High-Resolution SAR Image Classification via Deep Convolutional Autoencoders
Synthetic aperture radar (SAR) image classification is a hot topic in the interpretation of SAR images. However, the absence of effective feature representation and the presence of speckle noise in SAR images make classification difficult to handle. In order to overcome these problems, a deep convol...
Saved in:
| Published in: | IEEE geoscience and remote sensing letters Vol. 12; no. 11; pp. 2351 - 2355 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.11.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1545-598X, 1558-0571 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Synthetic aperture radar (SAR) image classification is a hot topic in the interpretation of SAR images. However, the absence of effective feature representation and the presence of speckle noise in SAR images make classification difficult to handle. In order to overcome these problems, a deep convolutional autoencoder (DCAE) is proposed to extract features and conduct classification automatically. The deep network is composed of eight layers: a convolutional layer to extract texture features, a scale transformation layer to aggregate neighbor information, four layers based on sparse autoencoders to optimize features and classify, and last two layers for postprocessing. Compared with hand-crafted features, the DCAE network provides an automatic method to learn discriminative features from the image. A series of filters is designed as convolutional units to comprise the gray-level cooccurrence matrix and Gabor features together. Scale transformation is conducted to reduce the influence of the noise, which integrates the correlated neighbor pixels. Sparse autoencoders seek better representation of features to match the classifier, since training labels are added to fine-tune the parameters of the networks. Morphological smoothing removes the isolated points of the classification map. The whole network is designed ingeniously, and each part has a contribution to the classification accuracy. The experiments of TerraSAR-X image demonstrate that the DCAE network can extract efficient features and perform better classification result compared with some related algorithms. |
|---|---|
| AbstractList | Synthetic aperture radar (SAR) image classification is a hot topic in the interpretation of SAR images. However, the absence of effective feature representation and the presence of speckle noise in SAR images make classification difficult to handle. In order to overcome these problems, a deep convolutional autoencoder (DCAE) is proposed to extract features and conduct classification automatically. The deep network is composed of eight layers: a convolutional layer to extract texture features, a scale transformation layer to aggregate neighbor information, four layers based on sparse autoencoders to optimize features and classify, and last two layers for postprocessing. Compared with hand-crafted features, the DCAE network provides an automatic method to learn discriminative features from the image. A series of filters is designed as convolutional units to comprise the gray-level cooccurrence matrix and Gabor features together. Scale transformation is conducted to reduce the influence of the noise, which integrates the correlated neighbor pixels. Sparse autoencoders seek better representation of features to match the classifier, since training labels are added to fine-tune the parameters of the networks. Morphological smoothing removes the isolated points of the classification map. The whole network is designed ingeniously, and each part has a contribution to the classification accuracy. The experiments of TerraSAR-X image demonstrate that the DCAE network can extract efficient features and perform better classification result compared with some related algorithms. |
