High-Resolution SAR Image Classification via Deep Convolutional Autoencoders

Synthetic aperture radar (SAR) image classification is a hot topic in the interpretation of SAR images. However, the absence of effective feature representation and the presence of speckle noise in SAR images make classification difficult to handle. In order to overcome these problems, a deep convol...

Full description

Saved in:
Bibliographic Details
Published in:IEEE geoscience and remote sensing letters Vol. 12; no. 11; pp. 2351 - 2355
Main Authors: Geng, Jie, Fan, Jianchao, Wang, Hongyu, Ma, Xiaorui, Li, Baoming, Chen, Fuliang
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.11.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1545-598X, 1558-0571
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Synthetic aperture radar (SAR) image classification is a hot topic in the interpretation of SAR images. However, the absence of effective feature representation and the presence of speckle noise in SAR images make classification difficult to handle. In order to overcome these problems, a deep convolutional autoencoder (DCAE) is proposed to extract features and conduct classification automatically. The deep network is composed of eight layers: a convolutional layer to extract texture features, a scale transformation layer to aggregate neighbor information, four layers based on sparse autoencoders to optimize features and classify, and last two layers for postprocessing. Compared with hand-crafted features, the DCAE network provides an automatic method to learn discriminative features from the image. A series of filters is designed as convolutional units to comprise the gray-level cooccurrence matrix and Gabor features together. Scale transformation is conducted to reduce the influence of the noise, which integrates the correlated neighbor pixels. Sparse autoencoders seek better representation of features to match the classifier, since training labels are added to fine-tune the parameters of the networks. Morphological smoothing removes the isolated points of the classification map. The whole network is designed ingeniously, and each part has a contribution to the classification accuracy. The experiments of TerraSAR-X image demonstrate that the DCAE network can extract efficient features and perform better classification result compared with some related algorithms.
AbstractList Synthetic aperture radar (SAR) image classification is a hot topic in the interpretation of SAR images. However, the absence of effective feature representation and the presence of speckle noise in SAR images make classification difficult to handle. In order to overcome these problems, a deep convolutional autoencoder (DCAE) is proposed to extract features and conduct classification automatically. The deep network is composed of eight layers: a convolutional layer to extract texture features, a scale transformation layer to aggregate neighbor information, four layers based on sparse autoencoders to optimize features and classify, and last two layers for postprocessing. Compared with hand-crafted features, the DCAE network provides an automatic method to learn discriminative features from the image. A series of filters is designed as convolutional units to comprise the gray-level cooccurrence matrix and Gabor features together. Scale transformation is conducted to reduce the influence of the noise, which integrates the correlated neighbor pixels. Sparse autoencoders seek better representation of features to match the classifier, since training labels are added to fine-tune the parameters of the networks. Morphological smoothing removes the isolated points of the classification map. The whole network is designed ingeniously, and each part has a contribution to the classification accuracy. The experiments of TerraSAR-X image demonstrate that the DCAE network can extract efficient features and perform better classification result compared with some related algorithms.
