Geometrical Selection of GaN Nanowires Grown by Plasma-Assisted MBE on Polycrystalline ZrN Layers

GaN nanowires grown on metal substrates have attracted increasing interest for a wide range of applications. Herein, we report GaN nanowires grown by plasma-assisted molecular beam epitaxy on thin polycrystalline ZrN buffer layers, sputtered onto Si(111) substrates. The nanowire orientation was stud...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nanomaterials (Basel, Switzerland) Ročník 13; číslo 18; s. 2587
Hlavní autoři: Olszewski, Karol, Sobanska, Marta, Dubrovskii, Vladimir G., Leshchenko, Egor D., Wierzbicka, Aleksandra, Zytkiewicz, Zbigniew R.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.09.2023
MDPI
Témata:
ISSN:2079-4991, 2079-4991
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract GaN nanowires grown on metal substrates have attracted increasing interest for a wide range of applications. Herein, we report GaN nanowires grown by plasma-assisted molecular beam epitaxy on thin polycrystalline ZrN buffer layers, sputtered onto Si(111) substrates. The nanowire orientation was studied by X-ray diffraction and scanning electron microscopy, and then described within a model as a function of the Ga beam angle, nanowire tilt angle, and substrate rotation. We show that vertically aligned nanowires grow faster than inclined nanowires, which leads to an interesting effect of geometrical selection of the nanowire orientation in the directional molecular beam epitaxy technique. After a given growth time, this effect depends on the nanowire surface density. At low density, the nanowires continue to grow with random orientations as nucleated. At high density, the effect of preferential growth induced by the unidirectional supply of the material in MBE starts to dominate. Faster growing nanowires with smaller tilt angles shadow more inclined nanowires that grow slower. This helps to obtain more regular ensembles of vertically oriented GaN nanowires despite their random position induced by the metallic grains at nucleation. The obtained dense ensembles of vertically aligned GaN nanowires on ZrN/Si(111) surfaces are highly relevant for device applications. Importantly, our results are not specific for GaN nanowires on ZrN buffers, and should be relevant for any nanowires that are epitaxially linked to the randomly oriented surface grains in the directional molecular beam epitaxy.
AbstractList GaN nanowires grown on metal substrates have attracted increasing interest for a wide range of applications. Herein, we report GaN nanowires grown by plasma-assisted molecular beam epitaxy on thin polycrystalline ZrN buffer layers, sputtered onto Si(111) substrates. The nanowire orientation was studied by X-ray diffraction and scanning electron microscopy, and then described within a model as a function of the Ga beam angle, nanowire tilt angle, and substrate rotation. We show that vertically aligned nanowires grow faster than inclined nanowires, which leads to an interesting effect of geometrical selection of the nanowire orientation in the directional molecular beam epitaxy technique. After a given growth time, this effect depends on the nanowire surface density. At low density, the nanowires continue to grow with random orientations as nucleated. At high density, the effect of preferential growth induced by the unidirectional supply of the material in MBE starts to dominate. Faster growing nanowires with smaller tilt angles shadow more inclined nanowires that grow slower. This helps to obtain more regular ensembles of vertically oriented GaN nanowires despite their random position induced by the metallic grains at nucleation. The obtained dense ensembles of vertically aligned GaN nanowires on ZrN/Si(111) surfaces are highly relevant for device applications. Importantly, our results are not specific for GaN nanowires on ZrN buffers, and should be relevant for any nanowires that are epitaxially linked to the randomly oriented surface grains in the directional molecular beam epitaxy.
GaN nanowires grown on metal substrates have attracted increasing interest for a wide range of applications. Herein, we report GaN nanowires grown by plasma-assisted molecular beam epitaxy on thin polycrystalline ZrN buffer layers, sputtered onto Si(111) substrates. The nanowire orientation was studied by X-ray diffraction and scanning electron microscopy, and then described within a model as a function of the Ga beam angle, nanowire tilt angle, and substrate rotation. We show that vertically aligned nanowires grow faster than inclined nanowires, which leads to an interesting effect of geometrical selection of the nanowire orientation in the directional molecular beam epitaxy technique. After a given growth time, this effect depends on the nanowire surface density. At low density, the nanowires continue to grow with random orientations as nucleated. At high density, the effect of preferential growth induced by the unidirectional supply of the material in MBE starts to dominate. Faster growing nanowires with smaller tilt angles shadow more inclined nanowires that grow slower. This helps to obtain more regular ensembles of vertically oriented GaN nanowires despite their random position induced by the metallic grains at nucleation. The obtained dense ensembles of vertically aligned GaN nanowires on ZrN/Si(111) surfaces are highly relevant for device applications. Importantly, our results are not specific for GaN nanowires on ZrN buffers, and should be relevant for any nanowires that are epitaxially linked to the randomly oriented surface grains in the directional molecular beam epitaxy.GaN nanowires grown on metal substrates have attracted increasing interest for a wide range of applications. Herein, we report GaN nanowires grown by plasma-assisted molecular beam epitaxy on thin polycrystalline ZrN buffer layers, sputtered onto Si(111) substrates. The nanowire orientation was studied by X-ray diffraction and scanning electron microscopy, and then described within a model as a function of the Ga beam angle, nanowire tilt angle, and substrate rotation. We show that vertically aligned nanowires grow faster than inclined nanowires, which leads to an interesting effect of geometrical selection of the nanowire orientation in the directional molecular beam epitaxy technique. After a given growth time, this effect depends on the nanowire surface density. At low density, the nanowires continue to grow with random orientations as nucleated. At high density, the effect of preferential growth induced by the unidirectional supply of the material in MBE starts to dominate. Faster growing nanowires with smaller tilt angles shadow more inclined nanowires that grow slower. This helps to obtain more regular ensembles of vertically oriented GaN nanowires despite their random position induced by the metallic grains at nucleation. The obtained dense ensembles of vertically aligned GaN nanowires on ZrN/Si(111) surfaces are highly relevant for device applications. Importantly, our results are not specific for GaN nanowires on ZrN buffers, and should be relevant for any nanowires that are epitaxially linked to the randomly oriented surface grains in the directional molecular beam epitaxy.
Audience Academic
Author Dubrovskii, Vladimir G.
Olszewski, Karol
Zytkiewicz, Zbigniew R.
Sobanska, Marta
Leshchenko, Egor D.
Wierzbicka, Aleksandra
AuthorAffiliation 1 Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland zytkie@ifpan.edu.pl (Z.R.Z.)
2 Faculty of Physics, St. Petersburg State University, Universitetskaya Embankment 13V, 199034 St. Petersburg, Russia; dubrovskii.ioffe@mail.ru (V.G.D.)
AuthorAffiliation_xml – name: 2 Faculty of Physics, St. Petersburg State University, Universitetskaya Embankment 13V, 199034 St. Petersburg, Russia; dubrovskii.ioffe@mail.ru (V.G.D.)
– name: 1 Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland zytkie@ifpan.edu.pl (Z.R.Z.)
Author_xml – sequence: 1
  givenname: Karol
  surname: Olszewski
  fullname: Olszewski, Karol
– sequence: 2
  givenname: Marta
  orcidid: 0000-0002-7225-9236
  surname: Sobanska
  fullname: Sobanska, Marta
– sequence: 3
  givenname: Vladimir G.
  surname: Dubrovskii
  fullname: Dubrovskii, Vladimir G.
– sequence: 4
  givenname: Egor D.
  surname: Leshchenko
  fullname: Leshchenko, Egor D.
– sequence: 5
  givenname: Aleksandra
  surname: Wierzbicka
  fullname: Wierzbicka, Aleksandra
– sequence: 6
  givenname: Zbigniew R.
  orcidid: 0000-0003-0240-9742
  surname: Zytkiewicz
  fullname: Zytkiewicz, Zbigniew R.
BookMark eNptkk1vEzEQhleoiJbQGz9gJS4cSLHXXn-cUKhKqBRCJeDCxZr1zgZHXru1N1T597ikSG2FfbA1ft_H9sy8rI5CDFhVryk5Y0yT9wFCpIyqplXyWXXSEKnnXGt69GB_XJ3mvCVlaMpUy15Ux0xKwQUVJxUsMY44JWfB19_Qo51cDHUc6iWs63XB37qEuV6meBvqbl9fecgjzBc5uzxhX3_5eFEXw1X0e5v2eQLvXcD6Z1rXK9hjyq-q5wP4jKf366z68eni-_nn-err8vJ8sZpbrttpTkWHvepsLywTvKdNz6ATorUd6YRURPEOZEOa3irWSNA4dMTKXmqNxKLu2ay6PHD7CFtzndwIaW8iOPM3ENPGQJqc9Wi47rrB8kEMKDighqFBrRQTFoQkbCisDwfW9a4bsbcYpgT-EfTxSXC_zCb-NpS0THLZFsLbe0KKNzvMkxldtug9BIy7bBolCWValZLMqjdPpNu4S6HkqqiE5pIpTorq7KDaQPmBC0MsF9syexydLV0xuBJfSElLrqiUxdAcDDbFnBMOxroJ7qpbjM6Xp5q7FjIPW6iY3j0x_fvzf-V_AHtjyTw
CitedBy_id crossref_primary_10_1021_acs_cgd_5c00514
crossref_primary_10_1039_D5NR00321K
Cites_doi 10.1002/smll.201501909
10.1016/j.jcrysgro.2020.125818
10.1107/S0021889883010493
10.1103/PhysRevB.81.085310
10.1063/1.3701591
10.1016/j.jcrysgro.2008.05.057
10.1016/j.jcrysgro.2009.04.021
10.1088/1361-6528/aaf9c5
10.1063/1.4935522
10.1039/c3nr00387f
10.1016/j.jcrysgro.2005.05.058
10.1002/pssr.201900615
10.1103/PhysRevB.83.035310
10.1016/j.jcrysgro.2014.01.007
10.1088/0957-4484/27/32/325601
10.1134/1.1923565
10.1063/1.4945419
10.1088/0957-4484/22/24/245606
10.1063/1.4718434
10.1016/j.jcrysgro.2005.11.079
10.1063/1.2715119
10.1088/1361-6528/aafe17
10.1021/acs.nanolett.5b04190
10.1088/0957-4484/24/3/035703
10.1021/nl104265u
10.1107/S0021889805042779
10.1021/acsphotonics.1c00224
10.1007/s11671-010-9698-7
10.1016/S0022-0248(97)00386-2
10.1002/pssa.201800420
10.1021/acs.cgd.6b01396
10.1103/PhysRevB.85.155313
10.1021/acs.nanolett.5b00251
10.1088/0957-4484/21/29/295605
10.1088/1361-6528/aa84a1
10.1107/S0021889878012844
10.1039/C7NR00006E
10.1016/j.tsf.2013.02.013
10.1103/PhysRevB.74.121302
10.1021/nl0707398
10.1088/1361-6528/acefd8
10.1063/1.4950707
10.1063/1.1305830
10.1002/smll.200700936
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
KB.
KR7
L7M
LK8
L~C
L~D
M7P
P64
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/nano13182587
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Materials Science Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
ANTE: Abstracts in New Technology & Engineering
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
Ceramic Abstracts
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
Materials Science Collection
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
Biotechnology Research Abstracts
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Materials Science & Engineering Collection
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ开放获取期刊资源库
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database (ProQuest)
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-4991
ExternalDocumentID oai_doaj_org_article_49bbfc4f6fe64ae9af2e98836ca6703f
PMC10537475
A771808177
10_3390_nano13182587
GeographicLocations Poland
Russia
GeographicLocations_xml – name: Poland
– name: Russia
GrantInformation_xml – fundername: NCN
  grantid: 2021/43/D/ST7/01936; 2022/04/Y/ST7/00043
– fundername: St. Petersburg State University
  grantid: 94033852
GroupedDBID 53G
5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
GROUPED_DOAJ
HCIFZ
HYE
I-F
IAO
ITC
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
F28
FR3
GNUQQ
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c495t-16bed8bcd6c364d12d3ab665cb0b678084ba7202dc8327a9efb0c7d799e0ce9d3
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001077815500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2079-4991
IngestDate Fri Oct 03 12:47:03 EDT 2025
Tue Nov 04 02:06:26 EST 2025
Sun Nov 09 05:17:30 EST 2025
Fri Jul 25 12:04:56 EDT 2025
Tue Nov 04 18:16:26 EST 2025
Tue Nov 18 22:17:23 EST 2025
Sat Nov 29 07:16:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c495t-16bed8bcd6c364d12d3ab665cb0b678084ba7202dc8327a9efb0c7d799e0ce9d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0240-9742
0000-0002-7225-9236
OpenAccessLink https://doaj.org/article/49bbfc4f6fe64ae9af2e98836ca6703f
PMID 37764616
PQID 2869473840
PQPubID 2032354
ParticipantIDs doaj_primary_oai_doaj_org_article_49bbfc4f6fe64ae9af2e98836ca6703f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10537475
proquest_miscellaneous_2870139891
proquest_journals_2869473840
gale_infotracacademiconefile_A771808177
crossref_citationtrail_10_3390_nano13182587
crossref_primary_10_3390_nano13182587
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Nanomaterials (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Cirlin (ref_42) 2005; 39
Sobanska (ref_13) 2015; 118
Calabrese (ref_21) 2017; 28
John (ref_26) 2023; 34
Wierzbicka (ref_34) 2012; 24
Carnevale (ref_4) 2011; 11
Mittemeijer (ref_31) 1983; 16
Sobanska (ref_32) 2014; 401
Debnath (ref_36) 2007; 90
Calleja (ref_1) 2008; 310
Colombi (ref_29) 2006; 39
Calleja (ref_35) 1998; 183
Consonni (ref_40) 2012; 85
Zhao (ref_10) 2013; 5
Mudiyanselage (ref_23) 2020; 547
Galopin (ref_37) 2011; 22
Sobanska (ref_41) 2016; 16
Stoica (ref_11) 2008; 4
Sarwar (ref_16) 2015; 11
Hauswald (ref_17) 2015; 15
Calabrese (ref_19) 2016; 108
Klosek (ref_28) 2013; 534
Park (ref_7) 2005; 282
Songmuang (ref_38) 2010; 21
Dubrovskii (ref_39) 2012; 100
Sun (ref_3) 2019; 216
Calarco (ref_5) 2007; 7
Janjua (ref_15) 2017; 9
Glas (ref_2) 2006; 74
Consonni (ref_6) 2010; 81
Auzelle (ref_24) 2021; 8
Zhang (ref_43) 2010; 5
Sobanska (ref_12) 2016; 27
Consonni (ref_9) 2011; 83
Langford (ref_30) 1978; 11
May (ref_18) 2016; 108
Heying (ref_27) 2000; 88
Foxon (ref_33) 2009; 311
Bertness (ref_8) 2006; 287
Sobanska (ref_14) 2019; 30
Zhao (ref_20) 2016; 16
Calabrese (ref_22) 2019; 30
Azadmand (ref_25) 2020; 14
Sibirev (ref_44) 2012; 111
References_xml – volume: 11
  start-page: 5402
  year: 2015
  ident: ref_16
  article-title: Semiconductor Nanowire Light-Emitting Diodes Grown on Metal: A Direction Toward Large-Scale Fabrication of Nanowire Devices
  publication-title: Small
  doi: 10.1002/smll.201501909
– volume: 547
  start-page: 125818
  year: 2020
  ident: ref_23
  article-title: Effects of Experimental Parameters on the Growth of GaN Nanowires on Ti-Film/Si(100) and Ti-Foil by Molecular Beam Epitaxy
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2020.125818
– volume: 16
  start-page: 309
  year: 1983
  ident: ref_31
  article-title: The Determination of Crystallite-Size and Lattice-Strain Parameters in Conjunction with the Profile-Refinement Method for the Determination of Crystal Structures
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889883010493
– volume: 81
  start-page: 085310
  year: 2010
  ident: ref_6
  article-title: Nucleation Mechanisms of Epitaxial GaN Nanowires: Origin of Their Self-Induced Formation and Initial Radius
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.085310
– volume: 100
  start-page: 153101
  year: 2012
  ident: ref_39
  article-title: Scaling growth kinetics of self-induced GaN nanowires
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3701591
– volume: 310
  start-page: 4035
  year: 2008
  ident: ref_1
  article-title: On the Mechanisms of Spontaneous Growth of III-Nitride Nanocolumns by Plasma-Assisted Molecular Beam Epitaxy
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2008.05.057
– volume: 311
  start-page: 3423
  year: 2009
  ident: ref_33
  article-title: A Complementary Geometric Model for the Growth of GaN Nanocolumns Prepared by Plasma-Assisted Molecular Beam Epitaxy
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2009.04.021
– volume: 30
  start-page: 114001
  year: 2019
  ident: ref_22
  article-title: Interfacial Reactions during the Molecular Beam Epitaxy of GaN Nanowires on Ti/Al2O3
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aaf9c5
– volume: 118
  start-page: 184303
  year: 2015
  ident: ref_13
  article-title: Kinetics of Self-Induced Nucleation and Optical Properties of GaN Nanowires Grown by Plasma-Assisted Molecular Beam Epitaxy on Amorphous AlxOy
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4935522
– volume: 5
  start-page: 5283
  year: 2013
  ident: ref_10
  article-title: Growth of Large-Scale Vertically Aligned GaN Nanowires and Their Heterostructures with High Uniformity on SiOx by Catalyst-Free Molecular Beam Epitaxy
  publication-title: Nanoscale
  doi: 10.1039/c3nr00387f
– volume: 282
  start-page: 313
  year: 2005
  ident: ref_7
  article-title: Self-Assembled GaN Nano-Rods Grown Directly on (111) Si Substrates: Dependence on Growth Conditions
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2005.05.058
– volume: 14
  start-page: 1900615
  year: 2020
  ident: ref_25
  article-title: Self-Assembly of Well-Separated AlN Nanowires Directly on Sputtered Metallic TiN Films
  publication-title: Phys. Status Solidi RRL
  doi: 10.1002/pssr.201900615
– volume: 83
  start-page: 035310
  year: 2011
  ident: ref_9
  article-title: Nucleation Mechanisms of Self-Induced GaN Nanowires Grown on an Amorphous Interlayer
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.035310
– volume: 401
  start-page: 657
  year: 2014
  ident: ref_32
  article-title: Arrangement of GaN Nanowires Grown by Plasma-Assisted Molecular Beam Epitaxy on Silicon Substrates with Amorphous Al2O3 Buffers
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2014.01.007
– volume: 27
  start-page: 325601
  year: 2016
  ident: ref_12
  article-title: Self-Assembled Growth of GaN Nanowires on Amorphous AlxOy: From Nucleation to the Formation of Dense Nanowire Ensembles
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/27/32/325601
– volume: 39
  start-page: 557
  year: 2005
  ident: ref_42
  article-title: The diffusion mechanism in the formation of GaAs and AlGaAs nanowhiskers during the process of molecular-beam epitaxy
  publication-title: Semiconductors
  doi: 10.1134/1.1923565
– volume: 108
  start-page: 141103
  year: 2016
  ident: ref_18
  article-title: Nanowire LEDs Grown Directly on Flexible Metal Foil
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4945419
– volume: 22
  start-page: 245606
  year: 2011
  ident: ref_37
  article-title: Morphology of self-catalyzed GaN nanowires and chronology of their formation by molecular beam epitaxy
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/22/24/245606
– volume: 111
  start-page: 104317
  year: 2012
  ident: ref_44
  article-title: Influence of shadow effect on the growth and shape of InAs nanowires
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4718434
– volume: 287
  start-page: 522
  year: 2006
  ident: ref_8
  article-title: Spontaneously Grown GaN and AlGaN Nanowires
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2005.11.079
– volume: 90
  start-page: 123117
  year: 2007
  ident: ref_36
  article-title: Mechanism of molecular beam epitaxy growth of GaN nanowires on Si
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2715119
– volume: 30
  start-page: 154002
  year: 2019
  ident: ref_14
  article-title: Comprehensive Analysis of the Self-Assembled Formation of GaN Nanowires on Amorphous AlxOy: In Situ Quadrupole Mass Spectrometry Studies
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aafe17
– volume: 16
  start-page: 1056
  year: 2016
  ident: ref_20
  article-title: Facile Formation of High-Quality InGaN/GaN Quantum-Disks-in-Nanowires on Bulk-Metal Substrates for High-Power Light-Emitters
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b04190
– volume: 24
  start-page: 035703
  year: 2012
  ident: ref_34
  article-title: Influence of Substrate Nitridation Temperature on Epitaxial Alignment of GaN Nanowires to Si(111) Substrate
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/24/3/035703
– volume: 11
  start-page: 866
  year: 2011
  ident: ref_4
  article-title: Three-Dimensional GaN/AlN Nanowire Heterostructures by Separating Nucleation and Growth Processes
  publication-title: Nano Lett.
  doi: 10.1021/nl104265u
– volume: 39
  start-page: 176
  year: 2006
  ident: ref_29
  article-title: Glancing-Incidence X-Ray Diffraction for Depth Profiling of Polycrystalline Layers
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889805042779
– volume: 8
  start-page: 1718
  year: 2021
  ident: ref_24
  article-title: Enhanced Radiative Efficiency in GaN Nanowires Grown on Sputtered TiNx: Effects of Surface Electric Fields
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.1c00224
– volume: 5
  start-page: 1692
  year: 2010
  ident: ref_43
  article-title: Growth of inclined GaAs nanowires by molecular beam epitaxy: Theory and experiment
  publication-title: Nanoscale Res. Lett.
  doi: 10.1007/s11671-010-9698-7
– volume: 183
  start-page: 23
  year: 1998
  ident: ref_35
  article-title: The effect of the III/V ratio and substrate temperature on the morphology and properties of GaN- and AlN-layers grown by molecular beam epitaxy on Si(1 1 1)
  publication-title: J. Cryst. Growth
  doi: 10.1016/S0022-0248(97)00386-2
– volume: 216
  start-page: 1800420
  year: 2019
  ident: ref_3
  article-title: Recent Advances on III-Nitride Nanowire Light Emitters on Foreign Substrates—Toward Flexible Photonics
  publication-title: Phys. Status Solidi
  doi: 10.1002/pssa.201800420
– volume: 16
  start-page: 7205
  year: 2016
  ident: ref_41
  article-title: Analysis of incubation times for the self-induced formation of GaN nanowires: Influence of the substrate on the nucleation mechanism
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.6b01396
– volume: 85
  start-page: 155313
  year: 2012
  ident: ref_40
  article-title: Quantitative description for the growth rate of self-induced GaN nanowires
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.155313
– volume: 15
  start-page: 3743
  year: 2015
  ident: ref_17
  article-title: Epitaxial Growth of GaN Nanowires with High Structural Perfection on a Metallic TiN Film
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b00251
– volume: 21
  start-page: 295605
  year: 2010
  ident: ref_38
  article-title: Identification of III–N nanowire growth kinetics via a marker technique
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/21/29/295605
– volume: 28
  start-page: 425602
  year: 2017
  ident: ref_21
  article-title: Effect of Surface Roughness, Chemical Composition, and Native Oxide Crystallinity on the Orientation of Self-Assembled GaN Nanowires on Ti Foils
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aa84a1
– volume: 11
  start-page: 102
  year: 1978
  ident: ref_30
  article-title: Scherrer after Sixty Years: A Survey and Some New Results in the Determination of Crystallite Size
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889878012844
– volume: 9
  start-page: 7805
  year: 2017
  ident: ref_15
  article-title: Self-Planarized Quantum-Disks-in-Nanowires Ultraviolet-B Emitters Utilizing Pendeo-Epitaxy
  publication-title: Nanoscale
  doi: 10.1039/C7NR00006E
– volume: 534
  start-page: 107
  year: 2013
  ident: ref_28
  article-title: Optimization of Nitrogen Plasma Source Parameters by Measurements of Emitted Light Intensity for Growth of GaN by Molecular Beam Epitaxy
  publication-title: Thin Solid Film.
  doi: 10.1016/j.tsf.2013.02.013
– volume: 74
  start-page: 121302
  year: 2006
  ident: ref_2
  article-title: Critical Dimensions for the Plastic Relaxation of Strained Axial Heterostructures in Free-Standing Nanowires
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.74.121302
– volume: 7
  start-page: 2248
  year: 2007
  ident: ref_5
  article-title: Nucleation and Growth of GaN Nanowires on Si(111) Performed by Molecular Beam Epitaxy
  publication-title: Nano Lett.
  doi: 10.1021/nl0707398
– volume: 34
  start-page: 465605
  year: 2023
  ident: ref_26
  article-title: Growth kinetics and substrate stability during high-temperature molecular beam epitaxy of AlN nanowires
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/acefd8
– volume: 108
  start-page: 202101
  year: 2016
  ident: ref_19
  article-title: Molecular Beam Epitaxy of Single Crystalline GaN Nanowires on a Flexible Ti Foil
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4950707
– volume: 88
  start-page: 1855
  year: 2000
  ident: ref_27
  article-title: Control of GaN Surface Morphologies Using Plasma-Assisted Molecular Beam Epitaxy
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1305830
– volume: 4
  start-page: 751
  year: 2008
  ident: ref_11
  article-title: Interface and Wetting Layer Effect on the Catalyst-Free Nucleation and Growth of GaN Nanowires
  publication-title: Small
  doi: 10.1002/smll.200700936
SSID ssj0000913853
Score 2.2580538
Snippet GaN nanowires grown on metal substrates have attracted increasing interest for a wide range of applications. Herein, we report GaN nanowires grown by...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 2587
SubjectTerms Angles (geometry)
Attitude (inclination)
Buffer layers
Density
Diffraction
Epitaxial growth
Epitaxy
Gallium compounds
Gallium nitrides
GaN nanowires
geometrical selection
Geometry
Grain size
Identification and classification
Misfit dislocations
Molecular beam epitaxy
Nanoparticles
Nanotechnology
nanowire orientation
Nanowires
Nitrides
Nucleation
Plasma
Polycrystals
Properties
Scanning electron microscopy
Silicon substrates
Temperature
Thin films
X-ray diffraction
X-rays
Zirconium nitrides
ZrN buffer layers
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLagcIADZRWBFhkJxAFFTWzHywm1VTscymgkFlVcIq9QqU1KZoo0_573MplhpgguXGNHdvS91X75HiGvXCorayFNNdqKXLgi5hAcpZzJwHVMTsu-dcKXEzUe69NTMxkO3KZDWeXSJvaGOrQez8j3mJZGKA75yLvLHzl2jcLb1aGFxk1yC1kSeF-6N1mdsSDnJbijRb07h-x-r7FNW4IYswpr6NY8UU_Y_6dZvl4queZ7jrf_d9f3yb0h6qT7CzF5QG7E5iG5u8ZF-IjYUWwvsL0WgEY_9t1xADLaJjqyYwpGuEVW4ykdYd5O3ZxOIO6-sDngi5IS6IeDIwovTNrzue_mEHQi23ekX7sxPbEY2D8mn4-PPh2-z4f-C7mHtGmWl9LFoJ0P0nMpQskCt07KyrvCgY8rtHBWsYIFD2ZBWQPQFl4FZUwsfDSBPyFbTdvEp4SG0kGmhnxg1gnpvQuJVcyDWLAERidm5O0Si9oP5OTYI-O8hiQFkavXkcvI69XsywUpx1_mHSCsqzlIpd0_aLtv9aCZtTDOJS-STFEKG41NLBqtufRWgjlMGXmDQlGjwsOWvB3-W4APQ-qsel-Be4fASsFyO0shqAdLMK1_S0BGXq6GQYfxYsY2sb3COQojcW3KjOgNedvY-uZIc_a9ZwMvkZFHqOrZv1d_Tu4AVHxRHrdDtmbdVdwlt_3P2dm0e9HrzS_HeyW9
  priority: 102
  providerName: ProQuest
Title Geometrical Selection of GaN Nanowires Grown by Plasma-Assisted MBE on Polycrystalline ZrN Layers
URI https://www.proquest.com/docview/2869473840
https://www.proquest.com/docview/2870139891
https://pubmed.ncbi.nlm.nih.gov/PMC10537475
https://doaj.org/article/49bbfc4f6fe64ae9af2e98836ca6703f
Volume 13
WOSCitedRecordID wos001077815500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ开放获取期刊资源库
  customDbUrl:
  eissn: 2079-4991
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913853
  issn: 2079-4991
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-4991
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913853
  issn: 2079-4991
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2079-4991
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913853
  issn: 2079-4991
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 2079-4991
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913853
  issn: 2079-4991
  databaseCode: KB.
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl:
  eissn: 2079-4991
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913853
  issn: 2079-4991
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database (ProQuest)
  customDbUrl:
  eissn: 2079-4991
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913853
  issn: 2079-4991
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG509aAH8clG16EFxYPETTpJP447MjuKuyH4YvQS-okLu4nMzArz761KskNGES9eckhXSHe9i1S-IuS5CWmhNZSpSuo8zk3iY0iOQsy4y6QPRvJudMKXE1GWcrFQ1WjUF_aE9fDAPeMOc2VMsHngwfNce6UD80rKjFvNQVsDel_IekbFVOeDVZpBIOo73TOo6w8b3bQpKDArsHtuFIM6qP4_HfLvTZKjqHN8l9wZ0kV61G_zHrnmm_vk9ghE8AHRc99e4Fws4Db92I21AV7TNtC5Lil4zxbhiFd0jgU3NRtaQcJ8oWMQDIrY0dPpjMIDVXu-scsNZIsI0-3pt2VJTzRm5A_J5-PZpzdv42FwQmyh3lnHKTfeSWMdtxnPXcpcpg3nhTWJgeCUyNxowRLmLNiz0ApkkljhhFI-sV657BHZa9rG7xPqUgMlFgJ5aZNza40LrGAW5MkCeAsfkVdXrKztgCqOwy3Oa6gukPH1mPERebGl_tGjafyFbopS2dIgBnZ3AzSjHjSj_pdmROQlyrRGS4UtWT38cAAHQ8yr-khAXIaMSMDrDq7EXg8mvKqZ5CoXGRTAEXm2XQbjwy8quvHtJdIITKGlSiMid9RlZ-u7K83Z9w7GO0UonVwUj__HYZ-QWyDQrO9-OyB76-Wlf0pu2p_rs9VyQq6LhZyQG9NZWX2YdKYC1_fT1xPsda1gpXp3Wn39BfoYHvI
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VggQc-EYYCiwSFQdk1V47690DQi20adU0ikRBFRezn1CptUuSgvKn-I3MOE5IQHDrgau9tne9b2fmrcdvAJ6bkHa0RpqqpM7j3CQ-xuAoxFy4TPpgpGhKJ3zoFf2-PDpSgxX4MfsXhtIqZzaxMdSutrRHvsGlUHmRIR95ffY1pqpR9HV1VkJjCot9P_mOlG30au8tzu865zvbh29247aqQGyRDIzjVBjvpLFO2EzkLuUu00aIjjWJQcudyNzogifcWQR7oRV2OLGFK5TyifXKZXjfS3AZwwgum1TBwXxPhzQ20f1N8-uzTCUbla7qFJcN71DO3oLnawoE_OkGfk_NXPB1Ozf_t7d0C260UTXbnC6D27DiqztwfUFr8S7orq9PqXwYgpK9a6r_ICRZHVhX9xk6mZpUm0esS_sSzEzYAHnFqY4Rv7QSHDvY2mZ4waA-mdjhBINqUjP37OOwz3qaiMs9eH8hY7wPq1Vd-QfAXGqQiZLemTa5sNa4wDvcIux5QKPqI3g5m_vStuLrVAPkpEQSRkgpF5ESwfq89dlUdOQv7bYIRvM2JBXeHKiHn8vW8pS5MibYPIjgRa690oF7JWUmrBZo7kMELwiEJRk07JLV7X8ZODCSBis3CwxfMHAs8HFrM9CVraUblb8QF8Gz-Wm0UfThSVe-Pqc2BTENqdII5BK-l7q-fKY6_tKonaekOJQXnYf_fvpTuLp7eNAre3v9_UdwDactm6YCrsHqeHjuH8MV-218PBo-adYsg08XDf-fAeKErA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFB2VglBZ8EYECgwSFQtkxR4781gg1NImVA2RJR6q2Jh5lkqtXZIUlF_j67jXsUMCgl0XbO2xPbbPfZzx9bmEPDMh6WkNNFVJnUWZiX0EyVGIGHep9MFIXrdO-DgUo5E8PFT5GvnR_guDZZWtT6wdtassrpF3meQqEynwkW5oyiLy3f6rs68RdpDCL61tO405RA787DvQt8nL_V1411uM9ffev34TNR0GIgvEYBol3HgnjXXcpjxzCXOpNpz3rIkNePFYZkYLFjNnAfhCK5h8bIUTSvnYeuVSOO8lclmgaHldNpgv1ndQbxNC4bzWPk1V3C11WSVgQqyH9XtLUbBuFvBnSPi9THMp7vVv_M9P7Ca53mTbdHtuHrfImi9vk2tLGox3iB746hTbigFY6bu6KxBAlVaBDvSIQvCpUM15Qge4XkHNjObAN051BLhGC3H07c4ehQPy6mRmxzNItlHl3NNP4xEdaiQ0d8mHC7nHe2S9rEp_n1CXGGCoqIOmTcatNS6wHrNgDiyAs_Ud8qLFQWEbUXbsDXJSADlD1BTLqOmQrcXos7kYyV_G7SCkFmNQQrzeUI2PisYjFZkyJtgs8OB5pr3SgXklZcqt5hAGQoc8R0AW6OhgSlY3_2vAjaFkWLEtIK2BhFLA5TZbABaNB5wUv9DXIU8Xu8F34QcpXfrqHMcIZCBSJR0iV7C-MvXVPeXxl1oFPUElokz0Hvz76k_IVUB9MdwfHTwkG_DW0nmF4CZZn47P_SNyxX6bHk_Gj2vzpeTzRaP_J39EjWk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geometrical+Selection+of+GaN+Nanowires+Grown+by+Plasma-Assisted+MBE+on+Polycrystalline+ZrN+Layers&rft.jtitle=Nanomaterials+%28Basel%2C+Switzerland%29&rft.au=Olszewski%2C+Karol&rft.au=Sobanska%2C+Marta&rft.au=Dubrovskii%2C+Vladimir+G&rft.au=Leshchenko%2C+Egor+D&rft.date=2023-09-01&rft.pub=MDPI+AG&rft.issn=2079-4991&rft.eissn=2079-4991&rft.volume=13&rft.issue=18&rft_id=info:doi/10.3390%2Fnano13182587&rft.externalDocID=A771808177
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-4991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-4991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-4991&client=summon