| Author | Li, Baoming Chen, Fuliang Fan, Jianchao Wang, Hongyu Ma, Xiaorui Geng, Jie |
| Author_xml | – sequence: 1 givenname: Jie surname: Geng fullname: Geng, Jie email: gengjie@mail.dlut.edu.cn organization: Sch. of Inf. & Commun. Eng., Dalian Univ. of Technol., Dalian, China – sequence: 2 givenname: Jianchao surname: Fan fullname: Fan, Jianchao email: fjchaonmemc@163.com organization: Sch. of Control Sci. & Eng., Dalian Univ. of Technol., Dalian, China – sequence: 3 givenname: Hongyu surname: Wang fullname: Wang, Hongyu email: whyu@dlut.edu.cn organization: Sch. of Inf. & Commun. Eng., Dalian Univ. of Technol., Dalian, China – sequence: 4 givenname: Xiaorui surname: Ma fullname: Ma, Xiaorui email: xrui.ma@gmail.com organization: Sch. of Inf. & Commun. Eng., Dalian Univ. of Technol., Dalian, China – sequence: 5 givenname: Baoming surname: Li fullname: Li, Baoming email: libaoming@cast.cn organization: Space Star Technol. Co., Ltd., Beijing, China – sequence: 6 givenname: Fuliang surname: Chen fullname: Chen, Fuliang email: cfl0410@126.com organization: Space Star Technol. Co., Ltd., Beijing, China |
| BookMark | eNqFkUtLw0AUhQdR0FZ_gLgJuHGTOu_HslRtCwWhVXAXJsltnZJmaiYp-O9N2uKiC13dC_c7F845PXRe-hIQuiV4QAg2j7PxfDGgmIgB5UpTIc_QFRFCx1goct7tXMTC6I9L1AthjTHlWqsrNJu41Wc8h-CLpna-jBbDeTTd2BVEo8KG4JYus_vDztnoCWAbjXy5O9K2iIZN7aHMfA5VuEYXS1sEuDnOPnp_eX4bTeLZ63g6Gs7ijBtRx5RYnMs0NSbFQme5BilzY9OcpgRbYThd8rS1wajFmQDNuNSSGaJ0joUwjPXRw-HvtvJfDYQ62biQQVHYEnwTEqKJxEwbI_5HleGiTUOoFr0_Qde-qVqPHcUYxQxL3lLqQGWVD6GCZZK5ep9QXVlXJAQnXSFJV0jSFZIcC2mV5ES5rdzGVt9_au4OGgcAv7yiWiom2Q_kiJZk |
| CODEN | IGRSBY |
| CitedBy_id | crossref_primary_10_1080_2150704X_2017_1335906 crossref_primary_10_1016_j_measurement_2024_115432 crossref_primary_10_3390_info10040150 crossref_primary_10_3390_rs9060586 crossref_primary_10_3390_rs14205143 crossref_primary_10_1080_22797254_2019_1694447 crossref_primary_10_1109_TGRS_2022_3158741 crossref_primary_10_1007_s42979_020_00135_w crossref_primary_10_1109_TGRS_2020_2984951 crossref_primary_10_1109_TGRS_2024_3358956 crossref_primary_10_1080_01431161_2018_1547450 crossref_primary_10_1109_MGRS_2018_2853555 crossref_primary_10_1016_j_inffus_2020_09_006 crossref_primary_10_1109_LGRS_2018_2829182 crossref_primary_10_1080_07038992_2021_1986810 crossref_primary_10_1002_qj_70010 crossref_primary_10_1109_JSTARS_2021_3082044 crossref_primary_10_1109_TGRS_2023_3342740 crossref_primary_10_3390_rs10050776 crossref_primary_10_3390_s23052820 crossref_primary_10_1007_s10462_023_10662_6 crossref_primary_10_1080_01431161_2018_1519277 crossref_primary_10_1080_01431161_2023_2297175 crossref_primary_10_1109_JOE_2019_2963041 crossref_primary_10_1109_JSTARS_2019_2913445 crossref_primary_10_3390_rs11030282 crossref_primary_10_1016_j_jag_2025_104722 crossref_primary_10_1109_ACCESS_2018_2880083 crossref_primary_10_3390_rs12010128 crossref_primary_10_1109_TGRS_2020_2964679 crossref_primary_10_3390_rs14205133 crossref_primary_10_1016_j_atmosres_2025_108114 