Author Li, Baoming
Chen, Fuliang
Fan, Jianchao
Wang, Hongyu
Ma, Xiaorui
Geng, Jie
Author_xml – sequence: 1
  givenname: Jie
  surname: Geng
  fullname: Geng, Jie
  email: gengjie@mail.dlut.edu.cn
  organization: Sch. of Inf. & Commun. Eng., Dalian Univ. of Technol., Dalian, China
– sequence: 2
  givenname: Jianchao
  surname: Fan
  fullname: Fan, Jianchao
  email: fjchaonmemc@163.com
  organization: Sch. of Control Sci. & Eng., Dalian Univ. of Technol., Dalian, China
– sequence: 3
  givenname: Hongyu
  surname: Wang
  fullname: Wang, Hongyu
  email: whyu@dlut.edu.cn
  organization: Sch. of Inf. & Commun. Eng., Dalian Univ. of Technol., Dalian, China
– sequence: 4
  givenname: Xiaorui
  surname: Ma
  fullname: Ma, Xiaorui
  email: xrui.ma@gmail.com
  organization: Sch. of Inf. & Commun. Eng., Dalian Univ. of Technol., Dalian, China
– sequence: 5
  givenname: Baoming
  surname: Li
  fullname: Li, Baoming
  email: libaoming@cast.cn
  organization: Space Star Technol. Co., Ltd., Beijing, China
– sequence: 6
  givenname: Fuliang
  surname: Chen
  fullname: Chen, Fuliang
  email: cfl0410@126.com
  organization: Space Star Technol. Co., Ltd., Beijing, China
BookMark eNqFkUtLw0AUhQdR0FZ_gLgJuHGTOu_HslRtCwWhVXAXJsltnZJmaiYp-O9N2uKiC13dC_c7F845PXRe-hIQuiV4QAg2j7PxfDGgmIgB5UpTIc_QFRFCx1goct7tXMTC6I9L1AthjTHlWqsrNJu41Wc8h-CLpna-jBbDeTTd2BVEo8KG4JYus_vDztnoCWAbjXy5O9K2iIZN7aHMfA5VuEYXS1sEuDnOPnp_eX4bTeLZ63g6Gs7ijBtRx5RYnMs0NSbFQme5BilzY9OcpgRbYThd8rS1wajFmQDNuNSSGaJ0joUwjPXRw-HvtvJfDYQ62biQQVHYEnwTEqKJxEwbI_5HleGiTUOoFr0_Qde-qVqPHcUYxQxL3lLqQGWVD6GCZZK5ep9QXVlXJAQnXSFJV0jSFZIcC2mV5ES5rdzGVt9_au4OGgcAv7yiWiom2Q_kiJZk
CODEN IGRSBY
CitedBy_id crossref_primary_10_1080_2150704X_2017_1335906
crossref_primary_10_1016_j_measurement_2024_115432
crossref_primary_10_3390_info10040150
crossref_primary_10_3390_rs9060586
crossref_primary_10_3390_rs14205143
crossref_primary_10_1080_22797254_2019_1694447
crossref_primary_10_1109_TGRS_2022_3158741
crossref_primary_10_1007_s42979_020_00135_w
crossref_primary_10_1109_TGRS_2020_2984951
crossref_primary_10_1109_TGRS_2024_3358956
crossref_primary_10_1080_01431161_2018_1547450
crossref_primary_10_1109_MGRS_2018_2853555
crossref_primary_10_1016_j_inffus_2020_09_006
crossref_primary_10_1109_LGRS_2018_2829182
crossref_primary_10_1080_07038992_2021_1986810
crossref_primary_10_1002_qj_70010
crossref_primary_10_1109_JSTARS_2021_3082044
crossref_primary_10_1109_TGRS_2023_3342740
crossref_primary_10_3390_rs10050776
crossref_primary_10_3390_s23052820
crossref_primary_10_1007_s10462_023_10662_6
crossref_primary_10_1080_01431161_2018_1519277
crossref_primary_10_1080_01431161_2023_2297175
crossref_primary_10_1109_JOE_2019_2963041
crossref_primary_10_1109_JSTARS_2019_2913445
crossref_primary_10_3390_rs11030282
crossref_primary_10_1016_j_jag_2025_104722
crossref_primary_10_1109_ACCESS_2018_2880083
crossref_primary_10_3390_rs12010128
crossref_primary_10_1109_TGRS_2020_2964679
crossref_primary_10_3390_rs14205133
crossref_primary_10_1016_j_atmosres_2025_108114
crossref_primary_10_1016_j_isprsjprs_2020_01_016
crossref_primary_10_1049_rsn2_12183
crossref_primary_10_1080_01431161_2020_1823041
crossref_primary_10_3390_rs11050512
crossref_primary_10_1109_JSTARS_2023_3264452
crossref_primary_10_1109_TGRS_2020_3004911
crossref_primary_10_1109_TGRS_2023_3283435
