3389_fimmu_2017_00301
crossref_primary_10_1007_s10495_017_1347_5
crossref_primary_10_1371_journal_pone_0140105
crossref_primary_10_3390_epigenomes9030033
crossref_primary_10_3389_fnut_2022_758762
crossref_primary_10_1007_s13105_022_00935_z
crossref_primary_10_1097_CM9_0000000000003309
crossref_primary_10_3389_fcell_2022_925835
crossref_primary_10_1371_journal_pbio_3001304
crossref_primary_10_1016_j_biopha_2022_112789
crossref_primary_10_1002_jcb_27368
crossref_primary_10_1084_jem_20131902
crossref_primary_10_1111_jpi_12389
crossref_primary_10_1016_j_bcp_2016_05_003
crossref_primary_10_1016_j_immuni_2024_03_002
crossref_primary_10_1016_j_clinbiochem_2021_04_019
crossref_primary_10_1038_nrgastro_2015_94
crossref_primary_10_1681_ASN_2014070673
crossref_primary_10_2119_molmed_2014_00117
crossref_primary_10_3390_ph15050549
crossref_primary_10_1177_0267659118809557
crossref_primary_10_1038_s41418_020_00695_7
crossref_primary_10_4049_jimmunol_1302039
crossref_primary_10_3390_md19060318
crossref_primary_10_1016_j_bbrc_2018_07_069
crossref_primary_10_1007_s00109_014_1148_z
crossref_primary_10_1097_TP_0000000000001411
crossref_primary_10_1155_2018_4302726
crossref_primary_10_1016_j_apsb_2019_02_002
crossref_primary_10_1111_ajt_14699
crossref_primary_10_1002_JLB_3A0620_342R
crossref_primary_10_1007_s10495_021_01673_1
crossref_primary_10_3389_fimmu_2022_905423
crossref_primary_10_1016_j_ebiom_2022_104419
crossref_primary_10_1038_s41556_024_01491_y
crossref_primary_10_3390_ijms23116213
crossref_primary_10_4049_jimmunol_2000217
crossref_primary_10_7717_peerj_11909
crossref_primary_10_1002_hep_28739
crossref_primary_10_3390_cells8101131
crossref_primary_10_1038_s41366_018_0073_6
crossref_primary_10_1016_j_lfs_2019_05_020
crossref_primary_10_1038_nm_3387
crossref_primary_10_1016_j_jhep_2017_09_010
crossref_primary_10_1038_cddis_2017_52
crossref_primary_10_3389_fimmu_2021_761345
crossref_primary_10_4049_jimmunol_1600718
crossref_primary_10_1007_s00210_024_03297_z
crossref_primary_10_1016_j_ccell_2017_05_006
crossref_primary_10_18632_oncotarget_21151
crossref_primary_10_1007_s12026_015_8628_2
crossref_primary_10_1186_s13054_025_05283_0
crossref_primary_10_3389_fimmu_2021_611910
crossref_primary_10_1038_s41467_018_08030_y
crossref_primary_10_1177_20420188241242937
crossref_primary_10_1371_journal_pone_0191231
crossref_primary_10_3390_ijms25031464
crossref_primary_10_1016_j_jhep_2020_04_033
crossref_primary_10_1016_j_arr_2014_10_004
crossref_primary_10_1038_cddis_2016_410
crossref_primary_10_1016_j_jhep_2022_07_017
crossref_primary_10_1038_nri_2017_11
crossref_primary_10_3389_fphar_2021_709287
crossref_primary_10_1111_xen_12618
crossref_primary_10_3390_cells13231992
crossref_primary_10_3389_fimmu_2021_635188
crossref_primary_10_1007_s00011_024_01949_7
crossref_primary_10_1016_j_lfs_2022_121131
crossref_primary_10_1097_TP_0000000000001676
crossref_primary_10_1111_acel_13186
crossref_primary_10_1164_rccm_202207_1253OC
crossref_primary_10_1080_15548627_2016_1235124
crossref_primary_10_1515_revneuro_2022_0091
crossref_primary_10_1124_jpet_115_230300
crossref_primary_10_1111_bjh_14077
crossref_primary_10_3389_fimmu_2018_00913
crossref_primary_10_3389_fcell_2021_630479
crossref_primary_10_4049_jimmunol_1700717
crossref_primary_10_7554_eLife_89740
crossref_primary_10_3389_fimmu_2020_01086
crossref_primary_10_3389_fimmu_2018_00236
crossref_primary_10_4236_health_2019_116065
crossref_primary_10_1016_j_ejps_2020_105637
crossref_primary_10_1016_j_tips_2024_05_008
crossref_primary_10_1111_aos_15792
crossref_primary_10_1016_j_jtha_2024_09_030
crossref_primary_10_1016_j_immuni_2015_08_013
crossref_primary_10_1016_j_micpath_2023_106194
crossref_primary_10_1371_journal_pone_0247605
crossref_primary_10_3390_ijms242115805
crossref_primary_10_1055_a_2187_0645
crossref_primary_10_1016_j_lfs_2019_116631
crossref_primary_10_3389_fimmu_2025_1579954
crossref_primary_10_3390_ph9030053
crossref_primary_10_1016_j_intimp_2023_111305
crossref_primary_10_1155_2016_1340156
crossref_primary_10_1002_hep_27201
crossref_primary_10_3390_biom10101426
crossref_primary_10_1016_j_trsl_2022_11_010
crossref_primary_10_1002_hep_27841
crossref_primary_10_1016_j_clim_2020_108461
crossref_primary_10_1016_j_jhep_2017_01_022
crossref_primary_10_2147_JIR_S363693
crossref_primary_10_3390_antibiotics10070861
crossref_primary_10_1002_oby_22821
crossref_primary_10_1038_labinvest_2014_46
crossref_primary_10_1016_j_clim_2014_05_007
crossref_primary_10_3389_fimmu_2022_953195
crossref_primary_10_1097_MPA_0000000000000416
crossref_primary_10_3389_fimmu_2021_650184
crossref_primary_10_1186_s12974_020_01950_x
crossref_primary_10_1016_j_intimp_2021_107643
crossref_primary_10_1016_j_fct_2020_111944
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.4049/jimmunol.1202733
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1550-6606
ExternalDocumentID 23904166
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: T32 AI074490
– fundername: NIGMS NIH HHS
  grantid: R01 GM95566
– fundername: Howard Hughes Medical Institute
– fundername: NIGMS NIH HHS
  grantid: R01 GM095566
GroupedDBID ---
-~X
.55
18M
1KJ
2WC
34G
39C
53G
5GY
5RE
5VS
5WD
79B
85S
AARDX
ABCQX
ABDFA
ABEJV
ABGNP
ABJNI
ABOCM
ABPPZ
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADIPN
ADNWM
AENEX
AETEA
AFHIN
AFOSN
AFRAH
AHMMS
AHWXS
AIZAD
ALMA_UNASSIGNED_HOLDINGS
ARBBW
BAWUL
BCRHZ
BTFSW
CGR
CUY
CVF
D0L
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
IH2
K-O
KQ8
L7B
NPM
OCZFY
OK1
OWPYF
P0W
P2P
PQQKQ
R.V
RHI
ROX
RZQ
SJN
TR2
TWZ
W8F
WH7
WOQ
X7M
XJT
XSW
XTH
YHG
0R~
7X8
ABXVV
KOP
ID FETCH-LOGICAL-c495t-38cce6e726b577eeab4ea6c2af2f730a70c39c13bb384c614998fede402ca5f62
IEDL.DBID 7X8
ISICitedReferencesCount 188
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000323393300067&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1550-6606
IngestDate Sat Sep 27 18:01:31 EDT 2025
Thu Apr 03 06:55:47 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c495t-38cce6e726b577eeab4ea6c2af2f730a70c39c13bb384c614998fede402ca5f62
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3777242
PMID 23904166
PQID 1427000512
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1427000512
pubmed_primary_23904166
PublicationCentury 2000
PublicationDate 2013-09-01
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of immunology (1950)
PublicationTitleAlternate J Immunol
PublicationYear 2013
References 20127695 - Proteomics. 2010 Apr;10(7):1484-93
16407889 - Nature. 2006 Mar 9;440(7081):237-41
21940680 - J Immunol. 2011 Nov 1;187(9):4809-17
21721026 - Hepatology. 2011 Sep 2;54(3):999-1008
20093775 - J Clin Invest. 2010 Feb;120(2):559-69
21439959 - Gastroenterology. 2011 Jul;141(1):358-69
23192004 - J Inflamm (Lond). 2012 Nov 28;9(1):49
19855397 - Nat Med. 2009 Nov;15(11):1318-21
22677551 - J Am Soc Nephrol. 2012 Aug;23(8):1375-88
21884174 - Immunol Rev. 2011 Sep;243(1):152-62
20637940 - Surg Clin North Am. 2010 Aug;90(4):665-77
21282498 - Circulation. 2011 Feb 15;123(6):594-604
21784973 - J Immunol. 2011 Sep 1;187(5):2626-31
22064429 - Nat Med. 2011;17(11):1391-401
19164858 - J Clin Invest. 2009 Feb;119(2):305-14
11551515 - Biochem Pharmacol. 2001 Sep 15;62(6):705-12
18292799 - Mol Med. 2008 May-Jun;14(5-6):337-45
19918053 - Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20388-93
21831159 - Am J Transplant. 2011 Nov;11(11):2342-52
16407890 - Nature. 2006 Mar 9;440(7081):228-32
15795240 - J Exp Med. 2005 Apr 4;201(7):1135-43
20811615 - Gastroenterol Res Pract. 2010;2010:null
21219188 - Annu Rev Immunol. 2011;29:707-35
21128730 - Hum Gene Ther. 2011 Jul;22(7):853-64
17984303 - J Exp Med. 2007 Nov 26;204(12):2913-23
21673343 - Blood. 2011 Aug 18;118(7):1952-61
21666957 - Mol Med. 2011 Sep-Oct;17(9-10):1031-8
21687712 - PLoS One. 2011;6(6):e20398
20168318 - Nat Rev Immunol. 2010 Mar;10(3):210-5
20937823 - J Biol Chem. 2010 Dec 17;285(51):39888-97
12847387 - Crit Care Med. 2003 Jul;31(7):1947-51
19955661 - J Clin Invest. 2009 Dec;119(12):3502-11
21151103 - Nat Immunol. 2011 Mar;12(3):222-30
21124315 - Nature. 2011 Jan 13;469(7329):221-5
18490422 - Lupus. 2008 May;17(5):431-6
23474170 - Nitric Oxide. 2013 May 31;31:9-19
20947763 - Science. 2010 Oct 15;330(6002):362-6
16410367 - Am J Physiol Gastrointest Liver Physiol. 2006 Jun;290(6):G1261-8
19008778 - Shock. 2009 Jul;32(1):4-16
21884173 - Immunol Rev. 2011 Sep;243(1):136-51
21668640 - Am J Transplant. 2011 Aug;11(8):1563-9
16301676 - J Immunol. 2005 Dec 1;175(11):7661-8
22234969 - Hepatology. 2012 Jun;55(6):1863-75
20962258 - J Immunol. 2010 Nov 15;185(10):6277-85
20428172 - Nature. 2010 Apr 29;464(7293):1357-61
22258606 - Nature. 2012 Jan 19;481(7381):278-86
2003603 - Am J Physiol. 1991 Mar;260(3 Pt 1):G355-62
15915489 - Liver Transpl. 2005 Jun;11(6):669-78
References_xml – reference: 18490422 - Lupus. 2008 May;17(5):431-6
– reference: 21831159 - Am J Transplant. 2011 Nov;11(11):2342-52
– reference: 16407890 - Nature. 2006 Mar 9;440(7081):228-32
– reference: 23192004 - J Inflamm (Lond). 2012 Nov 28;9(1):49
– reference: 20811615 - Gastroenterol Res Pract. 2010;2010:null
– reference: 21124315 - Nature. 2011 Jan 13;469(7329):221-5
– reference: 21940680 - J Immunol. 2011 Nov 1;187(9):4809-17
– reference: 20637940 - Surg Clin North Am. 2010 Aug;90(4):665-77
– reference: 21673343 - Blood. 2011 Aug 18;118(7):1952-61
– reference: 20962258 - J Immunol. 2010 Nov 15;185(10):6277-85
– reference: 18292799 - Mol Med. 2008 May-Jun;14(5-6):337-45
– reference: 19918053 - Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20388-93
– reference: 20127695 - Proteomics. 2010 Apr;10(7):1484-93
– reference: 21128730 - Hum Gene Ther. 2011 Jul;22(7):853-64
– reference: 15915489 - Liver Transpl. 2005 Jun;11(6):669-78
– reference: 22064429 - Nat Med. 2011;17(11):1391-401
– reference: 21884174 - Immunol Rev. 2011 Sep;243(1):152-62
– reference: 16410367 - Am J Physiol Gastrointest Liver Physiol. 2006 Jun;290(6):G1261-8
– reference: 20937823 - J Biol Chem. 2010 Dec 17;285(51):39888-97
– reference: 19855397 - Nat Med. 2009 Nov;15(11):1318-21
– reference: 20947763 - Science. 2010 Oct 15;330(6002):362-6
– reference: 17984303 - J Exp Med. 2007 Nov 26;204(12):2913-23
– reference: 21282498 - Circulation. 2011 Feb 15;123(6):594-604
– reference: 21219188 - Annu Rev Immunol. 2011;29:707-35
– reference: 21721026 - Hepatology. 2011 Sep 2;54(3):999-1008
– reference: 20093775 - J Clin Invest. 2010 Feb;120(2):559-69
– reference: 19164858 - J Clin Invest. 2009 Feb;119(2):305-14
– reference: 11551515 - Biochem Pharmacol. 2001 Sep 15;62(6):705-12
– reference: 21666957 - Mol Med. 2011 Sep-Oct;17(9-10):1031-8
– reference: 19008778 - Shock. 2009 Jul;32(1):4-16
– reference: 20168318 - Nat Rev Immunol. 2010 Mar;10(3):210-5
– reference: 21784973 - J Immunol. 2011 Sep 1;187(5):2626-31
– reference: 22677551 - J Am Soc Nephrol. 2012 Aug;23(8):1375-88
– reference: 19955661 - J Clin Invest. 2009 Dec;119(12):3502-11
– reference: 22234969 - Hepatology. 2012 Jun;55(6):1863-75
– reference: 20428172 - Nature. 2010 Apr 29;464(7293):1357-61
– reference: 22258606 - Nature. 2012 Jan 19;481(7381):278-86
– reference: 23474170 - Nitric Oxide. 2013 May 31;31:9-19
– reference: 21687712 - PLoS One. 2011;6(6):e20398
– reference: 12847387 - Crit Care Med. 2003 Jul;31(7):1947-51
– reference: 16301676 - J Immunol. 2005 Dec 1;175(11):7661-8
– reference: 21439959 - Gastroenterology. 2011 Jul;141(1):358-69
– reference: 16407889 - Nature. 2006 Mar 9;440(7081):237-41
– reference: 21884173 - Immunol Rev. 2011 Sep;243(1):136-51
– reference: 21151103 - Nat Immunol. 2011 Mar;12(3):222-30
– reference: 2003603 - Am J Physiol. 1991 Mar;260(3 Pt 1):G355-62
– reference: 15795240 - J Exp Med. 2005 Apr 4;201(7):1135-43
– reference: 21668640 - Am J Transplant. 2011 Aug;11(8):1563-9
SSID ssj0006024
Score 2.5242698
Snippet Cellular processes that drive sterile inflammatory injury after hepatic ischemia/reperfusion (I/R) injury are not completely understood. Activation of the...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 2665
SubjectTerms Animals
Blotting, Western
Carrier Proteins - immunology
Carrier Proteins - metabolism
Enzyme-Linked Immunosorbent Assay
Flow Cytometry
Fluorescent Antibody Technique
Histones - immunology
Histones - metabolism
Immunity, Innate - immunology
Inflammasomes - immunology
Inflammasomes - metabolism
Kupffer Cells - immunology
Kupffer Cells - metabolism
Liver - immunology
Liver - injuries
Liver - metabolism
Male
Mice
Mice, Inbred C57BL
Mice, Knockout
Microscopy, Confocal
NLR Family, Pyrin Domain-Containing 3 Protein
Real-Time Polymerase Chain Reaction
Reperfusion Injury - immunology
Reverse Transcriptase Polymerase Chain Reaction
Title Histones activate the NLRP3 inflammasome in Kupffer cells during sterile inflammatory liver injury
URI https://www.ncbi.nlm.nih.gov/pubmed/23904166
https://www.proquest.com/docview/1427000512
Volume 191
WOSCitedRecordID wos000323393300067&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7qVHzxMm_zRgRfo72kSfMkIg7BrQxR2FtpsgQ2dtNuA_-957SdexIEXwotKYScky_fyUnOR8iN07GxwkKkKiPOuO84U66nGNci0FYoo3VRXb8lkyTudlWn2nDLq2OVS0wsgLo3MbhHfudzTJGCCwX30w-GqlGYXa0kNNZJLQQqgxNTdlfVwoVXitoCC2cCmHqZpuRAiu8Gfbx-MRne-hj9o2zubwSzWGiae__t4j7ZrSgmfSh94oCs2XGdbJWik191st2u0umHRBdFQgDsKF5vWADtpMAHadJ67YQUXA-8ZZTlk5GFF_oyn6KWCsWt_pyW1xspllkAXPlpjCl7OsSzHvBpAPY6Iu_Np7fHZ1aJLjADsdKMhbFB48lA6EhKazPNbSZMkLnAARpk0jOhMn6odRhzA4s7xGvO9izEoSaLnAiOycYYen5KqJMAXp5wShnFldWZB2AKxo8iZ33fuga5Xo5jCk6N3c_GdjLP09VINshJaYx0WlbfSINQecAixdkf_j4nO0EhX4Fnwi5IzcGUtpdk0yxm_fzzqvAWeCad9jf4csy-
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Histones+activate+the+NLRP3+inflammasome+in+Kupffer+cells+during+sterile+inflammatory+liver+injury&rft.jtitle=The+Journal+of+immunology+%281950%29&rft.au=Huang%2C+Hai&rft.au=Chen%2C+Hui-Wei&rft.au=Evankovich%2C+John&rft.au=Yan%2C+Wei&rft.date=2013-09-01&rft.issn=1550-6606&rft.eissn=1550-6606&rft.volume=191&rft.issue=5&rft.spage=2665&rft_id=info:doi/10.4049%2Fjimmunol.1202733&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-6606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-6606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-6606&client=summon