Bayesian k-Means as a "maximization-expectation" algorithm

We introduce a new class of "maximization-expectation" (ME) algorithms where we maximize over hidden variables but marginalize over random parameters. This reverses the roles of expectation and maximization in the classical expectation-maximization algorithm. In the context of clustering,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computation Jg. 21; H. 4; S. 1145
Hauptverfasser: Kurihara, Kenichi, Welling, Max
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 01.04.2009
Schlagworte:
ISSN:0899-7667
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a new class of "maximization-expectation" (ME) algorithms where we maximize over hidden variables but marginalize over random parameters. This reverses the roles of expectation and maximization in the classical expectation-maximization algorithm. In the context of clustering, we argue that these hard assignments open the door to very fast implementations based on data structures such as kd-trees and conga lines. The marginalization over parameters ensures that we retain the ability to infer model structure (i.e., number of clusters). As an important example, we discuss a top-down Bayesian k-means algorithm and a bottom-up agglomerative clustering algorithm. In experiments, we compare these algorithms against a number of alternative algorithms that have recently appeared in the literature.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0899-7667
DOI:10.1162/neco.2008.12-06-421