crossref_primary_10_3390_s19163576
crossref_primary_10_1109_JSTARS_2020_2983000
crossref_primary_10_1109_TGRS_2016_2645226
crossref_primary_10_1109_ACCESS_2017_2773363
crossref_primary_10_1109_JSEN_2019_2935552
crossref_primary_10_1016_j_isprsjprs_2020_03_001
crossref_primary_10_1109_TGRS_2021_3131986
crossref_primary_10_1007_s00521_024_09477_5
crossref_primary_10_1109_TGRS_2019_2959120
crossref_primary_10_3390_rs11111313
crossref_primary_10_1109_TGRS_2019_2963699
crossref_primary_10_3233_SJI_190555
crossref_primary_10_1109_JSTARS_2020_3016064
crossref_primary_10_1109_MGRS_2021_3136100
crossref_primary_10_1109_JSTARS_2020_3024002
crossref_primary_10_3390_app11135869
crossref_primary_10_1109_TGRS_2023_3305025
crossref_primary_10_3390_rs14235933
crossref_primary_10_1007_s11431_020_1600_9
crossref_primary_10_1088_1741_2552_ad4593
crossref_primary_10_1049_iet_rsn_2018_5413
crossref_primary_10_1080_01431161_2021_1954261
crossref_primary_10_1109_TGRS_2021_3100637
crossref_primary_10_3390_rs11212586
crossref_primary_10_1029_2024GH001253
crossref_primary_10_1109_TGRS_2019_2933483
crossref_primary_10_1109_JSTARS_2022_3179171
crossref_primary_10_1109_TGRS_2024_3438465
crossref_primary_10_1109_LRA_2022_3192794
crossref_primary_10_1109_LGRS_2019_2893306
crossref_primary_10_1029_2024JH000566
crossref_primary_10_3390_electronics6020029
crossref_primary_10_1109_TGRS_2018_2837142
crossref_primary_10_1002_fes3_446
crossref_primary_10_1109_LGRS_2017_2786344
crossref_primary_10_3390_rs13020328
crossref_primary_10_1109_ACCESS_2022_3161836
crossref_primary_10_3390_math11081777
crossref_primary_10_1016_j_procs_2021_05_037
crossref_primary_10_5194_tc_13_1729_2019
crossref_primary_10_1109_MGRS_2020_3046356
crossref_primary_10_3390_info11060318
crossref_primary_10_1109_MGRS_2016_2540798
crossref_primary_10_3390_ijgi7090379
crossref_primary_10_1109_JSTARS_2019_2910786
crossref_primary_10_1109_TGRS_2023_3307825
crossref_primary_10_1061__ASCE_CP_1943_5487_0000881
crossref_primary_10_1109_JSTARS_2018_2851023
crossref_primary_10_1109_JSTARS_2025_3557540
crossref_primary_10_3390_rs14174350
crossref_primary_10_1109_JSEN_2020_2995749
crossref_primary_10_1109_JSTARS_2021_3098678
crossref_primary_10_1016_j_eswa_2020_114417
crossref_primary_10_1190_geo2019_0708_1
crossref_primary_10_3390_rs15030617
crossref_primary_10_1109_ACCESS_2019_2936861
crossref_primary_10_1109_ACCESS_2021_3119561
crossref_primary_10_1109_ACCESS_2020_3026469
crossref_primary_10_1016_j_eswa_2020_114370
crossref_primary_10_3390_rs15184412
crossref_primary_10_3390_s17010192
crossref_primary_10_1088_1742_6596_2562_1_012053
crossref_primary_10_1016_j_neucom_2022_03_062
crossref_primary_10_1109_JSTARS_2018_2872018
crossref_primary_10_1109_TGRS_2020_3023192
crossref_primary_10_1109_ACCESS_2018_2852768
crossref_primary_10_1016_j_eswa_2023_122202
crossref_primary_10_1145_3451165
crossref_primary_10_3390_s22218245
crossref_primary_10_1109_LGRS_2016_2632181
crossref_primary_10_1109_JSTARS_2022_3198475
crossref_primary_10_1109_LGRS_2017_2681128
crossref_primary_10_3390_rs16224280
crossref_primary_10_1109_TASE_2024_3369659
crossref_primary_10_1109_TGRS_2020_2976694
crossref_primary_10_1109_TGRS_2022_3166174
crossref_primary_10_1109_LGRS_2020_2993039
crossref_primary_10_1109_TGRS_2019_2947633
crossref_primary_10_1049_iet_rpg_2018_5627
crossref_primary_10_1080_2150704X_2018_1513662
crossref_primary_10_1109_ACCESS_2020_2987105
crossref_primary_10_1109_MGRS_2017_2762307
crossref_primary_10_1109_TGRS_2021_3104907
crossref_primary_10_1016_j_patcog_2017_02_035
crossref_primary_10_3390_rs10101618
crossref_primary_10_1109_JSTARS_2021_3096941
crossref_primary_10_3390_rs10060920
crossref_primary_10_3390_rs10020225
crossref_primary_10_1109_JSTARS_2020_3015520
crossref_primary_10_1007_s00366_023_01789_9
crossref_primary_10_1016_j_jreng_2024_04_003
crossref_primary_10_1016_j_sigpro_2020_107729
crossref_primary_10_3390_diagnostics10050329
crossref_primary_10_1109_LGRS_2017_2766130
crossref_primary_10_3390_rs10020342
crossref_primary_10_3390_rs15215121
crossref_primary_10_1007_s00521_021_06802_0
crossref_primary_10_1109_TGRS_2017_2777868
crossref_primary_10_1016_j_asoc_2019_105960
crossref_primary_10_1080_01431161_2022_2048319
crossref_primary_10_1109_LGRS_2017_2777450
crossref_primary_10_3390_rs10060878
crossref_primary_10_1109_JSTARS_2024_3409775
crossref_primary_10_3390_math11122690
crossref_primary_10_1109_TGRS_2021_3059742
crossref_primary_10_1109_JSTARS_2021_3100342
crossref_primary_10_1109_TCYB_2020_3011165
crossref_primary_10_3390_bdcc5020021
crossref_primary_10_1016_j_commatsci_2024_113546
crossref_primary_10_3390_rs15061664
crossref_primary_10_3390_rs11161942
crossref_primary_10_3390_rs14061412
crossref_primary_10_1016_j_compmedimag_2018_08_006
crossref_primary_10_1109_TGRS_2023_3262727
crossref_primary_10_1109_JSTARS_2020_3031020
crossref_primary_10_3390_rs11242997
crossref_primary_10_1016_j_ifacol_2018_09_486
crossref_primary_10_1109_LGRS_2020_3040316
crossref_primary_10_3390_electronics11203309
crossref_primary_10_1016_j_rse_2021_112665
crossref_primary_10_1080_01431161_2021_1899336
crossref_primary_10_1109_TGRS_2020_2981051
crossref_primary_10_1080_22797254_2019_1579616
crossref_primary_10_1016_j_isprsjprs_2019_04_016
crossref_primary_10_1016_j_isprsjprs_2019_10_002
crossref_primary_10_1016_j_isprsjprs_2020_07_007
crossref_primary_10_1109_TGRS_2023_3239226
crossref_primary_10_1109_TGRS_2021_3098122
crossref_primary_10_1109_LSENS_2019_2896072
crossref_primary_10_1029_2018WR022643
crossref_primary_10_1049_joe_2019_0563
crossref_primary_10_1109_TGRS_2022_3140404
crossref_primary_10_1016_j_sigpro_2020_107623
crossref_primary_10_3390_s20051533
crossref_primary_10_3390_electronics11010156
crossref_primary_10_1109_JSTARS_2017_2698076
crossref_primary_10_1155_2023_7724264
crossref_primary_10_1007_s11042_020_09536_8
crossref_primary_10_1109_TGRS_2021_3052793
crossref_primary_10_1109_TGRS_2020_2999405
crossref_primary_10_1007_s11814_021_0804_6
crossref_primary_10_1016_j_measurement_2021_109914
crossref_primary_10_1007_s12524_018_0891_y
crossref_primary_10_1109_TCAD_2022_3195676
Cites_doi 10.1109/CVPR.2014.244
10.1145/1961189.1961199
10.1109/LGRS.2013.2287295
10.1109/TGRS.2008.2002881
10.1109/TGRS.2013.2265413
10.1109/LGRS.2014.2386351
10.1080/07055900.2001.9649675
10.1109/TPAMI.2008.79
10.1016/j.jag.2014.09.019
10.1109/CVPR.2014.243
10.1561/2200000006
10.1109/TGRS.2014.2357078
10.1109/TIP.2013.2259833
10.1162/neco.2006.18.7.1527
10.1016/j.jvcir.2014.03.009
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2015