crossref_primary_10_1016_j_isprsjprs_2020_01_016 crossref_primary_10_1049_rsn2_12183 crossref_primary_10_1080_01431161_2020_1823041 crossref_primary_10_3390_rs11050512 crossref_primary_10_1109_JSTARS_2023_3264452 crossref_primary_10_1109_TGRS_2020_3004911 crossref_primary_10_1109_TGRS_2023_3283435 crossref_primary_10_3390_s19163576 crossref_primary_10_1109_JSTARS_2020_2983000 crossref_primary_10_1109_TGRS_2016_2645226 crossref_primary_10_1109_ACCESS_2017_2773363 crossref_primary_10_1109_JSEN_2019_2935552 crossref_primary_10_1016_j_isprsjprs_2020_03_001 crossref_primary_10_1109_TGRS_2021_3131986 crossref_primary_10_1007_s00521_024_09477_5 crossref_primary_10_1109_TGRS_2019_2959120 crossref_primary_10_3390_rs11111313 crossref_primary_10_1109_TGRS_2019_2963699 crossref_primary_10_3233_SJI_190555 crossref_primary_10_1109_JSTARS_2020_3016064 crossref_primary_10_1109_MGRS_2021_3136100 crossref_primary_10_1109_JSTARS_2020_3024002 crossref_primary_10_3390_app11135869 crossref_primary_10_1109_TGRS_2023_3305025 crossref_primary_10_3390_rs14235933 crossref_primary_10_1007_s11431_020_1600_9 crossref_primary_10_1088_1741_2552_ad4593 crossref_primary_10_1049_iet_rsn_2018_5413 crossref_primary_10_1080_01431161_2021_1954261 crossref_primary_10_1109_TGRS_2021_3100637 crossref_primary_10_3390_rs11212586 crossref_primary_10_1029_2024GH001253 crossref_primary_10_1109_TGRS_2019_2933483 crossref_primary_10_1109_JSTARS_2022_3179171 crossref_primary_10_1109_TGRS_2024_3438465 crossref_primary_10_1109_LRA_2022_3192794 crossref_primary_10_1109_LGRS_2019_2893306 crossref_primary_10_1029_2024JH000566 crossref_primary_10_3390_electronics6020029 crossref_primary_10_1109_TGRS_2018_2837142 crossref_primary_10_1002_fes3_446 crossref_primary_10_1109_LGRS_2017_2786344 crossref_primary_10_3390_rs13020328 crossref_primary_10_1109_ACCESS_2022_3161836 crossref_primary_10_3390_math11081777 crossref_primary_10_1016_j_procs_2021_05_037 crossref_primary_10_5194_tc_13_1729_2019 crossref_primary_10_1109_MGRS_2020_3046356 crossref_primary_10_3390_info11060318 crossref_primary_10_1109_MGRS_2016_2540798 crossref_primary_10_3390_ijgi7090379 crossref_primary_10_1109_JSTARS_2019_2910786 crossref_primary_10_1109_TGRS_2023_3307825 crossref_primary_10_1061__ASCE_CP_1943_5487_0000881 crossref_primary_10_1109_JSTARS_2018_2851023 crossref_primary_10_1109_JSTARS_2025_3557540 crossref_primary_10_3390_rs14174350 crossref_primary_10_1109_JSEN_2020_2995749 crossref_primary_10_1109_JSTARS_2021_3098678 crossref_primary_10_1016_j_eswa_2020_114417 crossref_primary_10_1190_geo2019_0708_1 crossref_primary_10_3390_rs15030617 crossref_primary_10_1109_ACCESS_2019_2936861 crossref_primary_10_1109_ACCESS_2021_3119561 crossref_primary_10_1109_ACCESS_2020_3026469 crossref_primary_10_1016_j_eswa_2020_114370 crossref_primary_10_3390_rs15184412 crossref_primary_10_3390_s17010192 crossref_primary_10_1088_1742_6596_2562_1_012053 crossref_primary_10_1016_j_neucom_2022_03_062 crossref_primary_10_1109_JSTARS_2018_2872018 crossref_primary_10_1109_TGRS_2020_3023192 crossref_primary_10_1109_ACCESS_2018_2852768 crossref_primary_10_1016_j_eswa_2023_122202 crossref_primary_10_1145_3451165 crossref_primary_10_3390_s22218245 crossref_primary_10_1109_LGRS_2016_2632181 crossref_primary_10_1109_JSTARS_2022_3198475 crossref_primary_10_1109_LGRS_2017_2681128 crossref_primary_10_3390_rs16224280 crossref_primary_10_1109_TASE_2024_3369659 crossref_primary_10_1109_TGRS_2020_2976694 crossref_primary_10_1109_TGRS_2022_3166174 crossref_primary_10_1109_LGRS_2020_2993039 crossref_primary_10_1109_TGRS_2019_2947633 crossref_primary_10_1049_iet_rpg_2018_5627 crossref_primary_10_1080_2150704X_2018_1513662 crossref_primary_10_1109_ACCESS_2020_2987105 crossref_primary_10_1109_MGRS_2017_2762307 crossref_primary_10_1109_TGRS_2021_3104907 crossref_primary_10_1016_j_patcog_2017_02_035 crossref_primary_10_3390_rs10101618 crossref_primary_10_1109_JSTARS_2021_3096941 crossref_primary_10_3390_rs10060920 crossref_primary_10_3390_rs10020225 crossref_primary_10_1109_JSTARS_2020_3015520 crossref_primary_10_1007_s00366_023_01789_9 crossref_primary_10_1016_j_jreng_2024_04_003 crossref_primary_10_1016_j_sigpro_2020_107729 crossref_primary_10_3390_diagnostics10050329 crossref_primary_10_1109_LGRS_2017_2766130 crossref_primary_10_3390_rs10020342 crossref_primary_10_3390_rs15215121 crossref_primary_10_1007_s00521_021_06802_0 crossref_primary_10_1109_TGRS_2017_2777868 crossref_primary_10_1016_j_asoc_2019_105960 crossref_primary_10_1080_01431161_2022_2048319 crossref_primary_10_1109_LGRS_2017_2777450 crossref_primary_10_3390_rs10060878 crossref_primary_10_1109_JSTARS_2024_3409775 crossref_primary_10_3390_math11122690 crossref_primary_10_1109_TGRS_2021_3059742 crossref_primary_10_1109_JSTARS_2021_3100342 crossref_primary_10_1109_TCYB_2020_3011165 crossref_primary_10_3390_bdcc5020021 crossref_primary_10_1016_j_commatsci_2024_113546 crossref_primary_10_3390_rs15061664 crossref_primary_10_3390_rs11161942 crossref_primary_10_3390_rs14061412 crossref_primary_10_1016_j_compmedimag_2018_08_006 crossref_primary_10_1109_TGRS_2023_3262727 crossref_primary_10_1109_JSTARS_2020_3031020 crossref_primary_10_3390_rs11242997 crossref_primary_10_1016_j_ifacol_2018_09_486 crossref_primary_10_1109_LGRS_2020_3040316 crossref_primary_10_3390_electronics11203309 crossref_primary_10_1016_j_rse_2021_112665 crossref_primary_10_1080_01431161_2021_1899336 crossref_primary_10_1109_TGRS_2020_2981051 crossref_primary_10_1080_22797254_2019_1579616 crossref_primary_10_1016_j_isprsjprs_2019_04_016 crossref_primary_10_1016_j_isprsjprs_2019_10_002 crossref_primary_10_1016_j_isprsjprs_2020_07_007 crossref_primary_10_1109_TGRS_2023_3239226 crossref_primary_10_1109_TGRS_2021_3098122 crossref_primary_10_1109_LSENS_2019_2896072 crossref_primary_10_1029_2018WR022643 crossref_primary_10_1049_joe_2019_0563 crossref_primary_10_1109_TGRS_2022_3140404 crossref_primary_10_1016_j_sigpro_2020_107623 crossref_primary_10_3390_s20051533 crossref_primary_10_3390_electronics11010156 crossref_primary_10_1109_JSTARS_2017_2698076 crossref_primary_10_1155_2023_7724264 crossref_primary_10_1007_s11042_020_09536_8 crossref_primary_10_1109_TGRS_2021_3052793 crossref_primary_10_1109_TGRS_2020_2999405 crossref_primary_10_1007_s11814_021_0804_6 crossref_primary_10_1016_j_measurement_2021_109914 crossref_primary_10_1007_s12524_018_0891_y crossref_primary_10_1109_TCAD_2022_3195676 |
| Cites_doi | 10.1109/CVPR.2014.244 10.1145/1961189.1961199 10.1109/LGRS.2013.2287295 10.1109/TGRS.2008.2002881 10.1109/TGRS.2013.2265413 10.1109/LGRS.2014.2386351 10.1080/07055900.2001.9649675 10.1109/TPAMI.2008.79 10.1016/j.jag.2014.09.019 10.1109/CVPR.2014.243 10.1561/2200000006 10.1109/TGRS.2014.2357078 10.1109/TIP.2013.2259833 10.1162/neco.2006.18.7.1527 10.1016/j.jvcir.2014.03.009 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2015 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2015 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D F28 |
| DOI | 10.1109/LGRS.2015.2478256 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Civil Engineering Abstracts Meteorological & Geoastrophysical Abstracts - Academic Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology |
| EISSN | 1558-0571 |
| EndPage | 2355 |
| ExternalDocumentID | 3867217371 10_1109_LGRS_2015_2478256 7286736 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Research of Dynamic Monitoring of High Resolution Sea Area Application – fundername: China Postdoctoral Science Foundation grantid: 2014M551082 funderid: 10.13039/501100002858 – fundername: National Natural Science Foundation of China; National Nature Science Foundation of China grantid: 61273307 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS ~02 AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D RIG F28 |
| ID | FETCH-LOGICAL-c495t-21a0d6bb99b058cd8e66d9abd2b10a5942f4b24732a0c5e83468639178d055933 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 250 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000364215500035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-598X |
| IngestDate | Wed Oct 01 17:02:40 EDT 2025 Sun Nov 09 10:58:01 EST 2025 Mon Jun 30 10:27:57 EDT 2025 Sat Nov 29 05:53:48 EST 2025 Tue Nov 18 22:18:45 EST 2025 Wed Aug 27 08:36:38 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | supervised classification synthetic aperture radar (SAR) image Deep convolutional autoencoders (DCAEs) |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c495t-21a0d6bb99b058cd8e66d9abd2b10a5942f4b24732a0c5e83468639178d055933 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 1733203064 |
| PQPubID | 75725 |
| PageCount | 5 |
| ParticipantIDs | proquest_miscellaneous_1794500257 crossref_citationtrail_10_1109_LGRS_2015_2478256 crossref_primary_10_1109_LGRS_2015_2478256 proquest_journals_1733203064 ieee_primary_7286736 proquest_miscellaneous_1816038995 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-11-01 |
| PublicationDateYYYYMMDD | 2015-11-01 |
| PublicationDate_xml | – month: 11 year: 2015 text: 2015-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE geoscience and remote sensing letters |
| PublicationTitleAbbrev | LGRS |
| PublicationYear | 2015 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 lee (ref1) 2009; 47 ref11 ref10 xie (ref15) 0 ref2 ref17 ref16 srivastava (ref18) 2014; 15 he (ref3) 2015; 12 ref8 ref7 ref9 vincent (ref14) 2010; 11 ref4 ref6 ref5 |
| References_xml | – ident: ref12 doi: 10.1109/CVPR.2014.244 – ident: ref6 doi: 10.1145/1961189.1961199 – ident: ref8 doi: 10.1109/LGRS.2013.2287295 – volume: 15 start-page: 1929 year: 2014 ident: ref18 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – volume: 47 start-page: 202 year: 2009 ident: ref1 article-title: Improved sigma filter for speckle filtering of SAR imagery publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2008.2002881 – ident: ref4 doi: 10.1109/TGRS.2013.2265413 – volume: 11 start-page: 3371 year: 2010 ident: ref14 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J Mach Learn Res – start-page: 2818 year: 0 ident: ref15 article-title: Multilayer feature learning for polarimetric synthetic radar data classification publication-title: Proc IEEE Geosci Remote Sens Symp – volume: 12 start-page: 1141 year: 2015 ident: ref3 article-title: Particle filter sample texton feature for SAR image classification publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2014.2386351 – ident: ref2 doi: 10.1080/07055900.2001.9649675 – ident: ref7 doi: 10.1109/TPAMI.2008.79 – ident: ref9 doi: 10.1016/j.jag.2014.09.019 – ident: ref17 doi: 10.1109/CVPR.2014.243 – ident: ref11 doi: 10.1561/2200000006 – ident: ref13 doi: 10.1109/TGRS.2014.2357078 – ident: ref5 doi: 10.1109/TIP.2013.2259833 – ident: ref10 doi: 10.1162/neco.2006.18.7.1527 – ident: ref16 doi: 10.1016/j.jvcir.2014.03.009 |
| SSID | ssj0024887 |
| Score | 2.5505455 |
| Snippet | Synthetic aperture radar (SAR) image classification is a hot topic in the interpretation of SAR images. However, the absence of effective feature... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2351 |
| SubjectTerms | Accuracy Classification Deep convolutional autoencoders (DCAEs) Feature extraction Image classification Networks Noise Representations Speckle supervised classification Synthetic aperture radar synthetic aperture radar (SAR) image Texture Training Transformations Transforms |
| Title | High-Resolution SAR Image Classification via Deep Convolutional Autoencoders |
| URI | https://ieeexplore.ieee.org/document/7286736 https://www.proquest.com/docview/1733203064 https://www.proquest.com/docview/1794500257 https://www.proquest.com/docview/1816038995 |
| Volume | 12 |
| WOSCitedRecordID | wos000364215500035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0571 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024887 issn: 1545-598X databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED6mKPrij6k4nVLBJ7GapsmSPA51UxgiTmFvpU1TFLQV3Qb-9-bSOAVF8K3QaxPuktx3yeU-gMPCQlZZMBubRMKE6PFDSVMdWvTMJSm0dfrEkU2I62s5GqmbBhzP7sIYY1zymTnBR3eWn1d6gltlp4JKTEOagzkhRH1X66uunnRkeIgIQq7kyJ9gRkSdDvq3Q0zi4ieUWYeIXNXffJAjVfmxEjv30lv9X8fWYMXDyKBb230dGqZswpJnNH94b8Ji31H2vm_AAFM5QtymrwdZMOzeBlfPdh0JHCMm5go58wTTxzQ4N-YlOKvKqZfGRibjCstdYsrzJtz3Lu7OLkPPoRBqG_qMQxqlJO9kmVIZ4VLn0nQ6uUqznGYRSblitGCZVUtMU6K5kTHrSAtaIiFzYoONON6C-bIqzTYExmLHiBSEMaUZFcL-OI15FuucZDaSMy0gn1pNtC8wjjwXT4kLNIhK0BAJGiLxhmjB0eyTl7q6xl_CG6j5maBXegvan6ZL_Px7SyIRxxTDIdaCg9lrO3PwOCQtTTVBGcU4Yj7xh4xEGm4bk_Kd31vfhWXsY307sQ3z49eJ2YMFPR0_vr3uuyH6ARs24Lc |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90KvPFb3F-VvBJrKZpsiaPom6Kc4gfsLfSpikOtB26DfzvzaVxCorgW6HXJtwlud8ll_sBHOQGsoqcmdgkiLSPHt8XNFG-Qc9ckFwZp08s2UTU7YpeT95OwdHkLozW2iaf6WN8tGf5WalGuFV2ElGBaUjTMMMZo0F1W-ursp6wdHiICXwuRc-dYQZEnnTad_eYxsWPKTMuEdmqv3khS6vyYy22Dqa1-L-uLcGCA5LeaWX5ZZjSxQrUHaf50_sKzLUtae_7KnQwmcPHjfpqmHn3p3fe1YtZSTzLiYnZQtZA3rifeOdaD7yzshg7aWxkNCyx4CUmPa_BY-vi4ezSdywKvjLBz9CnQUKyZppKmRIuVCZ0s5nJJM1oGpCES0Zzlhq1hDQhimsRsqYwsCWIREZMuBGG61ArykJvgKcNegxIThiTitEoMj9OQp6GKiOpieV0A8inVmPlSowj08VzbEMNImM0RIyGiJ0hGnA4-WRQ1df4S3gVNT8RdEpvwPan6WI3A9_iIApDigERa8D-5LWZO3ggkhS6HKGMZBxRX_SHjEAibhOV8s3fW9-D-uXDTSfuXHWvt2Ae-1vdVdyG2vB1pHdgVo2H_bfXXTtcPwDyPuP- |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Resolution+SAR+Image+Classification+via+Deep+Convolutional+Autoencoders&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Geng%2C+Jie&rft.au=Fan%2C+Jianchao&rft.au=Wang%2C+Hongyu&rft.au=Ma%2C+Xiaorui&rft.date=2015-11-01&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=12&rft.issue=11&rft.spage=2351&rft.epage=2355&rft_id=info:doi/10.1109%2FLGRS.2015.2478256&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon |