Bayesian k-Means as a "maximization-expectation" algorithm
We introduce a new class of "maximization-expectation" (ME) algorithms where we maximize over hidden variables but marginalize over random parameters. This reverses the roles of expectation and maximization in the classical expectation-maximization algorithm. In the context of clustering,...
Saved in:
| Published in: | Neural computation Vol. 21; no. 4; p. 1145 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
01.04.2009
|
| Subjects: | |
| ISSN: | 0899-7667 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We introduce a new class of "maximization-expectation" (ME) algorithms where we maximize over hidden variables but marginalize over random parameters. This reverses the roles of expectation and maximization in the classical expectation-maximization algorithm. In the context of clustering, we argue that these hard assignments open the door to very fast implementations based on data structures such as kd-trees and conga lines. The marginalization over parameters ensures that we retain the ability to infer model structure (i.e., number of clusters). As an important example, we discuss a top-down Bayesian k-means algorithm and a bottom-up agglomerative clustering algorithm. In experiments, we compare these algorithms against a number of alternative algorithms that have recently appeared in the literature. |
|---|---|
| AbstractList | We introduce a new class of "maximization-expectation" (ME) algorithms where we maximize over hidden variables but marginalize over random parameters. This reverses the roles of expectation and maximization in the classical expectation-maximization algorithm. In the context of clustering, we argue that these hard assignments open the door to very fast implementations based on data structures such as kd-trees and conga lines. The marginalization over parameters ensures that we retain the ability to infer model structure (i.e., number of clusters). As an important example, we discuss a top-down Bayesian k-means algorithm and a bottom-up agglomerative clustering algorithm. In experiments, we compare these algorithms against a number of alternative algorithms that have recently appeared in the literature. We introduce a new class of "maximization-expectation" (ME) algorithms where we maximize over hidden variables but marginalize over random parameters. This reverses the roles of expectation and maximization in the classical expectation-maximization algorithm. In the context of clustering, we argue that these hard assignments open the door to very fast implementations based on data structures such as kd-trees and conga lines. The marginalization over parameters ensures that we retain the ability to infer model structure (i.e., number of clusters). As an important example, we discuss a top-down Bayesian k-means algorithm and a bottom-up agglomerative clustering algorithm. In experiments, we compare these algorithms against a number of alternative algorithms that have recently appeared in the literature.We introduce a new class of "maximization-expectation" (ME) algorithms where we maximize over hidden variables but marginalize over random parameters. This reverses the roles of expectation and maximization in the classical expectation-maximization algorithm. In the context of clustering, we argue that these hard assignments open the door to very fast implementations based on data structures such as kd-trees and conga lines. The marginalization over parameters ensures that we retain the ability to infer model structure (i.e., number of clusters). As an important example, we discuss a top-down Bayesian k-means algorithm and a bottom-up agglomerative clustering algorithm. In experiments, we compare these algorithms against a number of alternative algorithms that have recently appeared in the literature. |
| Author | Welling, Max Kurihara, Kenichi |
| Author_xml | – sequence: 1 givenname: Kenichi surname: Kurihara fullname: Kurihara, Kenichi email: kurihara@mi.cs.titech.ac.jp organization: Department of Computer Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan. kurihara@mi.cs.titech.ac.jp – sequence: 2 givenname: Max surname: Welling fullname: Welling, Max |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19199394$$D View this record in MEDLINE/PubMed |
| BookMark | eNo1j01LxDAYhHNYcT_0FwhS9uAt65ukTRpvuvgFK170XN6kqUbbtDYt7PrrXXSFGWYODwMzJ5PQBkfIGYMVY5JfBmfbFQfIV4xTkDTlbEJmkGtNlZRqSuYxfgCAZJAdkynTTGuh0xm5usGdix5D8kmfHIaY4F7JssGtb_w3Dr4N1G07Z4ffvkywfmt7P7w3J-Sowjq600MuyOvd7cv6gW6e7x_X1xtqU50NlHELoswQpVZWWOkqAMOERmGUrqwxytk0A2MQQAmmU1XmGlhlUijF3nxBLv52u779Gl0cisZH6-oag2vHWEjFQHGR78HzAziaxpVF1_sG-13x_5b_ADLfVwc |
| CitedBy_id | crossref_primary_10_3390_a11100151 crossref_primary_10_1016_j_patcog_2014_03_006 crossref_primary_10_1016_j_jspi_2020_05_009 crossref_primary_10_1002_sim_9924 crossref_primary_10_1007_s00500_017_2565_z crossref_primary_10_1016_j_patcog_2020_107783 crossref_primary_10_1007_s41870_024_02279_x crossref_primary_10_1111_eea_13123 crossref_primary_10_1162_NECO_a_00534 crossref_primary_10_1016_j_ijar_2017_11_001 crossref_primary_10_1109_ACCESS_2019_2927593 crossref_primary_10_1007_s10994_023_06491_x crossref_primary_10_1016_j_ijepes_2014_11_029 crossref_primary_10_1038_s41467_020_20753_5 crossref_primary_10_1109_TMI_2019_2897112 crossref_primary_10_1155_2013_251905 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1162/neco.2008.12-06-421 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 19199394 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
| GroupedDBID | --- -~X .4S .DC 0R~ 123 36B 4.4 41~ 53G 6IK AAFWJ AAJGR AALMD ABAZT ABDBF ABDNZ ABEFU ABIVO ABJNI ABVLG ACGFO ACUHS ACYGS ADIYS ADMLS AEGXH AEILP AENEX AIAGR ALMA_UNASSIGNED_HOLDINGS AMVHM ARCSS AVWKF AZFZN BEFXN BFFAM BGNUA BKEBE BPEOZ CAG CGR COF CS3 CUY CVF DU5 EAP EAS EBC EBD EBS ECM ECS EDO EIF EJD EMB EMK EMOBN EPL EPS EST ESX F5P FEDTE FNEHJ HVGLF HZ~ H~9 I-F IPLJI JAVBF MCG MINIK MKJ NPM O9- OCL P2P PK0 PQQKQ RMI SV3 TUS WG8 WH7 XJE ZWS 7X8 |
| ID | FETCH-LOGICAL-c495t-12c03d5aa697c3c6ef00b139a3b79fcbb7ec450bba00731947d8901fb40d340d2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000264896200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0899-7667 |
| IngestDate | Thu Sep 04 16:07:46 EDT 2025 Mon Jul 21 06:04:34 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c495t-12c03d5aa697c3c6ef00b139a3b79fcbb7ec450bba00731947d8901fb40d340d2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 19199394 |
| PQID | 67107238 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_67107238 pubmed_primary_19199394 |
| PublicationCentury | 2000 |
| PublicationDate | 2009-04-01 |
| PublicationDateYYYYMMDD | 2009-04-01 |
| PublicationDate_xml | – month: 04 year: 2009 text: 2009-04-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Neural computation |
| PublicationTitleAlternate | Neural Comput |
| PublicationYear | 2009 |
| SSID | ssj0006105 |
| Score | 2.099636 |
| Snippet | We introduce a new class of "maximization-expectation" (ME) algorithms where we maximize over hidden variables but marginalize over random parameters. This... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 1145 |
| SubjectTerms | Algorithms Artificial Intelligence Bayes Theorem Models, Neurological |
| Title | Bayesian k-Means as a "maximization-expectation" algorithm |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/19199394 https://www.proquest.com/docview/67107238 |
| Volume | 21 |
| WOSCitedRecordID | wos000264896200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB6q9eDF-rY-l-I1uLvJJhsRRMXipaUHhd5Kkk20aLfVVtF_72QfeBIPwmZvy4ZhMo_MN_MBnJqUM01ZQmRsYsJi5UgqWUa4MJFLhRIi0wXZhOj30-FQDhpwUffCeFhlbRMLQ51Njb8jP-PoCj1B1uXslXjOKF9brQg0lqBJMZDxgC4x_JkVzisAI2YURHAuqplDEY_PckztShylByZw3GP0e4RZeJpu6397XIe1KsIMrkqV2ICGzTehVbM3BNVh3oLza_VlfQtl8Ex6Fj1WoPAJOhP1OZ5U3ZnEEwCYslrfCdTLI_5v8TTZhofu7f3NHamYFIjBBGhBotiENEuU4lIYarh1YahRZIpqIZ3RWljDklBr5St3kWQiSzFQcJqFGcUV78ByPs3tHgQUTWSYaOGo1cyoSEsdo8E0LrIpph-qDSe1bEaoqb78oHI7fZ-Paum0YbcU72hWDtQYYc6IYZJk-39-ewCrdTknjA6h6fCM2iNYMR-L8fztuFAAfPcHvW_F5bmT |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+k-Means+as+a+%22maximization-expectation%22+algorithm&rft.jtitle=Neural+computation&rft.au=Kurihara%2C+Kenichi&rft.au=Welling%2C+Max&rft.date=2009-04-01&rft.issn=0899-7667&rft.volume=21&rft.issue=4&rft.spage=1145&rft_id=info:doi/10.1162%2Fneco.2008.12-06-421&rft_id=info%3Apmid%2F19199394&rft_id=info%3Apmid%2F19199394&rft.externalDocID=19199394 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-7667&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-7667&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-7667&client=summon |