Bayesian k-Means as a "maximization-expectation" algorithm

We introduce a new class of "maximization-expectation" (ME) algorithms where we maximize over hidden variables but marginalize over random parameters. This reverses the roles of expectation and maximization in the classical expectation-maximization algorithm. In the context of clustering,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural computation Ročník 21; číslo 4; s. 1145
Hlavní autoři: Kurihara, Kenichi, Welling, Max
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.04.2009
Témata:
ISSN:0899-7667
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We introduce a new class of "maximization-expectation" (ME) algorithms where we maximize over hidden variables but marginalize over random parameters. This reverses the roles of expectation and maximization in the classical expectation-maximization algorithm. In the context of clustering, we argue that these hard assignments open the door to very fast implementations based on data structures such as kd-trees and conga lines. The marginalization over parameters ensures that we retain the ability to infer model structure (i.e., number of clusters). As an important example, we discuss a top-down Bayesian k-means algorithm and a bottom-up agglomerative clustering algorithm. In experiments, we compare these algorithms against a number of alternative algorithms that have recently appeared in the literature.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0899-7667
DOI:10.1162/neco.2008.12-06-421