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2015
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
F28
DOI 10.1109/LGRS.2015.2478256
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Civil Engineering Abstracts
Meteorological & Geoastrophysical Abstracts - Academic

Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1558-0571
EndPage 2355
ExternalDocumentID 3867217371
10_1109_LGRS_2015_2478256
7286736
Genre orig-research
GrantInformation_xml – fundername: Research of Dynamic Monitoring of High Resolution Sea Area Application
– fundername: China Postdoctoral Science Foundation
  grantid: 2014M551082
  funderid: 10.13039/501100002858
– fundername: National Natural Science Foundation of China; National Nature Science Foundation of China
  grantid: 61273307
  funderid: 10.13039/501100001809
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
~02
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
RIG
F28
ID FETCH-LOGICAL-c495t-21a0d6bb99b058cd8e66d9abd2b10a5942f4b24732a0c5e83468639178d055933
IEDL.DBID RIE
ISICitedReferencesCount 250
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000364215500035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-598X
IngestDate Wed Oct 01 17:02:40 EDT 2025
Sun Nov 09 10:58:01 EST 2025
Mon Jun 30 10:27:57 EDT 2025
Sat Nov 29 05:53:48 EST 2025
Tue Nov 18 22:18:45 EST 2025
Wed Aug 27 08:36:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords supervised classification
synthetic aperture radar (SAR) image
Deep convolutional autoencoders (DCAEs)
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c495t-21a0d6bb99b058cd8e66d9abd2b10a5942f4b24732a0c5e83468639178d055933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1733203064
PQPubID 75725
PageCount 5
ParticipantIDs proquest_miscellaneous_1794500257
crossref_citationtrail_10_1109_LGRS_2015_2478256
crossref_primary_10_1109_LGRS_2015_2478256
proquest_journals_1733203064
ieee_primary_7286736
proquest_miscellaneous_1816038995
PublicationCentury 2000
PublicationDate 2015-11-01
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE geoscience and remote sensing letters
PublicationTitleAbbrev LGRS
PublicationYear 2015
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
lee (ref1) 2009; 47
ref11
ref10
xie (ref15) 0
ref2
ref17
ref16
srivastava (ref18) 2014; 15
he (ref3) 2015; 12
ref8
ref7
ref9
vincent (ref14) 2010; 11
ref4
ref6
ref5
References_xml – ident: ref12
  doi: 10.1109/CVPR.2014.244
– ident: ref6
  doi: 10.1145/1961189.1961199
– ident: ref8
  doi: 10.1109/LGRS.2013.2287295
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref18
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– volume: 47
  start-page: 202
  year: 2009
  ident: ref1
  article-title: Improved sigma filter for speckle filtering of SAR imagery
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2008.2002881
– ident: ref4
  doi: 10.1109/TGRS.2013.2265413
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref14
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– start-page: 2818
  year: 0
  ident: ref15
  article-title: Multilayer feature learning for polarimetric synthetic radar data classification
  publication-title: Proc IEEE Geosci Remote Sens Symp
– volume: 12
  start-page: 1141
  year: 2015
  ident: ref3
  article-title: Particle filter sample texton feature for SAR image classification
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2014.2386351
– ident: ref2
  doi: 10.1080/07055900.2001.9649675
– ident: ref7
  doi: 10.1109/TPAMI.2008.79
– ident: ref9
  doi: 10.1016/j.jag.2014.09.019
– ident: ref17
  doi: 10.1109/CVPR.2014.243
– ident: ref11
  doi: 10.1561/2200000006
– ident: ref13
  doi: 10.1109/TGRS.2014.2357078
– ident: ref5
  doi: 10.1109/TIP.2013.2259833
– ident: ref10
  doi: 10.1162/neco.2006.18.7.1527
– ident: ref16
  doi: 10.1016/j.jvcir.2014.03.009
SSID ssj0024887
Score 2.5505455
Snippet Synthetic aperture radar (SAR) image classification is a hot topic in the interpretation of SAR images. However, the absence of effective feature...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2351
SubjectTerms Accuracy
Classification
Deep convolutional autoencoders (DCAEs)
Feature extraction
Image classification
Networks
Noise
Representations
Speckle
supervised classification
Synthetic aperture radar
synthetic aperture radar (SAR) image
Texture
Training
Transformations
Transforms
Title High-Resolution SAR Image Classification via Deep Convolutional Autoencoders
URI https://ieeexplore.ieee.org/document/7286736
https://www.proquest.com/docview/1733203064
https://www.proquest.com/docview/1794500257
https://www.proquest.com/docview/1816038995
Volume 12
WOSCitedRecordID wos000364215500035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0571
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024887
  issn: 1545-598X
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED6mKPrij6k4nVLBJ7GapsmSPA51UxgiTmFvpU1TFLQV3Qb-9-bSOAVF8K3QaxPuktx3yeU-gMPCQlZZMBubRMKE6PFDSVMdWvTMJSm0dfrEkU2I62s5GqmbBhzP7sIYY1zymTnBR3eWn1d6gltlp4JKTEOagzkhRH1X66uunnRkeIgIQq7kyJ9gRkSdDvq3Q0zi4ieUWYeIXNXffJAjVfmxEjv30lv9X8fWYMXDyKBb230dGqZswpJnNH94b8Ji31H2vm_AAFM5QtymrwdZMOzeBlfPdh0JHCMm5go58wTTxzQ4N-YlOKvKqZfGRibjCstdYsrzJtz3Lu7OLkPPoRBqG_qMQxqlJO9kmVIZ4VLn0nQ6uUqznGYRSblitGCZVUtMU6K5kTHrSAtaIiFzYoONON6C-bIqzTYExmLHiBSEMaUZFcL-OI15FuucZDaSMy0gn1pNtC8wjjwXT4kLNIhK0BAJGiLxhmjB0eyTl7q6xl_CG6j5maBXegvan6ZL_Px7SyIRxxTDIdaCg9lrO3PwOCQtTTVBGcU4Yj7xh4xEGm4bk_Kd31vfhWXsY307sQ3z49eJ2YMFPR0_vr3uuyH6ARs24Lc
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90KvPFb3F-VvBJrKZpsiaPom6Kc4gfsLfSpikOtB26DfzvzaVxCorgW6HXJtwlud8ll_sBHOQGsoqcmdgkiLSPHt8XNFG-Qc9ckFwZp08s2UTU7YpeT95OwdHkLozW2iaf6WN8tGf5WalGuFV2ElGBaUjTMMMZo0F1W-ursp6wdHiICXwuRc-dYQZEnnTad_eYxsWPKTMuEdmqv3khS6vyYy22Dqa1-L-uLcGCA5LeaWX5ZZjSxQrUHaf50_sKzLUtae_7KnQwmcPHjfpqmHn3p3fe1YtZSTzLiYnZQtZA3rifeOdaD7yzshg7aWxkNCyx4CUmPa_BY-vi4ezSdywKvjLBz9CnQUKyZppKmRIuVCZ0s5nJJM1oGpCES0Zzlhq1hDQhimsRsqYwsCWIREZMuBGG61ArykJvgKcNegxIThiTitEoMj9OQp6GKiOpieV0A8inVmPlSowj08VzbEMNImM0RIyGiJ0hGnA4-WRQ1df4S3gVNT8RdEpvwPan6WI3A9_iIApDigERa8D-5LWZO3ggkhS6HKGMZBxRX_SHjEAibhOV8s3fW9-D-uXDTSfuXHWvt2Ae-1vdVdyG2vB1pHdgVo2H_bfXXTtcPwDyPuP-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Resolution+SAR+Image+Classification+via+Deep+Convolutional+Autoencoders&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Geng%2C+Jie&rft.au=Fan%2C+Jianchao&rft.au=Wang%2C+Hongyu&rft.au=Ma%2C+Xiaorui&rft.date=2015-11-01&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=12&rft.issue=11&rft.spage=2351&rft.epage=2355&rft_id=info:doi/10.1109%2FLGRS.2015.2478256&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon