Geometrical Selection of GaN Nanowires Grown by Plasma-Assisted MBE on Polycrystalline ZrN Layers
GaN nanowires grown on metal substrates have attracted increasing interest for a wide range of applications. Herein, we report GaN nanowires grown by plasma-assisted molecular beam epitaxy on thin polycrystalline ZrN buffer layers, sputtered onto Si(111) substrates. The nanowire orientation was stud...
Uloženo v:
| Vydáno v: | Nanomaterials (Basel, Switzerland) Ročník 13; číslo 18; s. 2587 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.09.2023
MDPI |
| Témata: | |
| ISSN: | 2079-4991, 2079-4991 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | GaN nanowires grown on metal substrates have attracted increasing interest for a wide range of applications. Herein, we report GaN nanowires grown by plasma-assisted molecular beam epitaxy on thin polycrystalline ZrN buffer layers, sputtered onto Si(111) substrates. The nanowire orientation was studied by X-ray diffraction and scanning electron microscopy, and then described within a model as a function of the Ga beam angle, nanowire tilt angle, and substrate rotation. We show that vertically aligned nanowires grow faster than inclined nanowires, which leads to an interesting effect of geometrical selection of the nanowire orientation in the directional molecular beam epitaxy technique. After a given growth time, this effect depends on the nanowire surface density. At low density, the nanowires continue to grow with random orientations as nucleated. At high density, the effect of preferential growth induced by the unidirectional supply of the material in MBE starts to dominate. Faster growing nanowires with smaller tilt angles shadow more inclined nanowires that grow slower. This helps to obtain more regular ensembles of vertically oriented GaN nanowires despite their random position induced by the metallic grains at nucleation. The obtained dense ensembles of vertically aligned GaN nanowires on ZrN/Si(111) surfaces are highly relevant for device applications. Importantly, our results are not specific for GaN nanowires on ZrN buffers, and should be relevant for any nanowires that are epitaxially linked to the randomly oriented surface grains in the directional molecular beam epitaxy. |
|---|---|
| AbstractList | GaN nanowires grown on metal substrates have attracted increasing interest for a wide range of applications. Herein, we report GaN nanowires grown by plasma-assisted molecular beam epitaxy on thin polycrystalline ZrN buffer layers, sputtered onto Si(111) substrates. The nanowire orientation was studied by X-ray diffraction and scanning electron microscopy, and then described within a model as a function of the Ga beam angle, nanowire tilt angle, and substrate rotation. We show that vertically aligned nanowires grow faster than inclined nanowires, which leads to an interesting effect of geometrical selection of the nanowire orientation in the directional molecular beam epitaxy technique. After a given growth time, this effect depends on the nanowire surface density. At low density, the nanowires continue to grow with random orientations as nucleated. At high density, the effect of preferential growth induced by the unidirectional supply of the material in MBE starts to dominate. Faster growing nanowires with smaller tilt angles shadow more inclined nanowires that grow slower. This helps to obtain more regular ensembles of vertically oriented GaN nanowires despite their random position induced by the metallic grains at nucleation. The obtained dense ensembles of vertically aligned GaN nanowires on ZrN/Si(111) surfaces are highly relevant for device applications. Importantly, our results are not specific for GaN nanowires on ZrN buffers, and should be relevant for any nanowires that are epitaxially linked to the randomly oriented surface grains in the directional molecular beam epitaxy. GaN nanowires grown on metal substrates have attracted increasing interest for a wide range of applications. Herein, we report GaN nanowires grown by plasma-assisted molecular beam epitaxy on thin polycrystalline ZrN buffer layers, sputtered onto Si(111) substrates. The nanowire orientation was studied by X-ray diffraction and scanning electron microscopy, and then described within a model as a function of the Ga beam angle, nanowire tilt angle, and substrate rotation. We show that vertically aligned nanowires grow faster than inclined nanowires, which leads to an interesting effect of geometrical selection of the nanowire orientation in the directional molecular beam epitaxy technique. After a given growth time, this effect depends on the nanowire surface density. At low density, the nanowires continue to grow with random orientations as nucleated. At high density, the effect of preferential growth induced by the unidirectional supply of the material in MBE starts to dominate. Faster growing nanowires with smaller tilt angles shadow more inclined nanowires that grow slower. This helps to obtain more regular ensembles of vertically oriented GaN nanowires despite their random position induced by the metallic grains at nucleation. The obtained dense ensembles of vertically aligned GaN nanowires on ZrN/Si(111) surfaces are highly relevant for device applications. Importantly, our results are not specific for GaN nanowires on ZrN buffers, and should be relevant for any nanowires that are epitaxially linked to the randomly oriented surface grains in the directional molecular beam epitaxy.GaN nanowires grown on metal substrates have attracted increasing interest for a wide range of applications. Herein, we report GaN nanowires grown by plasma-assisted molecular beam epitaxy on thin polycrystalline ZrN buffer layers, sputtered onto Si(111) substrates. The nanowire orientation was studied by X-ray diffraction and scanning electron microscopy, and then described within a model as a function of the Ga beam angle, nanowire tilt angle, and substrate rotation. We show that vertically aligned nanowires grow faster than inclined nanowires, which leads to an interesting effect of geometrical selection of the nanowire orientation in the directional molecular beam epitaxy technique. After a given growth time, this effect depends on the nanowire surface density. At low density, the nanowires continue to grow with random orientations as nucleated. At high density, the effect of preferential growth induced by the unidirectional supply of the material in MBE starts to dominate. Faster growing nanowires with smaller tilt angles shadow more inclined nanowires that grow slower. This helps to obtain more regular ensembles of vertically oriented GaN nanowires despite their random position induced by the metallic grains at nucleation. The obtained dense ensembles of vertically aligned GaN nanowires on ZrN/Si(111) surfaces are highly relevant for device applications. Importantly, our results are not specific for GaN nanowires on ZrN buffers, and should be relevant for any nanowires that are epitaxially linked to the randomly oriented surface grains in the directional molecular beam epitaxy. |
| Audience | Academic |
| Author | Dubrovskii, Vladimir G. Olszewski, Karol Zytkiewicz, Zbigniew R. Sobanska, Marta Leshchenko, Egor D. Wierzbicka, Aleksandra |
| AuthorAffiliation | 1 Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland zytkie@ifpan.edu.pl (Z.R.Z.) 2 Faculty of Physics, St. Petersburg State University, Universitetskaya Embankment 13V, 199034 St. Petersburg, Russia; dubrovskii.ioffe@mail.ru (V.G.D.) |
| AuthorAffiliation_xml | – name: 2 Faculty of Physics, St. Petersburg State University, Universitetskaya Embankment 13V, 199034 St. Petersburg, Russia; dubrovskii.ioffe@mail.ru (V.G.D.) – name: 1 Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland zytkie@ifpan.edu.pl (Z.R.Z.) |
| Author_xml | – sequence: 1 givenname: Karol surname: Olszewski fullname: Olszewski, Karol – sequence: 2 givenname: Marta orcidid: 0000-0002-7225-9236 surname: Sobanska fullname: Sobanska, Marta – sequence: 3 givenname: Vladimir G. surname: Dubrovskii fullname: Dubrovskii, Vladimir G. – sequence: 4 givenname: Egor D. surname: Leshchenko fullname: Leshchenko, Egor D. – sequence: 5 givenname: Aleksandra surname: Wierzbicka fullname: Wierzbicka, Aleksandra – sequence: 6 givenname: Zbigniew R. orcidid: 0000-0003-0240-9742 surname: Zytkiewicz fullname: Zytkiewicz, Zbigniew R. |
| BookMark | eNptkk1vEzEQhleoiJbQGz9gJS4cSLHXXn-cUKhKqBRCJeDCxZr1zgZHXru1N1T597ikSG2FfbA1ft_H9sy8rI5CDFhVryk5Y0yT9wFCpIyqplXyWXXSEKnnXGt69GB_XJ3mvCVlaMpUy15Ux0xKwQUVJxUsMY44JWfB19_Qo51cDHUc6iWs63XB37qEuV6meBvqbl9fecgjzBc5uzxhX3_5eFEXw1X0e5v2eQLvXcD6Z1rXK9hjyq-q5wP4jKf366z68eni-_nn-err8vJ8sZpbrttpTkWHvepsLywTvKdNz6ATorUd6YRURPEOZEOa3irWSNA4dMTKXmqNxKLu2ay6PHD7CFtzndwIaW8iOPM3ENPGQJqc9Wi47rrB8kEMKDighqFBrRQTFoQkbCisDwfW9a4bsbcYpgT-EfTxSXC_zCb-NpS0THLZFsLbe0KKNzvMkxldtug9BIy7bBolCWValZLMqjdPpNu4S6HkqqiE5pIpTorq7KDaQPmBC0MsF9syexydLV0xuBJfSElLrqiUxdAcDDbFnBMOxroJ7qpbjM6Xp5q7FjIPW6iY3j0x_fvzf-V_AHtjyTw |
| CitedBy_id | crossref_primary_10_1021_acs_cgd_5c00514 crossref_primary_10_1039_D5NR00321K |
| Cites_doi | 10.1002/smll.201501909 10.1016/j.jcrysgro.2020.125818 10.1107/S0021889883010493 10.1103/PhysRevB.81.085310 10.1063/1.3701591 10.1016/j.jcrysgro.2008.05.057 10.1016/j.jcrysgro.2009.04.021 10.1088/1361-6528/aaf9c5 10.1063/1.4935522 10.1039/c3nr00387f 10.1016/j.jcrysgro.2005.05.058 10.1002/pssr.201900615 10.1103/PhysRevB.83.035310 10.1016/j.jcrysgro.2014.01.007 10.1088/0957-4484/27/32/325601 10.1134/1.1923565 10.1063/1.4945419 10.1088/0957-4484/22/24/245606 10.1063/1.4718434 10.1016/j.jcrysgro.2005.11.079 10.1063/1.2715119 10.1088/1361-6528/aafe17 10.1021/acs.nanolett.5b04190 10.1088/0957-4484/24/3/035703 10.1021/nl104265u 10.1107/S0021889805042779 10.1021/acsphotonics.1c00224 10.1007/s11671-010-9698-7 10.1016/S0022-0248(97)00386-2 10.1002/pssa.201800420 10.1021/acs.cgd.6b01396 10.1103/PhysRevB.85.155313 10.1021/acs.nanolett.5b00251 10.1088/0957-4484/21/29/295605 10.1088/1361-6528/aa84a1 10.1107/S0021889878012844 10.1039/C7NR00006E 10.1016/j.tsf.2013.02.013 10.1103/PhysRevB.74.121302 10.1021/nl0707398 10.1088/1361-6528/acefd8 10.1063/1.4950707 10.1063/1.1305830 10.1002/smll.200700936 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 GNUQQ H8D H8G HCIFZ JG9 JQ2 KB. KR7 L7M LK8 L~C L~D M7P P64 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/nano13182587 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Materials Science Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Central Student ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Biological Science Collection ProQuest Central (New) ANTE: Abstracts in New Technology & Engineering Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection Ceramic Abstracts Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts Materials Science Collection ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library Biotechnology Research Abstracts ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Materials Science & Engineering Collection Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ开放获取期刊资源库 url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database (ProQuest) url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2079-4991 |
| ExternalDocumentID | oai_doaj_org_article_49bbfc4f6fe64ae9af2e98836ca6703f PMC10537475 A771808177 10_3390_nano13182587 |
| GeographicLocations | Poland Russia |
| GeographicLocations_xml | – name: Poland – name: Russia |
| GrantInformation_xml | – fundername: NCN grantid: 2021/43/D/ST7/01936; 2022/04/Y/ST7/00043 – fundername: St. Petersburg State University grantid: 94033852 |
| GroupedDBID | 53G 5VS 8FE 8FG 8FH AADQD AAFWJ AAHBH AAYXX ABJCF ADBBV ADMLS AENEX AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION D1I GROUPED_DOAJ HCIFZ HYE I-F IAO ITC KB. KQ8 LK8 M7P MODMG M~E OK1 PDBOC PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC DWQXO F28 FR3 GNUQQ H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c495t-16bed8bcd6c364d12d3ab665cb0b678084ba7202dc8327a9efb0c7d799e0ce9d3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001077815500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2079-4991 |
| IngestDate | Fri Oct 03 12:47:03 EDT 2025 Tue Nov 04 02:06:26 EST 2025 Sun Nov 09 05:17:30 EST 2025 Fri Jul 25 12:04:56 EDT 2025 Tue Nov 04 18:16:26 EST 2025 Tue Nov 18 22:17:23 EST 2025 Sat Nov 29 07:16:36 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c495t-16bed8bcd6c364d12d3ab665cb0b678084ba7202dc8327a9efb0c7d799e0ce9d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-0240-9742 0000-0002-7225-9236 |
| OpenAccessLink | https://doaj.org/article/49bbfc4f6fe64ae9af2e98836ca6703f |
| PMID | 37764616 |
| PQID | 2869473840 |
| PQPubID | 2032354 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_49bbfc4f6fe64ae9af2e98836ca6703f pubmedcentral_primary_oai_pubmedcentral_nih_gov_10537475 proquest_miscellaneous_2870139891 proquest_journals_2869473840 gale_infotracacademiconefile_A771808177 crossref_citationtrail_10_3390_nano13182587 crossref_primary_10_3390_nano13182587 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-09-01 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Nanomaterials (Basel, Switzerland) |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Cirlin (ref_42) 2005; 39 Sobanska (ref_13) 2015; 118 Calabrese (ref_21) 2017; 28 John (ref_26) 2023; 34 Wierzbicka (ref_34) 2012; 24 Carnevale (ref_4) 2011; 11 Mittemeijer (ref_31) 1983; 16 Sobanska (ref_32) 2014; 401 Debnath (ref_36) 2007; 90 Calleja (ref_1) 2008; 310 Colombi (ref_29) 2006; 39 Calleja (ref_35) 1998; 183 Consonni (ref_40) 2012; 85 Zhao (ref_10) 2013; 5 Mudiyanselage (ref_23) 2020; 547 Galopin (ref_37) 2011; 22 Sobanska (ref_41) 2016; 16 Stoica (ref_11) 2008; 4 Sarwar (ref_16) 2015; 11 Hauswald (ref_17) 2015; 15 Calabrese (ref_19) 2016; 108 Klosek (ref_28) 2013; 534 Park (ref_7) 2005; 282 Songmuang (ref_38) 2010; 21 Dubrovskii (ref_39) 2012; 100 Sun (ref_3) 2019; 216 Calarco (ref_5) 2007; 7 Janjua (ref_15) 2017; 9 Glas (ref_2) 2006; 74 Consonni (ref_6) 2010; 81 Auzelle (ref_24) 2021; 8 Zhang (ref_43) 2010; 5 Sobanska (ref_12) 2016; 27 Consonni (ref_9) 2011; 83 Langford (ref_30) 1978; 11 May (ref_18) 2016; 108 Heying (ref_27) 2000; 88 Foxon (ref_33) 2009; 311 Bertness (ref_8) 2006; 287 Sobanska (ref_14) 2019; 30 Zhao (ref_20) 2016; 16 Calabrese (ref_22) 2019; 30 Azadmand (ref_25) 2020; 14 Sibirev (ref_44) 2012; 111 |
| References_xml | – volume: 11 start-page: 5402 year: 2015 ident: ref_16 article-title: Semiconductor Nanowire Light-Emitting Diodes Grown on Metal: A Direction Toward Large-Scale Fabrication of Nanowire Devices publication-title: Small doi: 10.1002/smll.201501909 – volume: 547 start-page: 125818 year: 2020 ident: ref_23 article-title: Effects of Experimental Parameters on the Growth of GaN Nanowires on Ti-Film/Si(100) and Ti-Foil by Molecular Beam Epitaxy publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2020.125818 – volume: 16 start-page: 309 year: 1983 ident: ref_31 article-title: The Determination of Crystallite-Size and Lattice-Strain Parameters in Conjunction with the Profile-Refinement Method for the Determination of Crystal Structures publication-title: J. Appl. Cryst. doi: 10.1107/S0021889883010493 – volume: 81 start-page: 085310 year: 2010 ident: ref_6 article-title: Nucleation Mechanisms of Epitaxial GaN Nanowires: Origin of Their Self-Induced Formation and Initial Radius publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.085310 – volume: 100 start-page: 153101 year: 2012 ident: ref_39 article-title: Scaling growth kinetics of self-induced GaN nanowires publication-title: Appl. Phys. Lett. doi: 10.1063/1.3701591 – volume: 310 start-page: 4035 year: 2008 ident: ref_1 article-title: On the Mechanisms of Spontaneous Growth of III-Nitride Nanocolumns by Plasma-Assisted Molecular Beam Epitaxy publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2008.05.057 – volume: 311 start-page: 3423 year: 2009 ident: ref_33 article-title: A Complementary Geometric Model for the Growth of GaN Nanocolumns Prepared by Plasma-Assisted Molecular Beam Epitaxy publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2009.04.021 – volume: 30 start-page: 114001 year: 2019 ident: ref_22 article-title: Interfacial Reactions during the Molecular Beam Epitaxy of GaN Nanowires on Ti/Al2O3 publication-title: Nanotechnology doi: 10.1088/1361-6528/aaf9c5 – volume: 118 start-page: 184303 year: 2015 ident: ref_13 article-title: Kinetics of Self-Induced Nucleation and Optical Properties of GaN Nanowires Grown by Plasma-Assisted Molecular Beam Epitaxy on Amorphous AlxOy publication-title: J. Appl. Phys. doi: 10.1063/1.4935522 – volume: 5 start-page: 5283 year: 2013 ident: ref_10 article-title: Growth of Large-Scale Vertically Aligned GaN Nanowires and Their Heterostructures with High Uniformity on SiOx by Catalyst-Free Molecular Beam Epitaxy publication-title: Nanoscale doi: 10.1039/c3nr00387f – volume: 282 start-page: 313 year: 2005 ident: ref_7 article-title: Self-Assembled GaN Nano-Rods Grown Directly on (111) Si Substrates: Dependence on Growth Conditions publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2005.05.058 – volume: 14 start-page: 1900615 year: 2020 ident: ref_25 article-title: Self-Assembly of Well-Separated AlN Nanowires Directly on Sputtered Metallic TiN Films publication-title: Phys. Status Solidi RRL doi: 10.1002/pssr.201900615 – volume: 83 start-page: 035310 year: 2011 ident: ref_9 article-title: Nucleation Mechanisms of Self-Induced GaN Nanowires Grown on an Amorphous Interlayer publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.035310 – volume: 401 start-page: 657 year: 2014 ident: ref_32 article-title: Arrangement of GaN Nanowires Grown by Plasma-Assisted Molecular Beam Epitaxy on Silicon Substrates with Amorphous Al2O3 Buffers publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2014.01.007 – volume: 27 start-page: 325601 year: 2016 ident: ref_12 article-title: Self-Assembled Growth of GaN Nanowires on Amorphous AlxOy: From Nucleation to the Formation of Dense Nanowire Ensembles publication-title: Nanotechnology doi: 10.1088/0957-4484/27/32/325601 – volume: 39 start-page: 557 year: 2005 ident: ref_42 article-title: The diffusion mechanism in the formation of GaAs and AlGaAs nanowhiskers during the process of molecular-beam epitaxy publication-title: Semiconductors doi: 10.1134/1.1923565 – volume: 108 start-page: 141103 year: 2016 ident: ref_18 article-title: Nanowire LEDs Grown Directly on Flexible Metal Foil publication-title: Appl. Phys. Lett. doi: 10.1063/1.4945419 – volume: 22 start-page: 245606 year: 2011 ident: ref_37 article-title: Morphology of self-catalyzed GaN nanowires and chronology of their formation by molecular beam epitaxy publication-title: Nanotechnology doi: 10.1088/0957-4484/22/24/245606 – volume: 111 start-page: 104317 year: 2012 ident: ref_44 article-title: Influence of shadow effect on the growth and shape of InAs nanowires publication-title: J. Appl. Phys. doi: 10.1063/1.4718434 – volume: 287 start-page: 522 year: 2006 ident: ref_8 article-title: Spontaneously Grown GaN and AlGaN Nanowires publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2005.11.079 – volume: 90 start-page: 123117 year: 2007 ident: ref_36 article-title: Mechanism of molecular beam epitaxy growth of GaN nanowires on Si publication-title: Appl. Phys. Lett. doi: 10.1063/1.2715119 – volume: 30 start-page: 154002 year: 2019 ident: ref_14 article-title: Comprehensive Analysis of the Self-Assembled Formation of GaN Nanowires on Amorphous AlxOy: In Situ Quadrupole Mass Spectrometry Studies publication-title: Nanotechnology doi: 10.1088/1361-6528/aafe17 – volume: 16 start-page: 1056 year: 2016 ident: ref_20 article-title: Facile Formation of High-Quality InGaN/GaN Quantum-Disks-in-Nanowires on Bulk-Metal Substrates for High-Power Light-Emitters publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b04190 – volume: 24 start-page: 035703 year: 2012 ident: ref_34 article-title: Influence of Substrate Nitridation Temperature on Epitaxial Alignment of GaN Nanowires to Si(111) Substrate publication-title: Nanotechnology doi: 10.1088/0957-4484/24/3/035703 – volume: 11 start-page: 866 year: 2011 ident: ref_4 article-title: Three-Dimensional GaN/AlN Nanowire Heterostructures by Separating Nucleation and Growth Processes publication-title: Nano Lett. doi: 10.1021/nl104265u – volume: 39 start-page: 176 year: 2006 ident: ref_29 article-title: Glancing-Incidence X-Ray Diffraction for Depth Profiling of Polycrystalline Layers publication-title: J. Appl. Cryst. doi: 10.1107/S0021889805042779 – volume: 8 start-page: 1718 year: 2021 ident: ref_24 article-title: Enhanced Radiative Efficiency in GaN Nanowires Grown on Sputtered TiNx: Effects of Surface Electric Fields publication-title: ACS Photonics doi: 10.1021/acsphotonics.1c00224 – volume: 5 start-page: 1692 year: 2010 ident: ref_43 article-title: Growth of inclined GaAs nanowires by molecular beam epitaxy: Theory and experiment publication-title: Nanoscale Res. Lett. doi: 10.1007/s11671-010-9698-7 – volume: 183 start-page: 23 year: 1998 ident: ref_35 article-title: The effect of the III/V ratio and substrate temperature on the morphology and properties of GaN- and AlN-layers grown by molecular beam epitaxy on Si(1 1 1) publication-title: J. Cryst. Growth doi: 10.1016/S0022-0248(97)00386-2 – volume: 216 start-page: 1800420 year: 2019 ident: ref_3 article-title: Recent Advances on III-Nitride Nanowire Light Emitters on Foreign Substrates—Toward Flexible Photonics publication-title: Phys. Status Solidi doi: 10.1002/pssa.201800420 – volume: 16 start-page: 7205 year: 2016 ident: ref_41 article-title: Analysis of incubation times for the self-induced formation of GaN nanowires: Influence of the substrate on the nucleation mechanism publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.6b01396 – volume: 85 start-page: 155313 year: 2012 ident: ref_40 article-title: Quantitative description for the growth rate of self-induced GaN nanowires publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.155313 – volume: 15 start-page: 3743 year: 2015 ident: ref_17 article-title: Epitaxial Growth of GaN Nanowires with High Structural Perfection on a Metallic TiN Film publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00251 – volume: 21 start-page: 295605 year: 2010 ident: ref_38 article-title: Identification of III–N nanowire growth kinetics via a marker technique publication-title: Nanotechnology doi: 10.1088/0957-4484/21/29/295605 – volume: 28 start-page: 425602 year: 2017 ident: ref_21 article-title: Effect of Surface Roughness, Chemical Composition, and Native Oxide Crystallinity on the Orientation of Self-Assembled GaN Nanowires on Ti Foils publication-title: Nanotechnology doi: 10.1088/1361-6528/aa84a1 – volume: 11 start-page: 102 year: 1978 ident: ref_30 article-title: Scherrer after Sixty Years: A Survey and Some New Results in the Determination of Crystallite Size publication-title: J. Appl. Cryst. doi: 10.1107/S0021889878012844 – volume: 9 start-page: 7805 year: 2017 ident: ref_15 article-title: Self-Planarized Quantum-Disks-in-Nanowires Ultraviolet-B Emitters Utilizing Pendeo-Epitaxy publication-title: Nanoscale doi: 10.1039/C7NR00006E – volume: 534 start-page: 107 year: 2013 ident: ref_28 article-title: Optimization of Nitrogen Plasma Source Parameters by Measurements of Emitted Light Intensity for Growth of GaN by Molecular Beam Epitaxy publication-title: Thin Solid Film. doi: 10.1016/j.tsf.2013.02.013 – volume: 74 start-page: 121302 year: 2006 ident: ref_2 article-title: Critical Dimensions for the Plastic Relaxation of Strained Axial Heterostructures in Free-Standing Nanowires publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.74.121302 – volume: 7 start-page: 2248 year: 2007 ident: ref_5 article-title: Nucleation and Growth of GaN Nanowires on Si(111) Performed by Molecular Beam Epitaxy publication-title: Nano Lett. doi: 10.1021/nl0707398 – volume: 34 start-page: 465605 year: 2023 ident: ref_26 article-title: Growth kinetics and substrate stability during high-temperature molecular beam epitaxy of AlN nanowires publication-title: Nanotechnology doi: 10.1088/1361-6528/acefd8 – volume: 108 start-page: 202101 year: 2016 ident: ref_19 article-title: Molecular Beam Epitaxy of Single Crystalline GaN Nanowires on a Flexible Ti Foil publication-title: Appl. Phys. Lett. doi: 10.1063/1.4950707 – volume: 88 start-page: 1855 year: 2000 ident: ref_27 article-title: Control of GaN Surface Morphologies Using Plasma-Assisted Molecular Beam Epitaxy publication-title: J. Appl. Phys. doi: 10.1063/1.1305830 – volume: 4 start-page: 751 year: 2008 ident: ref_11 article-title: Interface and Wetting Layer Effect on the Catalyst-Free Nucleation and Growth of GaN Nanowires publication-title: Small doi: 10.1002/smll.200700936 |
| SSID | ssj0000913853 |
| Score | 2.2580538 |
| Snippet | GaN nanowires grown on metal substrates have attracted increasing interest for a wide range of applications. Herein, we report GaN nanowires grown by... |
| SourceID | doaj pubmedcentral proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 2587 |
| SubjectTerms | Angles (geometry) Attitude (inclination) Buffer layers Density Diffraction Epitaxial growth Epitaxy Gallium compounds Gallium nitrides GaN nanowires geometrical selection Geometry Grain size Identification and classification Misfit dislocations Molecular beam epitaxy Nanoparticles Nanotechnology nanowire orientation Nanowires Nitrides Nucleation Plasma Polycrystals Properties Scanning electron microscopy Silicon substrates Temperature Thin films X-ray diffraction X-rays Zirconium nitrides ZrN buffer layers |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLagcIADZRWBFhkJxAFFTWzHywm1VTscymgkFlVcIq9QqU1KZoo0_573MplhpgguXGNHdvS91X75HiGvXCorayFNNdqKXLgi5hAcpZzJwHVMTsu-dcKXEzUe69NTMxkO3KZDWeXSJvaGOrQez8j3mJZGKA75yLvLHzl2jcLb1aGFxk1yC1kSeF-6N1mdsSDnJbijRb07h-x-r7FNW4IYswpr6NY8UU_Y_6dZvl4queZ7jrf_d9f3yb0h6qT7CzF5QG7E5iG5u8ZF-IjYUWwvsL0WgEY_9t1xADLaJjqyYwpGuEVW4ykdYd5O3ZxOIO6-sDngi5IS6IeDIwovTNrzue_mEHQi23ekX7sxPbEY2D8mn4-PPh2-z4f-C7mHtGmWl9LFoJ0P0nMpQskCt07KyrvCgY8rtHBWsYIFD2ZBWQPQFl4FZUwsfDSBPyFbTdvEp4SG0kGmhnxg1gnpvQuJVcyDWLAERidm5O0Si9oP5OTYI-O8hiQFkavXkcvI69XsywUpx1_mHSCsqzlIpd0_aLtv9aCZtTDOJS-STFEKG41NLBqtufRWgjlMGXmDQlGjwsOWvB3-W4APQ-qsel-Be4fASsFyO0shqAdLMK1_S0BGXq6GQYfxYsY2sb3COQojcW3KjOgNedvY-uZIc_a9ZwMvkZFHqOrZv1d_Tu4AVHxRHrdDtmbdVdwlt_3P2dm0e9HrzS_HeyW9 priority: 102 providerName: ProQuest |
| Title | Geometrical Selection of GaN Nanowires Grown by Plasma-Assisted MBE on Polycrystalline ZrN Layers |
| URI | https://www.proquest.com/docview/2869473840 https://www.proquest.com/docview/2870139891 https://pubmed.ncbi.nlm.nih.gov/PMC10537475 https://doaj.org/article/49bbfc4f6fe64ae9af2e98836ca6703f |
| Volume | 13 |
| WOSCitedRecordID | wos001077815500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ开放获取期刊资源库 customDbUrl: eissn: 2079-4991 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913853 issn: 2079-4991 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-4991 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913853 issn: 2079-4991 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2079-4991 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913853 issn: 2079-4991 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 2079-4991 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913853 issn: 2079-4991 databaseCode: KB. dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Central customDbUrl: eissn: 2079-4991 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913853 issn: 2079-4991 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database (ProQuest) customDbUrl: eissn: 2079-4991 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913853 issn: 2079-4991 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG509aAH8clG16EFxYPETTpJP447MjuKuyH4YvQS-okLu4nMzArz761KskNGES9eckhXSHe9i1S-IuS5CWmhNZSpSuo8zk3iY0iOQsy4y6QPRvJudMKXE1GWcrFQ1WjUF_aE9fDAPeMOc2VMsHngwfNce6UD80rKjFvNQVsDel_IekbFVOeDVZpBIOo73TOo6w8b3bQpKDArsHtuFIM6qP4_HfLvTZKjqHN8l9wZ0kV61G_zHrnmm_vk9ghE8AHRc99e4Fws4Db92I21AV7TNtC5Lil4zxbhiFd0jgU3NRtaQcJ8oWMQDIrY0dPpjMIDVXu-scsNZIsI0-3pt2VJTzRm5A_J5-PZpzdv42FwQmyh3lnHKTfeSWMdtxnPXcpcpg3nhTWJgeCUyNxowRLmLNiz0ApkkljhhFI-sV657BHZa9rG7xPqUgMlFgJ5aZNza40LrGAW5MkCeAsfkVdXrKztgCqOwy3Oa6gukPH1mPERebGl_tGjafyFbopS2dIgBnZ3AzSjHjSj_pdmROQlyrRGS4UtWT38cAAHQ8yr-khAXIaMSMDrDq7EXg8mvKqZ5CoXGRTAEXm2XQbjwy8quvHtJdIITKGlSiMid9RlZ-u7K83Z9w7GO0UonVwUj__HYZ-QWyDQrO9-OyB76-Wlf0pu2p_rs9VyQq6LhZyQG9NZWX2YdKYC1_fT1xPsda1gpXp3Wn39BfoYHvI |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VggQc-EYYCiwSFQdk1V47690DQi20adU0ikRBFRezn1CptUuSgvKn-I3MOE5IQHDrgau9tne9b2fmrcdvAJ6bkHa0RpqqpM7j3CQ-xuAoxFy4TPpgpGhKJ3zoFf2-PDpSgxX4MfsXhtIqZzaxMdSutrRHvsGlUHmRIR95ffY1pqpR9HV1VkJjCot9P_mOlG30au8tzu865zvbh29247aqQGyRDIzjVBjvpLFO2EzkLuUu00aIjjWJQcudyNzogifcWQR7oRV2OLGFK5TyifXKZXjfS3AZwwgum1TBwXxPhzQ20f1N8-uzTCUbla7qFJcN71DO3oLnawoE_OkGfk_NXPB1Ozf_t7d0C260UTXbnC6D27DiqztwfUFr8S7orq9PqXwYgpK9a6r_ICRZHVhX9xk6mZpUm0esS_sSzEzYAHnFqY4Rv7QSHDvY2mZ4waA-mdjhBINqUjP37OOwz3qaiMs9eH8hY7wPq1Vd-QfAXGqQiZLemTa5sNa4wDvcIux5QKPqI3g5m_vStuLrVAPkpEQSRkgpF5ESwfq89dlUdOQv7bYIRvM2JBXeHKiHn8vW8pS5MibYPIjgRa690oF7JWUmrBZo7kMELwiEJRk07JLV7X8ZODCSBis3CwxfMHAs8HFrM9CVraUblb8QF8Gz-Wm0UfThSVe-Pqc2BTENqdII5BK-l7q-fKY6_tKonaekOJQXnYf_fvpTuLp7eNAre3v9_UdwDactm6YCrsHqeHjuH8MV-218PBo-adYsg08XDf-fAeKErA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFB2VglBZ8EYECgwSFQtkxR4781gg1NImVA2RJR6q2Jh5lkqtXZIUlF_j67jXsUMCgl0XbO2xPbbPfZzx9bmEPDMh6WkNNFVJnUWZiX0EyVGIGHep9MFIXrdO-DgUo5E8PFT5GvnR_guDZZWtT6wdtassrpF3meQqEynwkW5oyiLy3f6rs68RdpDCL61tO405RA787DvQt8nL_V1411uM9ffev34TNR0GIgvEYBol3HgnjXXcpjxzCXOpNpz3rIkNePFYZkYLFjNnAfhCK5h8bIUTSvnYeuVSOO8lclmgaHldNpgv1ndQbxNC4bzWPk1V3C11WSVgQqyH9XtLUbBuFvBnSPi9THMp7vVv_M9P7Ca53mTbdHtuHrfImi9vk2tLGox3iB746hTbigFY6bu6KxBAlVaBDvSIQvCpUM15Qge4XkHNjObAN051BLhGC3H07c4ehQPy6mRmxzNItlHl3NNP4xEdaiQ0d8mHC7nHe2S9rEp_n1CXGGCoqIOmTcatNS6wHrNgDiyAs_Ud8qLFQWEbUXbsDXJSADlD1BTLqOmQrcXos7kYyV_G7SCkFmNQQrzeUI2PisYjFZkyJtgs8OB5pr3SgXklZcqt5hAGQoc8R0AW6OhgSlY3_2vAjaFkWLEtIK2BhFLA5TZbABaNB5wUv9DXIU8Xu8F34QcpXfrqHMcIZCBSJR0iV7C-MvXVPeXxl1oFPUElokz0Hvz76k_IVUB9MdwfHTwkG_DW0nmF4CZZn47P_SNyxX6bHk_Gj2vzpeTzRaP_J39EjWk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geometrical+Selection+of+GaN+Nanowires+Grown+by+Plasma-Assisted+MBE+on+Polycrystalline+ZrN+Layers&rft.jtitle=Nanomaterials+%28Basel%2C+Switzerland%29&rft.au=Olszewski%2C+Karol&rft.au=Sobanska%2C+Marta&rft.au=Dubrovskii%2C+Vladimir+G&rft.au=Leshchenko%2C+Egor+D&rft.date=2023-09-01&rft.pub=MDPI+AG&rft.issn=2079-4991&rft.eissn=2079-4991&rft.volume=13&rft.issue=18&rft_id=info:doi/10.3390%2Fnano13182587&rft.externalDocID=A771808177 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-4991&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-4991&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-4991&client=summon |