Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest

Predicting plant community responses to changing environmental conditions is a key element of forecasting and mitigating the effects of global change. Disturbance can play an important role in these dynamics, by initiating cycles of secondary succession and generating opportunities for communities o...

Full description

Saved in:
Bibliographic Details
Published in:Global change biology Vol. 16; no. 4; pp. 1281 - 1295
Main Authors: Johnstone, Jill F, Hollingsworth, Teresa N, Chapin, F. Stuart III, Mack, Michelle C
Format: Journal Article
Language:English
Published: Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.04.2010
Blackwell Publishing Ltd
Wiley-Blackwell
Subjects:
ISSN:1354-1013, 1365-2486
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Predicting plant community responses to changing environmental conditions is a key element of forecasting and mitigating the effects of global change. Disturbance can play an important role in these dynamics, by initiating cycles of secondary succession and generating opportunities for communities of long-lived organisms to reorganize in alternative configurations. This study used landscape-scale variations in environmental conditions, stand structure, and disturbance from an extreme fire year in Alaska to examine how these factors affected successional trajectories in boreal forests dominated by black spruce. Because fire intervals in interior Alaska are typically too short to allow relay succession, the initial cohorts of seedlings that recruit after fire largely determine future canopy composition. Consequently, in a dynamically stable landscape, postfire tree seedling composition should resemble that of the prefire forest stands, with little net change in tree composition after fire. Seedling recruitment data from 90 burned stands indicated that postfire establishment of black spruce was strongly linked to environmental conditions and was highest at sites that were moist and had high densities of prefire spruce. Although deciduous broadleaf trees were absent from most prefire stands, deciduous trees recruited from seed at many sites and were most abundant at sites where the fires burned severely, consuming much of the surface organic layer. Comparison of pre- and postfire tree composition in the burned stands indicated that the expected trajectory of black spruce self-replacement was typical only at moist sites that burned with low fire severity. At severely burned sites, deciduous trees dominated the postfire tree seedling community, suggesting these sites will follow alternative, deciduous-dominated trajectories of succession. Increases in the severity of boreal fires with climate warming may catalyze shifts to an increasingly deciduous-dominated landscape, substantially altering landscape dynamics and ecosystem services in this part of the boreal forest.
AbstractList Predicting plant community responses to changing environmental conditions is a key element of forecasting and mitigating the effects of global change. Disturbance can play an important role in these dynamics, by initiating cycles of secondary succession and generating opportunities for communities of long‐lived organisms to reorganize in alternative configurations. This study used landscape‐scale variations in environmental conditions, stand structure, and disturbance from an extreme fire year in Alaska to examine how these factors affected successional trajectories in boreal forests dominated by black spruce. Because fire intervals in interior Alaska are typically too short to allow relay succession, the initial cohorts of seedlings that recruit after fire largely determine future canopy composition. Consequently, in a dynamically stable landscape, postfire tree seedling composition should resemble that of the prefire forest stands, with little net change in tree composition after fire. Seedling recruitment data from 90 burned stands indicated that postfire establishment of black spruce was strongly linked to environmental conditions and was highest at sites that were moist and had high densities of prefire spruce. Although deciduous broadleaf trees were absent from most prefire stands, deciduous trees recruited from seed at many sites and were most abundant at sites where the fires burned severely, consuming much of the surface organic layer. Comparison of pre‐ and postfire tree composition in the burned stands indicated that the expected trajectory of black spruce self‐replacement was typical only at moist sites that burned with low fire severity. At severely burned sites, deciduous trees dominated the postfire tree seedling community, suggesting these sites will follow alternative, deciduous‐dominated trajectories of succession. Increases in the severity of boreal fires with climate warming may catalyze shifts to an increasingly deciduous‐dominated landscape, substantially altering landscape dynamics and ecosystem services in this part of the boreal forest.
AbstractPredicting plant community responses to changing environmental conditions is a key element of forecasting and mitigating the effects of global change. Disturbance can play an important role in these dynamics, by initiating cycles of secondary succession and generating opportunities for communities of long-lived organisms to reorganize in alternative configurations. This study used landscape-scale variations in environmental conditions, stand structure, and disturbance from an extreme fire year in Alaska to examine how these factors affected successional trajectories in boreal forests dominated by black spruce. Because fire intervals in interior Alaska are typically too short to allow relay succession, the initial cohorts of seedlings that recruit after fire largely determine future canopy composition. Consequently, in a dynamically stable landscape, postfire tree seedling composition should resemble that of the prefire forest stands, with little net change in tree composition after fire. Seedling recruitment data from 90 burned stands indicated that postfire establishment of black spruce was strongly linked to environmental conditions and was highest at sites that were moist and had high densities of prefire spruce. Although deciduous broadleaf trees were absent from most prefire stands, deciduous trees recruited from seed at many sites and were most abundant at sites where the fires burned severely, consuming much of the surface organic layer. Comparison of pre- and postfire tree composition in the burned stands indicated that the expected trajectory of black spruce self-replacement was typical only at moist sites that burned with low fire severity. At severely burned sites, deciduous trees dominated the postfire tree seedling community, suggesting these sites will follow alternative, deciduous-dominated trajectories of succession. Increases in the severity of boreal fires with climate warming may catalyze shifts to an increasingly deciduous-dominated landscape, substantially altering landscape dynamics and ecosystem services in this part of the boreal forest.
Predicting plant community responses to changing environmental conditions is a key element of forecasting and mitigating the effects of global change. Disturbance can play an important role in these dynamics, by initiating cycles of secondary succession and generating opportunities for communities of long-lived organisms to reorganize in alternative configurations. This study used landscape-scale variations in environmental conditions, stand structure, and disturbance from an extreme fire year in Alaska to examine how these factors affected successional trajectories in boreal forests dominated by black spruce. Because fire intervals in interior Alaska are typically too short to allow relay succession, the initial cohorts of seedlings that recruit after fire largely determine future canopy composition. Consequently, in a dynamically stable landscape, postfire tree seedling composition should resemble that of the prefire forest stands, with little net change in tree composition after fire. Seedling recruitment data from 90 burned stands indicated that postfire establishment of black spruce was strongly linked to environmental conditions and was highest at sites that were moist and had high densities of prefire spruce. Although deciduous broadleaf trees were absent from most prefire stands, deciduous trees recruited from seed at many sites and were most abundant at sites where the fires burned severely, consuming much of the surface organic layer. Comparison of pre- and postfire tree composition in the burned stands indicated that the expected trajectory of black spruce self-replacement was typical only at moist sites that burned with low fire severity. At severely burned sites, deciduous trees dominated the postfire tree seedling community, suggesting these sites will follow alternative, deciduous-dominated trajectories of succession. Increases in the severity of boreal fires with climate warming may catalyze shifts to an increasingly deciduous-dominated landscape, substantially altering landscape dynamics and ecosystem services in this part of the boreal forest. [PUBLICATION ABSTRACT]
Author Chapin, F. Stuart III
Mack, Michelle C
Hollingsworth, Teresa N
Johnstone, Jill F
Author_xml – sequence: 1
  fullname: Johnstone, Jill F
– sequence: 2
  fullname: Hollingsworth, Teresa N
– sequence: 3
  fullname: Chapin, F. Stuart III
– sequence: 4
  fullname: Mack, Michelle C
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22530764$$DView record in Pascal Francis
BookMark eNqNkU1v1DAQhiNUJNrCb8BCAk4Jdmzn4wBSG9oFtMABKriNHGey9a43LnZW7P57HFJ66AHVlxlpnnfGM-9JcjS4AZOEMJqx-N6sM8YLmeaiKrKc0jqjOZUs2z9Kju8KR1MuRcoo40-SkxDWlFKe0-I4aZtrNawwEDOQ3ngkHldmi6T1qDZkvEZicaX0gVinN8QNJOy0xhCMG5Qlo1dr1KPzZu5wZlXYqIG0Lsot6WMI49Pkca9swGe38TS5urz43nxIl18XH5uzZapFLVkqEWXHdFkjnf6pdN-xUlCpkbW1LJWM27aaM8416rztddvxSgtddV1XiFg5TV7PfW-8-7WLg2FrgkZr1YBuF6AUBZN1VVeRfPVfUhRSMC6KCL64B67dzsfNA8Qr55wWdIJe3kIqaGV7rwZtAtx4s1X-AHkuOS0LEbl3M6e9C8FjD9qMaoyXjGc0FhiFyVFYw2QcTMbB5Cj8dRT2sUF1r8G_GQ-Qvp2lv43Fw4N1sGjOpyzq01lvwoj7O73yGyhKXkr48WUB9adF07z_-RmWkX8-871yoFY-3uPqWx5tpayipeCU_wFTctJS
CitedBy_id crossref_primary_10_1111_nph_16252
crossref_primary_10_3389_ffgc_2020_00068
crossref_primary_10_1016_j_geoderma_2014_04_008
crossref_primary_10_1139_cjfr_2014_0309
crossref_primary_10_1016_j_foreco_2020_118352
crossref_primary_10_3390_fire7010019
crossref_primary_10_1002_ece3_4879
crossref_primary_10_5194_bg_15_5287_2018
crossref_primary_10_1007_s11258_022_01242_9
crossref_primary_10_1139_X10_061
crossref_primary_10_1071_WF08183
crossref_primary_10_1111_jbi_13465
crossref_primary_10_5194_hess_25_1849_2021
crossref_primary_10_1111_1365_2664_13876
crossref_primary_10_1890_ES12_00012_1
crossref_primary_10_1088_1748_9326_ac8be6
crossref_primary_10_1038_s41467_022_31597_6
crossref_primary_10_1007_s10021_023_00854_0
crossref_primary_10_1139_cjfr_2018_0209
crossref_primary_10_1111_gcb_14511
crossref_primary_10_5194_bg_13_6669_2016
crossref_primary_10_1111_jvs_12073
crossref_primary_10_1007_s11355_019_00386_7
crossref_primary_10_1890_ES11_00115_1
crossref_primary_10_1080_11956860_2020_1791686
crossref_primary_10_1111_jbi_14302
crossref_primary_10_1111_gcb_13420
crossref_primary_10_1088_1748_9326_6_4_045501
crossref_primary_10_3390_f8040106
crossref_primary_10_1016_j_rsase_2017_07_010
crossref_primary_10_1071_WF20092
crossref_primary_10_1111_gcb_13456
crossref_primary_10_3389_ffgc_2020_00087
crossref_primary_10_1890_10_0896_1
crossref_primary_10_1016_j_ecolind_2022_109705
crossref_primary_10_1029_2018JG004702
crossref_primary_10_1016_j_foreco_2018_03_008
crossref_primary_10_12952_journal_elementa_000032
crossref_primary_10_1007_s10021_021_00666_0
crossref_primary_10_1007_s00442_019_04370_8
crossref_primary_10_1146_annurev_earth_060614_105126
crossref_primary_10_1186_s40663_020_00225_4
crossref_primary_10_3390_rs15123107
crossref_primary_10_1071_WF10113
crossref_primary_10_1002_eco_2403
crossref_primary_10_1016_j_envsoft_2014_09_003
crossref_primary_10_1007_s10980_018_00766_8
crossref_primary_10_1016_j_foreco_2017_09_020
crossref_primary_10_1029_2018GL078283
crossref_primary_10_1177_0959683616632893
crossref_primary_10_1111_j_1365_2486_2012_02649_x
crossref_primary_10_3390_rs6010470
crossref_primary_10_1007_s10021_023_00866_w
crossref_primary_10_1080_09640568_2014_978079
crossref_primary_10_1111_j_1365_2699_2012_02714_x
crossref_primary_10_1007_s00442_018_4215_2
crossref_primary_10_1038_s41558_021_01011_y
crossref_primary_10_1111_1365_2664_12504
crossref_primary_10_1002_2015MS000576
crossref_primary_10_1088_1748_9326_11_9_095008
crossref_primary_10_3390_rs16081461
crossref_primary_10_1007_s10021_012_9567_6
crossref_primary_10_3389_ffgc_2020_00020
crossref_primary_10_1139_as_2025_0009
crossref_primary_10_1016_j_rse_2017_07_003
crossref_primary_10_1088_1748_9326_11_9_095001
crossref_primary_10_1007_s10980_012_9767_7
crossref_primary_10_1007_s10980_025_02146_5
crossref_primary_10_1139_cjb_2018_0050
crossref_primary_10_1111_j_1365_2486_2010_02358_x
crossref_primary_10_1002_ecs2_4397
crossref_primary_10_5194_bg_12_3579_2015
crossref_primary_10_1186_s42408_025_00374_3
crossref_primary_10_1016_j_foreco_2015_12_012
crossref_primary_10_1016_j_scitotenv_2017_01_200
crossref_primary_10_3390_f6020416
crossref_primary_10_1007_s11258_013_0191_0
crossref_primary_10_1890_ES13_00372_1
crossref_primary_10_1139_er_2013_0042
crossref_primary_10_1111_ddi_12414
crossref_primary_10_1016_j_apenergy_2016_08_093
crossref_primary_10_1016_j_foreco_2013_08_055
crossref_primary_10_1002_ecy_3096
crossref_primary_10_1016_j_foreco_2014_04_002
crossref_primary_10_1890_11_2136_1
crossref_primary_10_1139_cjfr_2019_0161
crossref_primary_10_1016_j_tree_2014_07_002
crossref_primary_10_1029_2023GL105216
crossref_primary_10_1007_s40641_016_0031_0
crossref_primary_10_1016_j_earscirev_2024_104865
crossref_primary_10_1016_j_rse_2015_03_004
crossref_primary_10_1007_s11258_014_0303_5
crossref_primary_10_1016_j_foreco_2013_08_017
crossref_primary_10_1371_journal_pone_0258558
crossref_primary_10_5558_tfc2014_039
crossref_primary_10_1007_s11831_023_09893_1
crossref_primary_10_1007_s10310_012_0345_2
crossref_primary_10_1111_1365_2745_12071
crossref_primary_10_1007_s13157_024_01794_8
crossref_primary_10_1007_s10021_022_00761_w
crossref_primary_10_1007_s10021_015_9912_7
crossref_primary_10_1186_s42408_023_00188_1
crossref_primary_10_1007_s10021_023_00851_3
crossref_primary_10_1038_s41558_024_02011_4
crossref_primary_10_1139_cjfr_2019_0150
crossref_primary_10_5194_bg_21_2207_2024
crossref_primary_10_1002_2017GL075488
crossref_primary_10_3389_ffgc_2023_1020305
crossref_primary_10_1016_j_foreco_2016_08_014
crossref_primary_10_1016_j_foreco_2019_04_017
crossref_primary_10_1016_j_scitotenv_2018_04_230
crossref_primary_10_1029_2021RG000757
crossref_primary_10_1111_j_1365_2664_2012_02154_x
crossref_primary_10_1139_X10_074
crossref_primary_10_1002_ecs2_2182
crossref_primary_10_1002_ecy_4042
crossref_primary_10_1016_j_agrformet_2024_110216
crossref_primary_10_1002_eap_3011
crossref_primary_10_3389_fevo_2020_00252
crossref_primary_10_3390_land5030030
crossref_primary_10_3390_land13122253
crossref_primary_10_3389_fclim_2021_730943
crossref_primary_10_1007_s10021_012_9565_8
crossref_primary_10_1016_j_foreco_2019_117649
crossref_primary_10_1007_s10021_025_00992_7
crossref_primary_10_1038_nclimate3329
crossref_primary_10_1007_s10021_016_0055_2
crossref_primary_10_1080_15230430_2023_2285334
crossref_primary_10_1111_jbi_12533
crossref_primary_10_1890_ES11_00364_1
crossref_primary_10_1657_1938_4246_44_3_319
crossref_primary_10_5194_cp_15_1063_2019
crossref_primary_10_1016_j_srs_2024_100192
crossref_primary_10_1109_LGRS_2021_3112387
crossref_primary_10_1038_s41558_021_01027_4
crossref_primary_10_1002_ecs2_3129
crossref_primary_10_1139_cjfr_2012_0486
crossref_primary_10_1890_08_2295_1
crossref_primary_10_1111_1365_2435_13132
crossref_primary_10_1186_s40168_021_01001_4
crossref_primary_10_1016_j_jenvrad_2019_106128
crossref_primary_10_1073_pnas_1305069110
crossref_primary_10_3390_fire6090364
crossref_primary_10_1007_s10980_022_01427_7
crossref_primary_10_1186_s13021_021_00184_5
crossref_primary_10_5194_acp_22_12493_2022
crossref_primary_10_1002_ecs2_3379
crossref_primary_10_1038_s41467_018_08237_z
crossref_primary_10_1007_s41976_020_00038_7
crossref_primary_10_1111_gcb_15118
crossref_primary_10_1007_s10980_023_01733_8
crossref_primary_10_1002_eap_1724
crossref_primary_10_1038_s43247_024_01333_7
crossref_primary_10_1111_gcb_14380
crossref_primary_10_3389_fpls_2018_01318
crossref_primary_10_1016_j_jenvman_2021_112994
crossref_primary_10_1002_ecs2_2156
crossref_primary_10_1128_AEM_02575_10
crossref_primary_10_1007_s10584_017_1923_2
crossref_primary_10_1890_ES11_00288_1
crossref_primary_10_1111_ddi_12356
crossref_primary_10_1139_er_2013_0064
crossref_primary_10_3390_f14081577
crossref_primary_10_1038_ngeo2325
crossref_primary_10_1038_s41598_020_73095_z
crossref_primary_10_1139_er_2015_0090
crossref_primary_10_1007_s11676_015_0084_2
crossref_primary_10_1002_ecy_2181
crossref_primary_10_1007_s11104_017_3386_7
crossref_primary_10_1002_ecm_1369
crossref_primary_10_1016_j_catena_2024_108114
crossref_primary_10_1016_j_catena_2024_108478
crossref_primary_10_1007_s10021_015_9920_7
crossref_primary_10_1016_j_foreco_2017_02_018
crossref_primary_10_5194_bg_13_675_2016
crossref_primary_10_1007_s10531_016_1286_4
crossref_primary_10_1029_2021JG006465
crossref_primary_10_1016_j_rse_2017_12_029
crossref_primary_10_1071_WF17095
crossref_primary_10_1139_cjfr_2017_0013
crossref_primary_10_1080_15230430_2021_1899562
crossref_primary_10_1093_aob_mcae055
crossref_primary_10_1002_ecs2_4558
crossref_primary_10_1002_ecs2_4672
crossref_primary_10_1139_er_2023_0075
crossref_primary_10_1139_cjfr_2020_0483
crossref_primary_10_1007_s10530_013_0633_6
crossref_primary_10_1007_s10980_015_0306_1
crossref_primary_10_1073_pnas_1409316111
crossref_primary_10_1007_s10980_011_9574_6
crossref_primary_10_1186_s40462_020_00223_9
crossref_primary_10_3390_f12010093
crossref_primary_10_1029_2022JG007107
crossref_primary_10_1016_j_ecolmodel_2021_109472
crossref_primary_10_1016_j_rse_2017_11_007
crossref_primary_10_1111_gcb_13461
crossref_primary_10_1111_gcb_14550
crossref_primary_10_3390_rs15225274
crossref_primary_10_1002_ecs2_1398
crossref_primary_10_1007_s10021_017_0177_1
crossref_primary_10_1111_gcb_12288
crossref_primary_10_1371_journal_pone_0059747
crossref_primary_10_1038_s41558_020_00920_8
crossref_primary_10_1016_j_foreco_2013_06_056
crossref_primary_10_1016_j_envsoft_2022_105513
crossref_primary_10_1016_j_foreco_2021_119386
crossref_primary_10_3390_rs13122247
crossref_primary_10_1073_pnas_1902841116
crossref_primary_10_3390_f10110992
crossref_primary_10_1007_s10021_010_9383_9
crossref_primary_10_3897_BDJ_6_e27427
crossref_primary_10_1016_j_funeco_2022_101222
crossref_primary_10_1002_ecy_2493
crossref_primary_10_1016_j_enpol_2021_112477
crossref_primary_10_1111_gcb_13124
crossref_primary_10_1139_cjz_2017_0069
crossref_primary_10_1890_13_1477_1
crossref_primary_10_1016_j_envsoft_2022_105410
crossref_primary_10_3390_land10020136
crossref_primary_10_1139_er_2020_0019
crossref_primary_10_7717_peerj_4160
crossref_primary_10_1016_j_accre_2021_01_001
crossref_primary_10_3390_rs15061489
crossref_primary_10_1002_ecs2_3430
crossref_primary_10_3832_ifor2145_009
crossref_primary_10_1093_biosci_biab139
crossref_primary_10_3390_su10103531
crossref_primary_10_1002_hyp_14251
crossref_primary_10_1002_eap_1420
crossref_primary_10_1016_j_rse_2022_112935
crossref_primary_10_1139_cjfr_2013_0022
crossref_primary_10_1016_j_envsoft_2020_104884
crossref_primary_10_1038_s41477_019_0495_8
crossref_primary_10_1007_s10021_016_0097_5
crossref_primary_10_1007_s10531_019_01806_8
crossref_primary_10_1111_ecog_05211
crossref_primary_10_1111_jvs_12740
crossref_primary_10_3390_su14095462
crossref_primary_10_1038_s41598_017_15644_7
crossref_primary_10_1016_j_rse_2012_11_017
crossref_primary_10_1016_j_foreco_2019_01_004
crossref_primary_10_1890_ES13_00038_1
crossref_primary_10_4996_fireecology_0603016
crossref_primary_10_1002_eap_2983
crossref_primary_10_1088_1748_9326_11_3_035004
crossref_primary_10_1071_WF15026
crossref_primary_10_1088_1748_9326_ab083d
crossref_primary_10_1080_20964129_2021_1973346
crossref_primary_10_1088_1748_9326_ad98aa
crossref_primary_10_1016_j_quascirev_2020_106293
crossref_primary_10_1016_j_foreco_2017_05_026
crossref_primary_10_3390_rs61212639
crossref_primary_10_1002_ece3_5061
crossref_primary_10_1016_j_foreco_2015_10_035
crossref_primary_10_1016_j_scitotenv_2022_154885
crossref_primary_10_1016_j_foreco_2012_11_039
crossref_primary_10_1038_s41558_020_00922_6
crossref_primary_10_1016_j_foreco_2017_04_005
crossref_primary_10_1073_pnas_1110199108
crossref_primary_10_1111_1365_2745_12950
crossref_primary_10_1139_cjfr_2022_0092
crossref_primary_10_1007_s10980_015_0201_9
crossref_primary_10_1016_j_foreco_2022_120522
crossref_primary_10_1371_journal_pone_0250078
crossref_primary_10_1002_ecs2_2431
crossref_primary_10_1007_s10584_015_1373_7
crossref_primary_10_3390_earth3010011
crossref_primary_10_1111_geb_13529
crossref_primary_10_1002_ppp_2048
crossref_primary_10_1002_2015JG003133
crossref_primary_10_1016_j_jag_2019_03_004
crossref_primary_10_1016_j_jag_2023_103410
crossref_primary_10_1073_pnas_2202190119
crossref_primary_10_1002_ecy_2223
crossref_primary_10_1073_pnas_2404391121
crossref_primary_10_1002_ecs2_1572
crossref_primary_10_1038_s41467_023_39092_2
crossref_primary_10_1371_journal_pone_0056033
crossref_primary_10_1002_ecm_1644
crossref_primary_10_1016_j_foreco_2024_122173
crossref_primary_10_1111_j_1654_1103_2010_01231_x
crossref_primary_10_3390_f8030076
crossref_primary_10_1139_as_2023_0070
crossref_primary_10_3390_land11030322
crossref_primary_10_1016_j_scitotenv_2015_02_081
crossref_primary_10_1016_j_foreco_2016_04_026
crossref_primary_10_1088_1748_9326_8_4_041004
crossref_primary_10_1371_journal_pone_0235932
crossref_primary_10_1093_jofore_fvy019
crossref_primary_10_1002_ecm_1471
crossref_primary_10_1111_gcb_14287
crossref_primary_10_1111_nph_16611
crossref_primary_10_1016_j_chemgeo_2012_10_045
crossref_primary_10_1111_gcb_13072
crossref_primary_10_1002_ecs2_3622
crossref_primary_10_1098_rsos_172055
crossref_primary_10_3389_ffgc_2023_1130532
crossref_primary_10_1016_j_chemosphere_2025_144686
crossref_primary_10_1111_gcb_14279
crossref_primary_10_1002_ecs2_70357
crossref_primary_10_1016_j_forpol_2012_06_001
crossref_primary_10_1088_2752_664X_ad7d94
crossref_primary_10_1073_pnas_2024872118
crossref_primary_10_1016_j_forpol_2018_03_010
crossref_primary_10_1111_gcb_13181
crossref_primary_10_3390_f16050777
crossref_primary_10_1002_ecm_1220
crossref_primary_10_24057_2071_9388_2024_3121
crossref_primary_10_1016_j_foreco_2014_05_006
crossref_primary_10_1002_ecm_1587
crossref_primary_10_1186_s42408_025_00359_2
crossref_primary_10_1890_ES10_00102_1
crossref_primary_10_1007_s00442_021_04864_4
crossref_primary_10_1002_eap_1641
crossref_primary_10_1016_j_landurbplan_2011_02_019
crossref_primary_10_12677_wjf_2024_134038
crossref_primary_10_1080_10549811_2014_883998
crossref_primary_10_1071_WF18203
crossref_primary_10_1139_cjfr_2022_0054
crossref_primary_10_1007_s10980_016_0414_6
crossref_primary_10_1007_s10584_015_1375_5
crossref_primary_10_1002_ecs2_2991
crossref_primary_10_1016_j_rse_2013_04_003
crossref_primary_10_1186_s42408_024_00272_0
crossref_primary_10_5194_esd_15_1459_2024
crossref_primary_10_1016_j_foreco_2017_05_012
crossref_primary_10_1016_j_rse_2016_02_059
crossref_primary_10_1007_s10533_009_9403_z
crossref_primary_10_5194_essd_16_5009_2024
crossref_primary_10_1002_ppp_2247
crossref_primary_10_1002_eap_1636
crossref_primary_10_1186_s42408_019_0049_5
crossref_primary_10_3390_f8010012
crossref_primary_10_1126_science_abf3903
crossref_primary_10_1007_s10021_018_0251_3
crossref_primary_10_1002_ecy_2660
crossref_primary_10_1016_j_envsoft_2017_04_004
crossref_primary_10_1002_fee_2188
crossref_primary_10_3390_rs6109145
crossref_primary_10_1016_j_catena_2025_108970
crossref_primary_10_1002_ecs2_2985
crossref_primary_10_5194_tc_19_3991_2025
crossref_primary_10_1002_ecs2_1410
crossref_primary_10_1002_ecs2_3818
crossref_primary_10_1139_cjfr_2015_0439
crossref_primary_10_1038_s41558_023_01851_w
crossref_primary_10_1111_gcb_14804
crossref_primary_10_1111_jvs_12465
crossref_primary_10_1088_1748_9326_8_3_035030
crossref_primary_10_3390_f13040491
crossref_primary_10_1002_ecs2_2832
crossref_primary_10_1002_ece3_9933
crossref_primary_10_4039_tce_2015_38
crossref_primary_10_3390_f9030130
crossref_primary_10_1088_1748_9326_aa6ade
crossref_primary_10_1007_s10021_022_00772_7
crossref_primary_10_3389_ffgc_2020_00003
crossref_primary_10_1016_j_foreco_2011_07_011
crossref_primary_10_1016_j_foreco_2024_122313
crossref_primary_10_1016_j_rse_2010_08_022
crossref_primary_10_1088_1748_9326_ac7539
crossref_primary_10_1139_cjfr_2018_0278
crossref_primary_10_1111_1365_2745_13403
crossref_primary_10_1111_1365_2745_12315
crossref_primary_10_1038_srep37572
crossref_primary_10_1016_j_foreco_2020_118523
crossref_primary_10_1007_s10021_012_9592_5
crossref_primary_10_5194_acp_16_9047_2016
crossref_primary_10_1016_j_foreco_2016_05_010
crossref_primary_10_1890_ES11_00038_1
crossref_primary_10_5194_bg_22_3635_2025
crossref_primary_10_1002_ecs2_1848
crossref_primary_10_1016_j_foreco_2011_11_006
crossref_primary_10_1088_1748_9326_ab215f
crossref_primary_10_1071_WF24062
crossref_primary_10_1111_1365_2745_13517
crossref_primary_10_1002_ecy_1897
crossref_primary_10_1016_j_foreco_2025_122506
crossref_primary_10_1016_j_agrformet_2021_108511
crossref_primary_10_1111_jvs_12250
crossref_primary_10_3390_f9030151
crossref_primary_10_1016_j_foreco_2017_07_033
crossref_primary_10_1016_j_foreco_2015_03_011
crossref_primary_10_1016_j_foreco_2010_10_021
crossref_primary_10_3390_rs11060603
crossref_primary_10_1029_2021JD035589
crossref_primary_10_1007_s11258_022_01237_6
crossref_primary_10_1371_journal_pone_0238004
crossref_primary_10_3389_fevo_2022_869130
crossref_primary_10_1111_ecog_04445
crossref_primary_10_1890_14_2302_1
crossref_primary_10_1007_s11056_019_09745_6
crossref_primary_10_1016_j_scitotenv_2025_179770
crossref_primary_10_1029_2020JG006044
crossref_primary_10_1016_j_ecolmodel_2011_06_009
crossref_primary_10_1890_10_0097_1
crossref_primary_10_3390_land13081130
crossref_primary_10_3390_rs17162757
crossref_primary_10_1016_j_ecolmodel_2023_110367
crossref_primary_10_1016_j_foreco_2012_07_005
crossref_primary_10_3390_atmos11090956
crossref_primary_10_1007_s13280_011_0226_5
crossref_primary_10_1016_j_jhydrol_2023_129646
crossref_primary_10_1080_11956860_2018_1564484
crossref_primary_10_1002_eap_2549
crossref_primary_10_5194_bg_10_699_2013
crossref_primary_10_1111_j_1365_2486_2011_02412_x
crossref_primary_10_1134_S1995425524700999
crossref_primary_10_1016_j_ecolmodel_2019_108765
crossref_primary_10_1016_j_ecolind_2024_112745
crossref_primary_10_1016_j_ecolind_2023_110495
crossref_primary_10_1016_j_foreco_2019_03_040
crossref_primary_10_1088_1748_9326_ac4c1e
crossref_primary_10_1002_2015JG003201
crossref_primary_10_1111_1365_2745_13446
crossref_primary_10_1016_j_foreco_2011_12_009
crossref_primary_10_3390_f11080815
crossref_primary_10_1111_jvs_12443
crossref_primary_10_1007_s10980_015_0268_3
crossref_primary_10_1186_s12898_016_0075_y
crossref_primary_10_1088_1748_9326_11_10_105003
crossref_primary_10_1080_07038992_2018_1437719
crossref_primary_10_1016_j_ecoleng_2017_05_033
crossref_primary_10_1088_1748_9326_8_3_035013
crossref_primary_10_1111_geb_13174
crossref_primary_10_1134_S1995425521020050
crossref_primary_10_1016_j_foreco_2024_121691
crossref_primary_10_5194_bg_16_4357_2019
crossref_primary_10_1016_j_foreco_2025_122820
crossref_primary_10_1007_s10021_019_00384_8
crossref_primary_10_1890_12_1742_1
crossref_primary_10_1002_ece3_71974
crossref_primary_10_1016_j_foreco_2017_09_068
crossref_primary_10_1371_journal_pone_0224056
Cites_doi 10.1071/WF06034
10.1139/x05-087
10.1890/1540-9295(2003)001[0351:SALFTY]2.0.CO;2
10.1139/X06-245
10.1890/04-1621
10.1017/CBO9780511565489.006
10.1046/j.0022-0477.2001.00646.x
10.1038/313570a0
10.1007/s10021-009-9240-x
10.1007/s10021-007-9114-z
10.1641/B580609
10.1111/j.1365-2699.1997.tb00076.x
10.1111/j.1365-2745.2006.01104.x
10.1126/science.1117368
10.1098/rstb.2001.1043
10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2
10.2307/5037
10.1139/x04-059
10.1007/s100210000047
10.2307/3236549
10.1139/x98-211
10.1111/j.1654-1103.2002.tb02087.x
10.1007/s00442-005-0173-6
10.1086/587826
10.2307/2265709
10.1139/X08-039
10.1890/07-1289.1
10.1007/s10021-005-0061-2
10.1890/1051-0761(2001)011[0097:FTAWIT]2.0.CO;2
10.1139/x04-073
10.1111/j.0022-0477.2004.00887.x
10.1139/x06-061
10.1111/j.1466-822X.2005.00168.x
10.1139/x81-076
10.1890/03-0276
10.1073/pnas.0403822101
10.2307/1311560
10.1139/b71-103
10.1139/x97-086
10.1890/03-0656
10.1016/j.foreco.2008.09.022
10.1890/0012-9658(1998)079[2641:PIATOO]2.0.CO;2
10.2737/PNW-GTR-767
10.1111/j.1365-2699.2004.01185.x
10.1007/s10584-005-5935-y
10.1214/aos/1013203451
8110.1029/2001JD000570
18210.11029/12004GL020876
10.2307/1940722
10.1579/0044-7447-33.6.361
10.1139/x02-104
10.1007/978-1-4612-5950-3_23
10.1002/(SICI)1099-1646(199901/06)15:1/3<43::AID-RRR535>3.0.CO;2-Q
10.1007/s10021-005-0054-1
10.1890/07-0539.1
10.1139/X09-068
03010.01029/02007JG000458
10.1007/s100219900046
10.1007/978-1-4612-4902-3_15
10.2307/3235983
10.1111/j.1461-0248.2008.01173.x
10.1111/j.1365-2656.2008.01390.x
10.1139/x03-183
10.1007/s10021-004-0042-x
10.2307/1940065
10.1139/x01-065
10.1890/0012-9658(2000)081[1500:SASDIT]2.0.CO;2
10.3354/meps321267
10.1111/j.1365-2486.2008.01679.x
10.1890/0012-9658(2003)084[1403:UATMOM]2.0.CO;2
10.1007/s100219900066
10.1016/S0065-2504(08)60171-3
10.1007/s10021-001-0076-2
10.2307/3237263
ContentType Journal Article
Copyright 2009 Blackwell Publishing Ltd
2015 INIST-CNRS
2010 Blackwell Publishing Ltd
Copyright_xml – notice: 2009 Blackwell Publishing Ltd
– notice: 2015 INIST-CNRS
– notice: 2010 Blackwell Publishing Ltd
DBID FBQ
BSCLL
AAYXX
CITATION
IQODW
7SN
7UA
C1K
F1W
H97
L.G
7S9
L.6
7ST
7TV
7U6
SOI
DOI 10.1111/j.1365-2486.2009.02051.x
DatabaseName AGRIS
Istex
CrossRef
Pascal-Francis
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
AGRICOLA - Academic
Environment Abstracts
Pollution Abstracts
Sustainability Science Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
Pollution Abstracts
Environment Abstracts
Sustainability Science Abstracts
DatabaseTitleList
AGRICOLA
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
Forestry
EISSN 1365-2486
EndPage 1295
ExternalDocumentID 1968704401
22530764
10_1111_j_1365_2486_2009_02051_x
GCB2051
ark_67375_WNG_9JGCCDXM_L
US201301807430
Genre article
Feature
GeographicLocations Alaska
USA, Alaska
GeographicLocations_xml – name: Alaska
– name: USA, Alaska
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABHUG
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHBTC
AHEFC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FBQ
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
AITYG
ALVPJ
BSCLL
HGLYW
OIG
AAYXX
CITATION
O8X
IQODW
7SN
7UA
C1K
F1W
H97
L.G
7S9
L.6
7ST
7TV
7U6
SOI
ID FETCH-LOGICAL-c4951-5ee5d1c79e01013acfd17405ce1b957a5111bc3133cec2bfcbd38c4c8ddd64bc3
IEDL.DBID DRFUL
ISICitedReferencesCount 486
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000274813800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1354-1013
IngestDate Mon Oct 06 18:20:44 EDT 2025
Fri Jul 11 10:35:07 EDT 2025
Mon Nov 10 02:53:34 EST 2025
Mon Jul 21 09:16:22 EDT 2025
Sat Nov 29 06:02:14 EST 2025
Tue Nov 18 22:14:15 EST 2025
Sun Sep 21 06:18:48 EDT 2025
Tue Nov 11 03:31:32 EST 2025
Mon Apr 08 05:20:46 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords boosted regression trees
Plant juvenile growth stage
Decision tree
postfire succession
Recruitment
Dicotyledones
Fires
Topography
Angiospermae
Gymnospermae
Alaska
Picea mariana
Betulaceae
composite burn index
Boreal forest
Populus tremuloides
Betula neoalaskana
fire severity
Woody plant
Salicaceae
Fire ecology
Coniferales
Spermatophyta
Betula
seedling recruitment
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4951-5ee5d1c79e01013acfd17405ce1b957a5111bc3133cec2bfcbd38c4c8ddd64bc3
Notes http://hdl.handle.net/10113/40754
http://dx.doi.org/10.1111/j.1365-2486.2009.02051.x
istex:ABB817734BA0E5D8AB47202D6000A423386B2D37
ArticleID:GCB2051
ark:/67375/WNG-9JGCCDXM-L
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
PQID 205230606
PQPubID 30327
PageCount 15
ParticipantIDs proquest_miscellaneous_746159898
proquest_miscellaneous_46541346
proquest_journals_205230606
pascalfrancis_primary_22530764
crossref_citationtrail_10_1111_j_1365_2486_2009_02051_x
crossref_primary_10_1111_j_1365_2486_2009_02051_x
wiley_primary_10_1111_j_1365_2486_2009_02051_x_GCB2051
istex_primary_ark_67375_WNG_9JGCCDXM_L
fao_agris_US201301807430
PublicationCentury 2000
PublicationDate April 2010
PublicationDateYYYYMMDD 2010-04-01
PublicationDate_xml – month: 04
  year: 2010
  text: April 2010
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle Global change biology
PublicationYear 2010
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Wiley-Blackwell
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
– name: Wiley-Blackwell
References Fastie CL (1995) Causes and ecosystem consequences of multiple pathways of primary succession at Glacier Bay, Alaska. Ecology, 76, 1899-1916.
Parisien MA, Moritz M (2009) Environmental controls on the distribution of wildfire at multiple spatial scales. Ecological Monographs, 79, 127-154.
Cumming SG (2001) Forest type and wildfire in the Alberta boreal mixedwood: what do fires burn? Ecological Applications, 11, 97-110.
Johnstone JF, Chapin FS III (2006a) Effects of soil burn severity on post-fire tree recruitment in boreal forests. Ecosystems, 9, 14-31.
Holtmeier F-K, Broll G (2005) Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Global Ecology and Biogeography, 14, 395-410.
Higgins PAT, Mastrandrea MD, Schneider SH (2002) Dynamics of climate and ecosystem coupling: abrupt changes and multiple equilibria. Philosophical Transactions of the Royal Society of London B, 357, 647-655.
De Grandpre L, Morissette J, Gauthier S (2000) Long-term post-fire changes in the northeastern boreal forest of Quebec. Journal of Vegetation Science, 11, 791-800.
Camill P, Clark JS (2000) Long-term perspectives on lagged ecosystem responses to climate change: permafrost in boreal peatlands and the grassland/woodland boundary. Ecosystems, 3, 534-544.
Chapin FS III, Sturm M, Serreze MC et al. (2005) Role of land-surface changes in arctic summer warming. Science, 310, 657-660.
Johnstone JF, Boby LA, Tissier E, Mack M, Verbyla DL, Walker X (2009) Post-fire seed rain of black spruce, a semi-serotinous conifer, in forests of interior Alaska. Canadian Journal of Forest Research, in press.
Foster DR, Knight DH, Franklin JF (1998) Landscape patterns and legacies resulting from large, infrequent forest disturbances. Ecosystems, 1, 497-510.
Calef MP, McGuire AD, Epstein HE, Rupp TS, Shugart HH (2005) Analysis of vegetation distribution in interior Alaska and sensitivity to climate change using a logistic regression approach. Journal of Biogeography, 32, 863-878.
Kane ES, Kasischke ES, Valentine DW, Turetsky MR, McGuire AD (2007) Topographic influences on wildfire consumption of soil organic carbon in interior Alaska: implications for black carbon accumulation. Journal of Geophysical Research, 112, G03017, doi: DOI: 03010.01029/02007JG000458.
Payette S, Gagnon R (1985) Late Holocene deforestation and tree regeneration in the forest-tundra of Quebec. Nature, 313, 570-572.
Peters DPC, Pielke RA, Bestelmeyer BT, Allen CD, Muson-McGee S, Havstad KM (2004) Cross-scale interactions, nonlinearities, and forecasting catastrophic events. Proceedings of the National Academy of Sciences, 101, 15130-15135.
Greene DF, Noel J, Bergeron Y, Rousseau M, Gauthier S (2004) Recruitment of Picea mariana, Pinus banksiana, and Populus tremuloides across a burn severity gradient following wildfire in the southern boreal forest of Quebec. Canadian Journal of Forest Research, 34, 1845-1857.
Gillett NP, Weaver AJ, Zwiers FW, Flannigan MD (2004) Detecting the effect of climate change on Canadian forest fires. Geophysical Research Letters, 31, L18211, doi: DOI: 18210.11029/12004GL020876.
Arseneault D, Sirois L (2004) The millenial dynamics of a boreal forest stand from buried trees. Journal of Ecology, 92, 490-504.
Jasinski JPP, Payette S (2005) The creation of alternative stable states in the southern boreal forest, Quebec, Canada. Ecological Monographs, 75, 561-583.
Todd SK, Jewkes HA (2006) Fire in Alaska: A History of Organized Fire Suppression and Management in the Last Frontier Ag. For. Exp. Station Bull. 113. University of Alaska Fairbanks, Fairbanks, AK.
Yarie J (1981) Forest fire cycles and life tables: a case study from interior Alaska. Canadian Journal of Forest Research, 11, 554-562.
De Groot WJ, Bothwell PM, Taylor SW, Wotton BM, Stocks BJ, Alexander ME (2004) Jack pine regeneration and crown fires. Canadian Journal of Forest Research, 34, 1634-1641.
Lavoie L, Sirois L (1998) Vegetation changes caused by recent fires in the northern boreal forest of eastern Canada. Journal of Vegetation Science, 9, 483-492.
Johnstone JF, Hollingsworth TN, Chapin FS III (2008) A key for predicting post-fire successional trajectories in black spruce stands of interior Alaska PNW-GTR-767. USDA Forest Service, Pacific Northwest Research Station, Portland, OR.
Larsen CPS (1997) Spatial and temporal variations in boreal forest fire frequency in northern Alberta. Journal of Biogeography, 24, 663-673.
Lavertu D, Mauffette Y, Bergeron Y (1994) Effects of stand age and litter removal on the regeneration of Populus tremuloides. Journal of Vegetation Science, 5, 561-568.
Davis MB, Calcote RR, Sugita S, Takahara H (1998) Patchy invasion and the origin of a hemlock-hardwoods forest mosaic. Ecology, 79, 2641-2659.
Law R, Morton RD (1993) Alternative permanent states of ecological communities. Ecology, 74, 1347-1361.
Chapin FSI, Trainor SF, Huntington O et al. (2008) Increasing wildfire in Alaska's boreal forest: pathways to potential solutions of a wicked problem. BioScience, 58, 531-540.
Schulze ED, Wirth C, Mollicone D, Ziegler W (2005) Succession after stand replacing disturbances by fire, wind throw, and insects in the dark Taiga of Central Siberia. Oecologia, 146, 77-88.
Rydgren K, Okland RH, Hestmark G (2004) Disturbance severity and community resilience in a boreal forest. Ecology, 85, 1906-1915.
Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. Journal of Animal Ecology, 77, 802-813.
Duffy PA, Epting J, Graham JM, Rupp TS, McGuire AD (2007) Analysis of Alaskan burn severity patterns using remotely sensed data. International Journal of Wildland Fire, 16, 277-284.
Chapin FS III, Callaghan TV, Bergeron Y, Fukuda M, Johnstone JF, Juday G, Zimov SA (2004) Global change and the boreal forest: thresholds, shifting states or gradual change? Ambio, 33, 361-365.
Johnstone JF, Chapin FS III, Foote J, Kemmett S, Price K, Viereck L (2004) Decadal observations of tree regeneration following fire in boreal forests. Canadian Journal of Forest Research, 34, 267-273.
Westoby M (1984) The self-thinning rule. Advances in Ecological Research, 14, 167-225.
Nelson JL, Zavaleta ES, Chapin FS III (2008) Boreal fire effects on subsistence resources in Alaska and adjacent Canada. Ecosystems, 11, 156-171.
Turner MG, Romme WH, Tinker DB (2003) Surprises and lessons from the 1988 Yellowstone fires. Frontiers in Ecology and Environment, 1, 351-358.
Bergeron Y (2000) Species and stand dynamics in the mixed woods of Quebec's southern boreal forest. Ecology, 81, 1500-1516.
Prasad AM, Iverson LR, Liaw A (2006) Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems, 9, 181-199.
Scheffer M, Carpenter S, Foley J, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature, 413, 591-596.
Feng Z, Liu R, DeAngelis DL, Bryan JP, Kielland K, Chapin FSI, Swihart RK (2009) Plant toxicity, adaptive herbivory, and plant community dynamics. Ecosystems, 12, 534-547.
Bennie J, Hill MO, Baxter R, Huntley B (2006) Influence of slope and aspect on long-term vegetation change in British chalk grasslands. Journal of Ecology, 94, 355-368.
Peterson GD, Carpenter SR, Brock WA (2003) Uncertainty and the management of multistate ecosystems: an apparently rational route to collapse. Ecology, 84, 1403-1411.
Vasiliauskas S, Chen HYH (2002) How long do trees take to reach breast height after fire in northeastern Ontario? Canadian Journal of Forest Research, 32, 1889-1892.
Turner MG, Gardner RH, O'Neill RV (2001) Landscape Ecology in Theory and Practice. Springer-Verlag, New York.
Chen HYH, Vasiliauskas S, Kayahara GJ, Ilisson T (2009) Wildfire promotes broadleaves and species mixture in boreal forest. Forest Ecology and Management, 257, 343-350.
Frelich LE, Reich PB (1999) Neighborhood effects, disturbance severity, and community stability in forests. Ecosystems, 2, 151-166.
Dublin HT, Sinclair ARE, McGlade J (1990) Elephants and fire as causes of multiple stable states in the Serengeti-Mara woodlands. Journal of Animal Ecology, 59, 1147-1164.
Holling CS, Allen CR (2002) Adaptive inference for distinguishing credible from incredible patterns in nature. Ecosystems, 5, 319-328.
Johnstone JF, Chapin FS III (2006b) Fire interval effects on successional trajectory in boreal forests of Northwest Canada. Ecosystems, 9, 268-277.
Peters VS, Macdonald SE, Dale MRT (2005) The interaction between masting and fire is key to white spruce regeneration. Ecology, 86, 1744-1750.
Gutsell S, Johnson EA (2002) Accurately ageing trees and examining their height-growth rates: implications for interpreting forest dynamics. Journal of Ecology, 90, 153-166.
Fastie CL, Lloyd AH, Doak P (2003) Fire history and postfire forest development in an upland watershed of interior Alaska. Journal of Geophysical Research, 108, 8150, doi: DOI: 8110.1029/2001JD000570.
Greene DF, Macdonald ES, Haeussler S et al. (2007) The reduction of organic-layer depth by wildfire in the North American boreal forest and its effect on tree recruitment by seed. Canadian Journal of Forest Research, 37, 1012-1023.
Whittaker RH (1975) Communities and Ecosystems. Macmillan, New York.
Boby LA (2007) Quantifying fire severity and carbon and nitrogen pools and emissions in Alaska's boreal black spruce forest. Master's of Science thesis, University of Florida, Gainesville, FL, USA.
Clark JS, Royall PD, Chumbley C (1996) The role of fire during climate change in an eastern deciduous forest at Devil's Bathtub, New York. Ecology, 77, 2148-2166.
De'ath G (2007) Boosted trees for ecological modeling and prediction. Ecology, 88, 243-251.
Olden JD, Lawler JJ, Poff NL (2008) Machine learning methods without tears for ecologists. Quarterly Review of Biology, 83, 171-193.
Conover WJ (1999) Practical Nonparametric Statistics. John Wiley and Sons, New York.
Johnson EA, Miyanishi K (2008) Testing the assumptions of chronosequences in succession. Ecology Letters, 11, 419-431.
Van Cleve K, Chapin F
2006b; 9
1990; 59
1971; 49
2000; 3
2002; 13
2006; 36
2008; 38
1995; 76
1975
2002; 357
2008; 77
2007; 37
1996; 77
2009; 12
2004; 33
2004; 31
2001
1984; 14
2005; 146
1991; 41
2000; 11
2004; 34
1993; 74
1986
2005; 75
2005; 32
1983
2002; 90
1981
2005; 72
2003; 1
2001; 11
2003; 84
2006; 321
2009; 15
2005; 35
2001; 413
2004; 101
2004; 85
2006; 94
2005; 310
1999; 29
2002; 5
1997; 24
2006; 9
2002; 32
2009
2008; 58
2008
2007
2005; 86
1997; 27
2006
2005
2008; 11
1999; 2
1992
2001; 29
2009; 257
1999
2007; 16
2007; 112
2006a; 9
2009; 79
2003; 108
2004; 92
2000; 81
1985; 313
1998; 1
2008; 83
2007; 88
1994; 5
2001; 31
1998; 9
1998; 79
2005; 14
1981; 11
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_72_1
Key CH (e_1_2_6_55_1) 2005
Todd SK (e_1_2_6_75_1) 2006
e_1_2_6_19_1
Whittaker RH (e_1_2_6_83_1) 1975
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_78_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
Van Cleve K (e_1_2_6_79_1) 1981
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
Johnstone JF (e_1_2_6_48_1) 2009
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
Viereck LA (e_1_2_6_81_1) 1983
Turner MG (e_1_2_6_76_1) 2001
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
Conover WJ (e_1_2_6_17_1) 1999
e_1_2_6_63_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_80_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_82_1
Johnstone JF (e_1_2_6_52_1) 2008
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
Boby LA (e_1_2_6_8_1) 2007
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – reference: Larsen CPS (1997) Spatial and temporal variations in boreal forest fire frequency in northern Alberta. Journal of Biogeography, 24, 663-673.
– reference: De Groot WJ, Bothwell PM, Taylor SW, Wotton BM, Stocks BJ, Alexander ME (2004) Jack pine regeneration and crown fires. Canadian Journal of Forest Research, 34, 1634-1641.
– reference: Duffy PA, Epting J, Graham JM, Rupp TS, McGuire AD (2007) Analysis of Alaskan burn severity patterns using remotely sensed data. International Journal of Wildland Fire, 16, 277-284.
– reference: Hollingsworth TN, Walker MD, Chapin FS III, Parsons AL (2006) Scale-dependent environmental controls over species composition in Alaskan black spruce communities. Canadian Journal of Forest Research, 36, 1781-1796.
– reference: Johnson EA, Miyanishi K (2008) Testing the assumptions of chronosequences in succession. Ecology Letters, 11, 419-431.
– reference: Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. Journal of Animal Ecology, 77, 802-813.
– reference: Fastie CL, Lloyd AH, Doak P (2003) Fire history and postfire forest development in an upland watershed of interior Alaska. Journal of Geophysical Research, 108, 8150, doi: DOI: 8110.1029/2001JD000570.
– reference: McCune B, Keon D (2002) Equations for potential annual direct incident radiation and heat load. Journal of Vegetation Science, 13, 603-606.
– reference: Arseneault D (2001) Impact of fire behavior on postfire forest development in a homogeneous boreal landscape. Canadian Journal of Forest Research, 31, 1367-1374.
– reference: Boby LA (2007) Quantifying fire severity and carbon and nitrogen pools and emissions in Alaska's boreal black spruce forest. Master's of Science thesis, University of Florida, Gainesville, FL, USA.
– reference: Leathwick JR, Elith J, Francis MP, Hastie T, Taylor P (2006) Variation in demersal fish species richness in the oceans surrounding New Zealand: an analysis using boosted regression trees. Marine Ecology Progress Series, 321, 267-281.
– reference: Schulze ED, Wirth C, Mollicone D, Ziegler W (2005) Succession after stand replacing disturbances by fire, wind throw, and insects in the dark Taiga of Central Siberia. Oecologia, 146, 77-88.
– reference: Dublin HT, Sinclair ARE, McGlade J (1990) Elephants and fire as causes of multiple stable states in the Serengeti-Mara woodlands. Journal of Animal Ecology, 59, 1147-1164.
– reference: Higgins PAT, Mastrandrea MD, Schneider SH (2002) Dynamics of climate and ecosystem coupling: abrupt changes and multiple equilibria. Philosophical Transactions of the Royal Society of London B, 357, 647-655.
– reference: De'ath G (2007) Boosted trees for ecological modeling and prediction. Ecology, 88, 243-251.
– reference: Fastie CL (1995) Causes and ecosystem consequences of multiple pathways of primary succession at Glacier Bay, Alaska. Ecology, 76, 1899-1916.
– reference: Frelich LE, Reich PB (1999) Neighborhood effects, disturbance severity, and community stability in forests. Ecosystems, 2, 151-166.
– reference: Whittaker RH (1975) Communities and Ecosystems. Macmillan, New York.
– reference: Johnstone JF, Boby LA, Tissier E, Mack M, Verbyla DL, Walker X (2009) Post-fire seed rain of black spruce, a semi-serotinous conifer, in forests of interior Alaska. Canadian Journal of Forest Research, in press.
– reference: DesRochers A, Gagnon R (1997) Is ring count at ground level a good estimation of black spruce age? Canadian Journal of Forest Research, 27, 1263-1267.
– reference: Prasad AM, Iverson LR, Liaw A (2006) Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems, 9, 181-199.
– reference: Olden JD, Lawler JJ, Poff NL (2008) Machine learning methods without tears for ecologists. Quarterly Review of Biology, 83, 171-193.
– reference: Foster DR, Knight DH, Franklin JF (1998) Landscape patterns and legacies resulting from large, infrequent forest disturbances. Ecosystems, 1, 497-510.
– reference: Law R, Morton RD (1993) Alternative permanent states of ecological communities. Ecology, 74, 1347-1361.
– reference: Arseneault D, Sirois L (2004) The millenial dynamics of a boreal forest stand from buried trees. Journal of Ecology, 92, 490-504.
– reference: Gillett NP, Weaver AJ, Zwiers FW, Flannigan MD (2004) Detecting the effect of climate change on Canadian forest fires. Geophysical Research Letters, 31, L18211, doi: DOI: 18210.11029/12004GL020876.
– reference: Kane ES, Kasischke ES, Valentine DW, Turetsky MR, McGuire AD (2007) Topographic influences on wildfire consumption of soil organic carbon in interior Alaska: implications for black carbon accumulation. Journal of Geophysical Research, 112, G03017, doi: DOI: 03010.01029/02007JG000458.
– reference: Peterson GD, Carpenter SR, Brock WA (2003) Uncertainty and the management of multistate ecosystems: an apparently rational route to collapse. Ecology, 84, 1403-1411.
– reference: Davis MB, Calcote RR, Sugita S, Takahara H (1998) Patchy invasion and the origin of a hemlock-hardwoods forest mosaic. Ecology, 79, 2641-2659.
– reference: Westoby M (1984) The self-thinning rule. Advances in Ecological Research, 14, 167-225.
– reference: Yarie J (1981) Forest fire cycles and life tables: a case study from interior Alaska. Canadian Journal of Forest Research, 11, 554-562.
– reference: Flannigan MD, Logan KA, Amiro BD, Skinner WR, Stocks BJ (2005) Future area burned in Canada. Climatic Change, 72, 1-16.
– reference: Johnstone JF, Chapin FS III, Foote J, Kemmett S, Price K, Viereck L (2004) Decadal observations of tree regeneration following fire in boreal forests. Canadian Journal of Forest Research, 34, 267-273.
– reference: Chapin FS III, Callaghan TV, Bergeron Y, Fukuda M, Johnstone JF, Juday G, Zimov SA (2004) Global change and the boreal forest: thresholds, shifting states or gradual change? Ambio, 33, 361-365.
– reference: Chapin FSI, Trainor SF, Huntington O et al. (2008) Increasing wildfire in Alaska's boreal forest: pathways to potential solutions of a wicked problem. BioScience, 58, 531-540.
– reference: Turner MG, Gardner RH, O'Neill RV (2001) Landscape Ecology in Theory and Practice. Springer-Verlag, New York.
– reference: Peters DPC, Pielke RA, Bestelmeyer BT, Allen CD, Muson-McGee S, Havstad KM (2004) Cross-scale interactions, nonlinearities, and forecasting catastrophic events. Proceedings of the National Academy of Sciences, 101, 15130-15135.
– reference: Nelson JL, Zavaleta ES, Chapin FS III (2008) Boreal fire effects on subsistence resources in Alaska and adjacent Canada. Ecosystems, 11, 156-171.
– reference: Parisien MA, Moritz M (2009) Environmental controls on the distribution of wildfire at multiple spatial scales. Ecological Monographs, 79, 127-154.
– reference: Peters VS, Macdonald SE, Dale MRT (2005) The interaction between masting and fire is key to white spruce regeneration. Ecology, 86, 1744-1750.
– reference: Calef MP, McGuire AD, Epstein HE, Rupp TS, Shugart HH (2005) Analysis of vegetation distribution in interior Alaska and sensitivity to climate change using a logistic regression approach. Journal of Biogeography, 32, 863-878.
– reference: Johnstone JF, Chapin FS III (2006a) Effects of soil burn severity on post-fire tree recruitment in boreal forests. Ecosystems, 9, 14-31.
– reference: De Grandpre L, Morissette J, Gauthier S (2000) Long-term post-fire changes in the northeastern boreal forest of Quebec. Journal of Vegetation Science, 11, 791-800.
– reference: Johnstone JF, Hollingsworth TN, Chapin FS III (2008) A key for predicting post-fire successional trajectories in black spruce stands of interior Alaska PNW-GTR-767. USDA Forest Service, Pacific Northwest Research Station, Portland, OR.
– reference: Van Cleve K, Chapin FS III, Dryness CT, Viereck LA (1991) Element cycling in taiga forest: State-factor control. BioScience, 41, 78-88.
– reference: Vasiliauskas S, Chen HYH (2002) How long do trees take to reach breast height after fire in northeastern Ontario? Canadian Journal of Forest Research, 32, 1889-1892.
– reference: Jasinski JPP, Payette S (2005) The creation of alternative stable states in the southern boreal forest, Quebec, Canada. Ecological Monographs, 75, 561-583.
– reference: Payette S, Gagnon R (1985) Late Holocene deforestation and tree regeneration in the forest-tundra of Quebec. Nature, 313, 570-572.
– reference: Todd SK, Jewkes HA (2006) Fire in Alaska: A History of Organized Fire Suppression and Management in the Last Frontier Ag. For. Exp. Station Bull. 113. University of Alaska Fairbanks, Fairbanks, AK.
– reference: Greene DF, Noel J, Bergeron Y, Rousseau M, Gauthier S (2004) Recruitment of Picea mariana, Pinus banksiana, and Populus tremuloides across a burn severity gradient following wildfire in the southern boreal forest of Quebec. Canadian Journal of Forest Research, 34, 1845-1857.
– reference: Lavertu D, Mauffette Y, Bergeron Y (1994) Effects of stand age and litter removal on the regeneration of Populus tremuloides. Journal of Vegetation Science, 5, 561-568.
– reference: Conover WJ (1999) Practical Nonparametric Statistics. John Wiley and Sons, New York.
– reference: Cumming SG (2001) Forest type and wildfire in the Alberta boreal mixedwood: what do fires burn? Ecological Applications, 11, 97-110.
– reference: Dix RL, Swan JA (1971) The role of disturbance and succession in upland forest at Candle Lake, Saskatchewan. Canadian Journal of Botany, 49, 657-676.
– reference: Johnstone JF, Chapin FS III (2006b) Fire interval effects on successional trajectory in boreal forests of Northwest Canada. Ecosystems, 9, 268-277.
– reference: Balshi MS, McGuire AD, Duffy PA, Flannigan M, Walsh J, Melillo JM (2009) Assessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach. Global Change Biology, 15, 578-600.
– reference: Gutsell S, Johnson EA (2002) Accurately ageing trees and examining their height-growth rates: implications for interpreting forest dynamics. Journal of Ecology, 90, 153-166.
– reference: Feng Z, Liu R, DeAngelis DL, Bryan JP, Kielland K, Chapin FSI, Swihart RK (2009) Plant toxicity, adaptive herbivory, and plant community dynamics. Ecosystems, 12, 534-547.
– reference: Chen HYH, Vasiliauskas S, Kayahara GJ, Ilisson T (2009) Wildfire promotes broadleaves and species mixture in boreal forest. Forest Ecology and Management, 257, 343-350.
– reference: Holling CS, Allen CR (2002) Adaptive inference for distinguishing credible from incredible patterns in nature. Ecosystems, 5, 319-328.
– reference: Clark JS, Royall PD, Chumbley C (1996) The role of fire during climate change in an eastern deciduous forest at Devil's Bathtub, New York. Ecology, 77, 2148-2166.
– reference: Lavoie L, Sirois L (1998) Vegetation changes caused by recent fires in the northern boreal forest of eastern Canada. Journal of Vegetation Science, 9, 483-492.
– reference: Cutler DR, Edwards TC, Beard KH, Cutler A, Hess KT, Gibson J, Lawler JJ (2007) Random forests for classification in ecology. Ecology, 88, 2783-2792.
– reference: Holtmeier F-K, Broll G (2005) Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Global Ecology and Biogeography, 14, 395-410.
– reference: Rydgren K, Okland RH, Hestmark G (2004) Disturbance severity and community resilience in a boreal forest. Ecology, 85, 1906-1915.
– reference: Bergeron Y (2000) Species and stand dynamics in the mixed woods of Quebec's southern boreal forest. Ecology, 81, 1500-1516.
– reference: Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Annals of Statistics, 29, 1189-1232.
– reference: Bennie J, Hill MO, Baxter R, Huntley B (2006) Influence of slope and aspect on long-term vegetation change in British chalk grasslands. Journal of Ecology, 94, 355-368.
– reference: Scheffer M, Carpenter S, Foley J, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature, 413, 591-596.
– reference: Chapin FS III, Sturm M, Serreze MC et al. (2005) Role of land-surface changes in arctic summer warming. Science, 310, 657-660.
– reference: Greene DF, Macdonald ES, Haeussler S et al. (2007) The reduction of organic-layer depth by wildfire in the North American boreal forest and its effect on tree recruitment by seed. Canadian Journal of Forest Research, 37, 1012-1023.
– reference: Camill P, Clark JS (2000) Long-term perspectives on lagged ecosystem responses to climate change: permafrost in boreal peatlands and the grassland/woodland boundary. Ecosystems, 3, 534-544.
– reference: Johnstone JF, Kasischke ES (2005) Stand-level effects of soil burn severity on post-fire regeneration in a recently-burned black spruce forest. Canadian Journal of Forest Research, 35, 2151-2163.
– reference: Turner MG, Romme WH, Tinker DB (2003) Surprises and lessons from the 1988 Yellowstone fires. Frontiers in Ecology and Environment, 1, 351-358.
– reference: Greene DF, Johnson EA (1999) Modelling recruitment of Populus tremuloides, Pinus banksiana, and Picea mariana following fire in the mixedwood boreal forest. Canadian Journal of Forest Research, 29, 462-473.
– reference: Kurkowski TA, Mann DH, Rupp TS, Verbyla DL (2008) Relative importance of different secondary successional pathways in an Alaskan boreal forest. Canadian Journal of Forest Research, 38, 1911-1923.
– start-page: 374
  year: 1981
  end-page: 405
– year: 2009
– volume: 11
  start-page: 419
  year: 2008
  end-page: 431
  article-title: Testing the assumptions of chronosequences in succession
  publication-title: Ecology Letters
– volume: 13
  start-page: 603
  year: 2002
  end-page: 606
  article-title: Equations for potential annual direct incident radiation and heat load
  publication-title: Journal of Vegetation Science
– volume: 11
  start-page: 156
  year: 2008
  end-page: 171
  article-title: Boreal fire effects on subsistence resources in Alaska and adjacent Canada
  publication-title: Ecosystems
– volume: 37
  start-page: 1012
  year: 2007
  end-page: 1023
  article-title: The reduction of organic‐layer depth by wildfire in the North American boreal forest and its effect on tree recruitment by seed
  publication-title: Canadian Journal of Forest Research
– year: 2005
– volume: 9
  start-page: 483
  year: 1998
  end-page: 492
  article-title: Vegetation changes caused by recent fires in the northern boreal forest of eastern Canada
  publication-title: Journal of Vegetation Science
– volume: 24
  start-page: 663
  year: 1997
  end-page: 673
  article-title: Spatial and temporal variations in boreal forest fire frequency in northern Alberta
  publication-title: Journal of Biogeography
– volume: 108
  start-page: 8150
  year: 2003
  article-title: Fire history and postfire forest development in an upland watershed of interior Alaska
  publication-title: Journal of Geophysical Research
– year: 2001
– volume: 5
  start-page: 319
  year: 2002
  end-page: 328
  article-title: Adaptive inference for distinguishing credible from incredible patterns in nature
  publication-title: Ecosystems
– volume: 12
  start-page: 534
  year: 2009
  end-page: 547
  article-title: Plant toxicity, adaptive herbivory, and plant community dynamics
  publication-title: Ecosystems
– start-page: 184
  year: 1981
  end-page: 211
– year: 1975
– volume: 310
  start-page: 657
  year: 2005
  end-page: 660
  article-title: Role of land‐surface changes in arctic summer warming
  publication-title: Science
– volume: 11
  start-page: 97
  year: 2001
  end-page: 110
  article-title: Forest type and wildfire in the Alberta boreal mixedwood
  publication-title: Ecological Applications
– volume: 49
  start-page: 657
  year: 1971
  end-page: 676
  article-title: The role of disturbance and succession in upland forest at Candle Lake, Saskatchewan
  publication-title: Canadian Journal of Botany
– volume: 35
  start-page: 2151
  year: 2005
  end-page: 2163
  article-title: Stand‐level effects of soil burn severity on post‐fire regeneration in a recently‐burned black spruce forest
  publication-title: Canadian Journal of Forest Research
– volume: 1
  start-page: 351
  year: 2003
  end-page: 358
  article-title: Surprises and lessons from the 1988 Yellowstone fires
  publication-title: Frontiers in Ecology and Environment
– volume: 79
  start-page: 2641
  year: 1998
  end-page: 2659
  article-title: Patchy invasion and the origin of a hemlock‐hardwoods forest mosaic
  publication-title: Ecology
– volume: 101
  start-page: 15130
  year: 2004
  end-page: 15135
  article-title: Cross‐scale interactions, nonlinearities, and forecasting catastrophic events
  publication-title: Proceedings of the National Academy of Sciences
– volume: 77
  start-page: 802
  year: 2008
  end-page: 813
  article-title: A working guide to boosted regression trees
  publication-title: Journal of Animal Ecology
– volume: 58
  start-page: 531
  year: 2008
  end-page: 540
  article-title: Increasing wildfire in Alaska's boreal forest
  publication-title: BioScience
– volume: 38
  start-page: 1911
  year: 2008
  end-page: 1923
  article-title: Relative importance of different secondary successional pathways in an Alaskan boreal forest
  publication-title: Canadian Journal of Forest Research
– volume: 11
  start-page: 554
  year: 1981
  end-page: 562
  article-title: Forest fire cycles and life tables
  publication-title: Canadian Journal of Forest Research
– volume: 86
  start-page: 1744
  year: 2005
  end-page: 1750
  article-title: The interaction between masting and fire is key to white spruce regeneration
  publication-title: Ecology
– volume: 31
  year: 2004
  article-title: Detecting the effect of climate change on Canadian forest fires
  publication-title: Geophysical Research Letters
– volume: 83
  start-page: 171
  year: 2008
  end-page: 193
  article-title: Machine learning methods without tears for ecologists
  publication-title: Quarterly Review of Biology
– volume: 88
  start-page: 2783
  year: 2007
  end-page: 2792
  article-title: Random forests for classification in ecology
  publication-title: Ecology
– year: 2008
– volume: 88
  start-page: 243
  year: 2007
  end-page: 251
  article-title: Boosted trees for ecological modeling and prediction
  publication-title: Ecology
– volume: 357
  start-page: 647
  year: 2002
  end-page: 655
  article-title: Dynamics of climate and ecosystem coupling
  publication-title: Philosophical Transactions of the Royal Society of London B
– volume: 5
  start-page: 561
  year: 1994
  end-page: 568
  article-title: Effects of stand age and litter removal on the regeneration of
  publication-title: Journal of Vegetation Science
– volume: 1
  start-page: 497
  year: 1998
  end-page: 510
  article-title: Landscape patterns and legacies resulting from large, infrequent forest disturbances
  publication-title: Ecosystems
– volume: 29
  start-page: 1189
  year: 2001
  end-page: 1232
  article-title: Greedy function approximation
  publication-title: Annals of Statistics
– volume: 321
  start-page: 267
  year: 2006
  end-page: 281
  article-title: Variation in demersal fish species richness in the oceans surrounding New Zealand
  publication-title: Marine Ecology Progress Series
– volume: 9
  start-page: 14
  year: 2006a
  end-page: 31
  article-title: Effects of soil burn severity on post‐fire tree recruitment in boreal forests
  publication-title: Ecosystems
– volume: 313
  start-page: 570
  year: 1985
  end-page: 572
  article-title: Late Holocene deforestation and tree regeneration in the forest‐tundra of Quebec
  publication-title: Nature
– volume: 11
  start-page: 791
  year: 2000
  end-page: 800
  article-title: Long‐term post‐fire changes in the northeastern boreal forest of Quebec
  publication-title: Journal of Vegetation Science
– volume: 90
  start-page: 153
  year: 2002
  end-page: 166
  article-title: Accurately ageing trees and examining their height‐growth rates
  publication-title: Journal of Ecology
– volume: 31
  start-page: 1367
  year: 2001
  end-page: 1374
  article-title: Impact of fire behavior on postfire forest development in a homogeneous boreal landscape
  publication-title: Canadian Journal of Forest Research
– year: 2009
  article-title: Post‐fire seed rain of black spruce, a semi‐serotinous conifer, in forests of interior Alaska
  publication-title: Canadian Journal of Forest Research
– volume: 14
  start-page: 167
  year: 1984
  end-page: 225
  article-title: The self‐thinning rule
  publication-title: Advances in Ecological Research
– volume: 27
  start-page: 1263
  year: 1997
  end-page: 1267
  article-title: Is ring count at ground level a good estimation of black spruce age?
  publication-title: Canadian Journal of Forest Research
– volume: 32
  start-page: 1889
  year: 2002
  end-page: 1892
  article-title: How long do trees take to reach breast height after fire in northeastern Ontario?
  publication-title: Canadian Journal of Forest Research
– start-page: 213
  year: 1986
  end-page: 225
– volume: 16
  start-page: 277
  year: 2007
  end-page: 284
  article-title: Analysis of Alaskan burn severity patterns using remotely sensed data
  publication-title: International Journal of Wildland Fire
– volume: 81
  start-page: 1500
  year: 2000
  end-page: 1516
  article-title: Species and stand dynamics in the mixed woods of Quebec's southern boreal forest
  publication-title: Ecology
– volume: 34
  start-page: 1634
  year: 2004
  end-page: 1641
  article-title: Jack pine regeneration and crown fires
  publication-title: Canadian Journal of Forest Research
– volume: 32
  start-page: 863
  year: 2005
  end-page: 878
  article-title: Analysis of vegetation distribution in interior Alaska and sensitivity to climate change using a logistic regression approach
  publication-title: Journal of Biogeography
– volume: 74
  start-page: 1347
  year: 1993
  end-page: 1361
  article-title: Alternative permanent states of ecological communities
  publication-title: Ecology
– year: 2007
– volume: 14
  start-page: 395
  year: 2005
  end-page: 410
  article-title: Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales
  publication-title: Global Ecology and Biogeography
– volume: 92
  start-page: 490
  year: 2004
  end-page: 504
  article-title: The millenial dynamics of a boreal forest stand from buried trees
  publication-title: Journal of Ecology
– volume: 34
  start-page: 1845
  year: 2004
  end-page: 1857
  article-title: Recruitment of , and across a burn severity gradient following wildfire in the southern boreal forest of Quebec
  publication-title: Canadian Journal of Forest Research
– volume: 85
  start-page: 1906
  year: 2004
  end-page: 1915
  article-title: Disturbance severity and community resilience in a boreal forest
  publication-title: Ecology
– volume: 413
  start-page: 591
  year: 2001
  end-page: 596
  article-title: Catastrophic shifts in ecosystems
  publication-title: Nature
– volume: 59
  start-page: 1147
  year: 1990
  end-page: 1164
  article-title: Elephants and fire as causes of multiple stable states in the Serengeti‐Mara woodlands
  publication-title: Journal of Animal Ecology
– volume: 33
  start-page: 361
  year: 2004
  end-page: 365
  article-title: Global change and the boreal forest
  publication-title: Ambio
– volume: 76
  start-page: 1899
  year: 1995
  end-page: 1916
  article-title: Causes and ecosystem consequences of multiple pathways of primary succession at Glacier Bay, Alaska
  publication-title: Ecology
– start-page: 201
  year: 1983
  end-page: 220
– volume: 36
  start-page: 1781
  year: 2006
  end-page: 1796
  article-title: Scale‐dependent environmental controls over species composition in Alaskan black spruce communities
  publication-title: Canadian Journal of Forest Research
– start-page: 144
  year: 1992
  end-page: 169
– volume: 15
  start-page: 578
  year: 2009
  end-page: 600
  article-title: Assessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach
  publication-title: Global Change Biology
– volume: 257
  start-page: 343
  year: 2009
  end-page: 350
  article-title: Wildfire promotes broadleaves and species mixture in boreal forest
  publication-title: Forest Ecology and Management
– volume: 112
  year: 2007
  article-title: Topographic influences on wildfire consumption of soil organic carbon in interior Alaska
  publication-title: Journal of Geophysical Research
– volume: 84
  start-page: 1403
  year: 2003
  end-page: 1411
  article-title: Uncertainty and the management of multistate ecosystems
  publication-title: Ecology
– volume: 2
  start-page: 151
  year: 1999
  end-page: 166
  article-title: Neighborhood effects, disturbance severity, and community stability in forests
  publication-title: Ecosystems
– volume: 29
  start-page: 462
  year: 1999
  end-page: 473
  article-title: Modelling recruitment of , and following fire in the mixedwood boreal forest
  publication-title: Canadian Journal of Forest Research
– year: 2006
– volume: 72
  start-page: 1
  year: 2005
  end-page: 16
  article-title: Future area burned in Canada
  publication-title: Climatic Change
– volume: 75
  start-page: 561
  year: 2005
  end-page: 583
  article-title: The creation of alternative stable states in the southern boreal forest, Quebec, Canada
  publication-title: Ecological Monographs
– volume: 146
  start-page: 77
  year: 2005
  end-page: 88
  article-title: Succession after stand replacing disturbances by fire, wind throw, and insects in the dark Taiga of Central Siberia
  publication-title: Oecologia
– volume: 77
  start-page: 2148
  year: 1996
  end-page: 2166
  article-title: The role of fire during climate change in an eastern deciduous forest at Devil's Bathtub, New York
  publication-title: Ecology
– volume: 9
  start-page: 268
  year: 2006b
  end-page: 277
  article-title: Fire interval effects on successional trajectory in boreal forests of Northwest Canada
  publication-title: Ecosystems
– volume: 9
  start-page: 181
  year: 2006
  end-page: 199
  article-title: Newer classification and regression tree techniques
  publication-title: Ecosystems
– volume: 79
  start-page: 127
  year: 2009
  end-page: 154
  article-title: Environmental controls on the distribution of wildfire at multiple spatial scales
  publication-title: Ecological Monographs
– volume: 34
  start-page: 267
  year: 2004
  end-page: 273
  article-title: Decadal observations of tree regeneration following fire in boreal forests
  publication-title: Canadian Journal of Forest Research
– volume: 3
  start-page: 534
  year: 2000
  end-page: 544
  article-title: Long‐term perspectives on lagged ecosystem responses to climate change
  publication-title: Ecosystems
– volume: 94
  start-page: 355
  year: 2006
  end-page: 368
  article-title: Influence of slope and aspect on long‐term vegetation change in British chalk grasslands
  publication-title: Journal of Ecology
– volume: 41
  start-page: 78
  year: 1991
  end-page: 88
  article-title: Element cycling in taiga forest
  publication-title: BioScience
– year: 1999
– ident: e_1_2_6_27_1
  doi: 10.1071/WF06034
– ident: e_1_2_6_53_1
  doi: 10.1139/x05-087
– ident: e_1_2_6_77_1
  doi: 10.1890/1540-9295(2003)001[0351:SALFTY]2.0.CO;2
– volume-title: Practical Nonparametric Statistics
  year: 1999
  ident: e_1_2_6_17_1
– ident: e_1_2_6_38_1
  doi: 10.1139/X06-245
– ident: e_1_2_6_46_1
  doi: 10.1890/04-1621
– ident: e_1_2_6_66_1
  doi: 10.1017/CBO9780511565489.006
– ident: e_1_2_6_40_1
  doi: 10.1046/j.0022-0477.2001.00646.x
– ident: e_1_2_6_67_1
  doi: 10.1038/313570a0
– volume-title: Landscape Ecology in Theory and Practice
  year: 2001
  ident: e_1_2_6_76_1
– ident: e_1_2_6_31_1
  doi: 10.1007/s10021-009-9240-x
– ident: e_1_2_6_63_1
  doi: 10.1007/s10021-007-9114-z
– ident: e_1_2_6_14_1
  doi: 10.1641/B580609
– ident: e_1_2_6_57_1
  doi: 10.1111/j.1365-2699.1997.tb00076.x
– volume-title: Communities and Ecosystems
  year: 1975
  ident: e_1_2_6_83_1
– ident: e_1_2_6_6_1
  doi: 10.1111/j.1365-2745.2006.01104.x
– ident: e_1_2_6_13_1
  doi: 10.1126/science.1117368
– ident: e_1_2_6_42_1
  doi: 10.1098/rstb.2001.1043
– ident: e_1_2_6_21_1
  doi: 10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2
– ident: e_1_2_6_26_1
  doi: 10.2307/5037
– ident: e_1_2_6_39_1
  doi: 10.1139/x04-059
– ident: e_1_2_6_11_1
  doi: 10.1007/s100210000047
– ident: e_1_2_6_22_1
  doi: 10.2307/3236549
– ident: e_1_2_6_37_1
  doi: 10.1139/x98-211
– ident: e_1_2_6_62_1
  doi: 10.1111/j.1654-1103.2002.tb02087.x
– ident: e_1_2_6_74_1
  doi: 10.1007/s00442-005-0173-6
– ident: e_1_2_6_64_1
  doi: 10.1086/587826
– start-page: 184
  volume-title: Forest Succession, Concepts and Application
  year: 1981
  ident: e_1_2_6_79_1
– ident: e_1_2_6_16_1
  doi: 10.2307/2265709
– volume-title: FIREMON: Fire Effects Monitoring and Inventory System
  year: 2005
  ident: e_1_2_6_55_1
– ident: e_1_2_6_56_1
  doi: 10.1139/X08-039
– volume-title: Quantifying fire severity and carbon and nitrogen pools and emissions in Alaska's boreal black spruce forest
  year: 2007
  ident: e_1_2_6_8_1
– ident: e_1_2_6_65_1
  doi: 10.1890/07-1289.1
– ident: e_1_2_6_50_1
  doi: 10.1007/s10021-005-0061-2
– ident: e_1_2_6_18_1
  doi: 10.1890/1051-0761(2001)011[0097:FTAWIT]2.0.CO;2
– volume-title: Fire in Alaska: A History of Organized Fire Suppression and Management in the Last Frontier Ag. For. Exp. Station Bull. 113
  year: 2006
  ident: e_1_2_6_75_1
– ident: e_1_2_6_23_1
  doi: 10.1139/x04-073
– ident: e_1_2_6_4_1
  doi: 10.1111/j.0022-0477.2004.00887.x
– ident: e_1_2_6_44_1
  doi: 10.1139/x06-061
– ident: e_1_2_6_45_1
  doi: 10.1111/j.1466-822X.2005.00168.x
– ident: e_1_2_6_84_1
  doi: 10.1139/x81-076
– ident: e_1_2_6_72_1
  doi: 10.1890/03-0276
– ident: e_1_2_6_68_1
  doi: 10.1073/pnas.0403822101
– ident: e_1_2_6_78_1
  doi: 10.2307/1311560
– ident: e_1_2_6_25_1
  doi: 10.1139/b71-103
– ident: e_1_2_6_24_1
  doi: 10.1139/x97-086
– ident: e_1_2_6_69_1
  doi: 10.1890/03-0656
– ident: e_1_2_6_15_1
  doi: 10.1016/j.foreco.2008.09.022
– ident: e_1_2_6_20_1
  doi: 10.1890/0012-9658(1998)079[2641:PIATOO]2.0.CO;2
– volume-title: A key for predicting post‐fire successional trajectories in black spruce stands of interior Alaska PNW‐GTR‐767
  year: 2008
  ident: e_1_2_6_52_1
  doi: 10.2737/PNW-GTR-767
– ident: e_1_2_6_10_1
  doi: 10.1111/j.1365-2699.2004.01185.x
– ident: e_1_2_6_32_1
  doi: 10.1007/s10584-005-5935-y
– start-page: 201
  volume-title: The Role of Fire in Northern Circumpolar Ecosystems
  year: 1983
  ident: e_1_2_6_81_1
– ident: e_1_2_6_35_1
  doi: 10.1214/aos/1013203451
– ident: e_1_2_6_30_1
  doi: 8110.1029/2001JD000570
– ident: e_1_2_6_36_1
  doi: 18210.11029/12004GL020876
– ident: e_1_2_6_29_1
  doi: 10.2307/1940722
– ident: e_1_2_6_12_1
  doi: 10.1579/0044-7447-33.6.361
– ident: e_1_2_6_80_1
  doi: 10.1139/x02-104
– ident: e_1_2_6_41_1
  doi: 10.1007/978-1-4612-5950-3_23
– ident: e_1_2_6_73_1
  doi: 10.1002/(SICI)1099-1646(199901/06)15:1/3<43::AID-RRR535>3.0.CO;2-Q
– ident: e_1_2_6_71_1
  doi: 10.1007/s10021-005-0054-1
– ident: e_1_2_6_19_1
  doi: 10.1890/07-0539.1
– year: 2009
  ident: e_1_2_6_48_1
  article-title: Post‐fire seed rain of black spruce, a semi‐serotinous conifer, in forests of interior Alaska
  publication-title: Canadian Journal of Forest Research
  doi: 10.1139/X09-068
– ident: e_1_2_6_54_1
  doi: 03010.01029/02007JG000458
– ident: e_1_2_6_33_1
  doi: 10.1007/s100219900046
– ident: e_1_2_6_9_1
  doi: 10.1007/978-1-4612-4902-3_15
– ident: e_1_2_6_58_1
  doi: 10.2307/3235983
– ident: e_1_2_6_47_1
  doi: 10.1111/j.1461-0248.2008.01173.x
– ident: e_1_2_6_2_1
– ident: e_1_2_6_28_1
  doi: 10.1111/j.1365-2656.2008.01390.x
– ident: e_1_2_6_51_1
  doi: 10.1139/x03-183
– ident: e_1_2_6_49_1
  doi: 10.1007/s10021-004-0042-x
– ident: e_1_2_6_60_1
  doi: 10.2307/1940065
– ident: e_1_2_6_3_1
  doi: 10.1139/x01-065
– ident: e_1_2_6_7_1
  doi: 10.1890/0012-9658(2000)081[1500:SASDIT]2.0.CO;2
– ident: e_1_2_6_61_1
  doi: 10.3354/meps321267
– ident: e_1_2_6_5_1
  doi: 10.1111/j.1365-2486.2008.01679.x
– ident: e_1_2_6_70_1
  doi: 10.1890/0012-9658(2003)084[1403:UATMOM]2.0.CO;2
– ident: e_1_2_6_34_1
  doi: 10.1007/s100219900066
– ident: e_1_2_6_82_1
  doi: 10.1016/S0065-2504(08)60171-3
– ident: e_1_2_6_43_1
  doi: 10.1007/s10021-001-0076-2
– ident: e_1_2_6_59_1
  doi: 10.2307/3237263
SSID ssj0003206
Score 2.5226512
Snippet Predicting plant community responses to changing environmental conditions is a key element of forecasting and mitigating the effects of global change....
AbstractPredicting plant community responses to changing environmental conditions is a key element of forecasting and mitigating the effects of global change....
SourceID proquest
pascalfrancis
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1281
SubjectTerms Alaska
Animal and plant ecology
Animal, plant and microbial ecology
Betula
Betula neoalaskana
Biological and medical sciences
boosted regression trees
Boreal forests
Canopies
Climate change
composite burn index
data analysis
Deciduous trees
disturbance regimes
Ecological succession
Ecosystem services
Environmental changes
Environmental conditions
environmental factors
Environmental impact
fire regime
fire severity
Fires
forest communities
forest stands
forest succession
forest trees
Forestry
Forests
Fundamental and applied biological sciences. Psychology
General aspects
General forest ecology
Generalities. Production, biomass. Quality of wood and forest products. General forest ecology
Global warming
history
Picea mariana
Plant communities
Populus tremuloides
postfire succession
Prescribed fire
recruitment
regression analysis
seedling recruitment
Seedlings
stand composition
stand structure
statistical models
topography
Trees
Title Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest
URI https://api.istex.fr/ark:/67375/WNG-9JGCCDXM-L/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2486.2009.02051.x
https://www.proquest.com/docview/205230606
https://www.proquest.com/docview/46541346
https://www.proquest.com/docview/746159898
Volume 16
WOSCitedRecordID wos000274813800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1365-2486
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003206
  issn: 1354-1013
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED5BBxIvAwrTssHwA9pbUB3nlx9HthahrUJARd8s23GmriVBSYu2_56zk4VVAmlCvFSpYlvJ5Xz3nX2-D-AtOn1dFDLwecJzP2SJ8aXBH6UlehPJR2qUO7KJZDpN53P-qct_smdh2voQ_YKbnRnOXtsJLlWzPcldhlaYxl3ZyQAV7B3iyZ0A1TgawM7p5_HsvLfLLHBMm5RFIRofyrbzev441pazeljICiGslf61TaGUDUqxaOkvtvDpXZTr3NT46f98wWew24FVctJq13N4YMohPG7pK2-GsHf2-5QcNuvMRDME7wKheFW7ZuSYZKsF4mL37wWo9jxDQxYlKdDeEksN8d0QDM3lkiAcJStzKfUNQS-7JFVJmo3jdHRLlmRdyyu3z7BoRzhB8L-UJUFNRsRLEIGjbF7CbHz2Nfvgd0QPvsb4jPqRMVFOdcKNrXjHpC5yDJRGkTZU8SiRCAqp0gzDaW10oAqtcpbqUKd5nsch3tmDQVmVZh9IrGQU81TFMuaIBE1KTUSNSbhKWVzQkQfJ7RcVuquCbsk4VuJONIRiF1bslqOTCyd2ce0B7Xv-aCuB3KPPPiqNkJdosMXsS2C3iaktP8TwQY6dJvVjyXppk-ySSHybTgT_OMmy0_mFOPfgaEvV-g5oidFAx6EHh7e6JzoD1OBT2OV-jE49eNPfRctht4NkaapNI2wlPcpCbEH-0iIJEe9aglEPYqep935xMcne26uDf-14CE_aPA2bI_UKBut6Y17DI_1zvWjqo25q_wIKM0mh
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED7BBoIXBmXTwtjmB7S3oDq__TiytQPaCsEq-mbZjjOVlgQlLdr-e85OFlYJpAnxUqWKbSWX89139vk-gDfo9FWeC89lMcvcwI-1KzT-SCXQmwjWl_3Mkk3Ek0kym7FPLR2QOQvT1IfoFtzMzLD22kxwsyC9OcttilaQRG3dSQ817C0Cyu0AtQrVffvs82A66gyz71mqTeqHAVof6m8m9vxxrA1v9TAXJWJYI_5rk0MpahRj3vBfbADUuzDX-qnBzn99w-fwrIWr5LTRrxfwQBc9eNwQWN70YO_89zk5bNYairoHzhjBeFnZZuSEpMs5ImP77yXI5kRDTeYFydHiEkMO8V0TDM7FgiAgJUt9JdQNQT-7IGVB6rVldbSLlmRViW92p2HejHCK8H8hCoK6jJiXIAZH4ezCdHB-mV64LdWDqzBCo26odZhRFTNtat75QuUZhkr9UGkqWRgLhIVUKh8DaqWVJ3MlMz9RgUqyLIsCvLMHW0VZ6H0gkRRhxBIZiYghFtQJ1SHVOmYy8aOc9h2Ibz8pV20ddEPHseR34iEUOzdiNyydjFux82sHaNfzR1ML5B599lFruLhCk82nXzyzUUxNASIfH-TEqlI3lqgWJs0uDvnXyZCzD8M0PZuN-ciBow1d6zqgLUYTHQUOHNwqH29NUI1PYRb8MT514Li7i7bDbAiJQpfrmptaetQPsAX5S4s4QMRrKEYdiKyq3vvF-TB9Z65e_WvHY3hycTke8dH7yccDeNpkbZiMqdewtarW-hAeqZ-reV0dtfP8F8rUTZE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9BB4gXPsqmhcHmB7S3oDrffhzpWj66agIq-mbZjjOVlmRKWrT995ydLKwSSBPipUoV20ou57vf2ef7AbxBp6_yXHgui1nmBn6sXaHxRyqB3kSwgRxklmwink6T-Zydt3RA5ixMUx-iW3AzM8PaazPB9WWWb89ym6IVJFFbd9JDDXuLgHInMJwyPdgZfh7NJp1h9j1LtUn9MEDrQ_3txJ4_jrXlre7nokQMa8R_ZXIoRY1izBv-iy2AehvmWj81evpf3_AZPGnhKjlp9Os53NNFHx42BJbXfdg7_X1ODpu1hqLug3OGYLysbDNyTNLVApGx_fcCZHOioSaLguRocYkhh_ihCQbnYkkQkJKVvhDqmqCfXZKyIPXGsjraRUuyrsR3u9OwaEY4Qfi_FAVBXUbMSxCDo3B2YTY6_Zq-d1uqB1dhhEbdUOswoypm2tS884XKMwyVBqHSVLIwFggLqVQ-BtRKK0_mSmZ-ogKVZFkWBXhnD3pFWeh9IJEUYcQSGYmIIRbUCdUh1TpmMvGjnA4ciG8-KVdtHXRDx7Hit-IhFDs3YjcsnYxbsfMrB2jX87KpBXKHPvuoNVxcoMnmsy-e2SimpgCRjw9ybFWpG0tUS5NmF4f823TM2cdxmg7nZ3ziwOGWrnUd0BajiY4CBw5ulI-3JqjGpzAL_hifOnDU3UXbYTaERKHLTc1NLT3qB9iC_KVFHCDiNRSjDkRWVe_84nycvjNXL_-14xE8Oh-O-OTD9NMBPG6SNkzC1CvorauNfg0P1M_1oq4O22n-C-E4TQw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Changes+in+fire+regime+break+the+legacy+lock+on+successional+trajectories+in+Alaskan+boreal+forest&rft.jtitle=Global+change+biology&rft.au=Johnstone%2C+Jill+F&rft.au=Hollingsworth%2C+Teresa+N&rft.au=Chapin%2C+F+Stuart&rft.au=Mack%2C+Michelle+C&rft.date=2010-04-01&rft.issn=1354-1013&rft.volume=16&rft.issue=4+p.1281-1295&rft.spage=1281&rft.epage=1295&rft_id=info:doi/10.1111%2Fj.1365-2486.2009.02051.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon