Harnessing feature pruning with optimal deep learning based DDoS cyberattack detection on IoT environment

The swift development of the Internet of Things (IoT) devices has created a pressing need for effective cybersecurity measures. They are vulnerable to different cyber threats that can compromise the functionality and security of urban systems. Distributed Denial of Service (DDoS) attacks are among I...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Scientific reports Ročník 15; číslo 1; s. 17516 - 15
Hlavní autori: Yang, Eunmok, Jeong, Sooyong, Seo, Changho
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 20.05.2025
Nature Publishing Group
Nature Portfolio
Predmet:
ISSN:2045-2322, 2045-2322
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The swift development of the Internet of Things (IoT) devices has created a pressing need for effective cybersecurity measures. They are vulnerable to different cyber threats that can compromise the functionality and security of urban systems. Distributed Denial of Service (DDoS) attacks are among IoT networks’ most challenging and destructive cyber threats. With the rapid growth in IoT devices and users, the vulnerability of IoT devices to such attacks has enhanced significantly, making DDoS attacks a predominant threat. This work introduces several approaches for effectively detecting IoT-based DDoS threats. Classical machine learning (ML) techniques mostly face difficulty in managing real-world traffic characteristics effectually, making them less appropriate for detecting DDoS attacks. In contrast, Artificial Intelligence (AI)-based methods have proven more effective in detecting cyber-attacks than conventional approaches. This manuscript proposes an effective Feature Pruning with Optimal Deep Learning-based DDoS Attack Detection (FPODL-DDoSAD) technique in the IoT framework. The FPODL-DDoSAD technique initially uses a min-max scalar for the data scaling into the standard layout. Besides, the feature pruning process is performed using an improved pelican optimization algorithm (IPOA), which enables the choice of an optimal subset of features. Meanwhile, DDoS attacks are recognized using a sparse denoising autoencoder (SDAE) model. Furthermore, the parameter tuning of the SDAE classifier is accomplished by utilizing the Fish Migration Optimizer (FMO) technique. The experimental values of the FPODL-DDoSAD approach are assessed on the benchmark BoT-IoT dataset. The comparison study of the FPODL-DDoSAD method demonstrates a superior accuracy value of 99.80% over existing techniques.
AbstractList The swift development of the Internet of Things (IoT) devices has created a pressing need for effective cybersecurity measures. They are vulnerable to different cyber threats that can compromise the functionality and security of urban systems. Distributed Denial of Service (DDoS) attacks are among IoT networks’ most challenging and destructive cyber threats. With the rapid growth in IoT devices and users, the vulnerability of IoT devices to such attacks has enhanced significantly, making DDoS attacks a predominant threat. This work introduces several approaches for effectively detecting IoT-based DDoS threats. Classical machine learning (ML) techniques mostly face difficulty in managing real-world traffic characteristics effectually, making them less appropriate for detecting DDoS attacks. In contrast, Artificial Intelligence (AI)-based methods have proven more effective in detecting cyber-attacks than conventional approaches. This manuscript proposes an effective Feature Pruning with Optimal Deep Learning-based DDoS Attack Detection (FPODL-DDoSAD) technique in the IoT framework. The FPODL-DDoSAD technique initially uses a min-max scalar for the data scaling into the standard layout. Besides, the feature pruning process is performed using an improved pelican optimization algorithm (IPOA), which enables the choice of an optimal subset of features. Meanwhile, DDoS attacks are recognized using a sparse denoising autoencoder (SDAE) model. Furthermore, the parameter tuning of the SDAE classifier is accomplished by utilizing the Fish Migration Optimizer (FMO) technique. The experimental values of the FPODL-DDoSAD approach are assessed on the benchmark BoT-IoT dataset. The comparison study of the FPODL-DDoSAD method demonstrates a superior accuracy value of 99.80% over existing techniques.
Abstract The swift development of the Internet of Things (IoT) devices has created a pressing need for effective cybersecurity measures. They are vulnerable to different cyber threats that can compromise the functionality and security of urban systems. Distributed Denial of Service (DDoS) attacks are among IoT networks’ most challenging and destructive cyber threats. With the rapid growth in IoT devices and users, the vulnerability of IoT devices to such attacks has enhanced significantly, making DDoS attacks a predominant threat. This work introduces several approaches for effectively detecting IoT-based DDoS threats. Classical machine learning (ML) techniques mostly face difficulty in managing real-world traffic characteristics effectually, making them less appropriate for detecting DDoS attacks. In contrast, Artificial Intelligence (AI)-based methods have proven more effective in detecting cyber-attacks than conventional approaches. This manuscript proposes an effective Feature Pruning with Optimal Deep Learning-based DDoS Attack Detection (FPODL-DDoSAD) technique in the IoT framework. The FPODL-DDoSAD technique initially uses a min-max scalar for the data scaling into the standard layout. Besides, the feature pruning process is performed using an improved pelican optimization algorithm (IPOA), which enables the choice of an optimal subset of features. Meanwhile, DDoS attacks are recognized using a sparse denoising autoencoder (SDAE) model. Furthermore, the parameter tuning of the SDAE classifier is accomplished by utilizing the Fish Migration Optimizer (FMO) technique. The experimental values of the FPODL-DDoSAD approach are assessed on the benchmark BoT-IoT dataset. The comparison study of the FPODL-DDoSAD method demonstrates a superior accuracy value of 99.80% over existing techniques.
The swift development of the Internet of Things (IoT) devices has created a pressing need for effective cybersecurity measures. They are vulnerable to different cyber threats that can compromise the functionality and security of urban systems. Distributed Denial of Service (DDoS) attacks are among IoT networks' most challenging and destructive cyber threats. With the rapid growth in IoT devices and users, the vulnerability of IoT devices to such attacks has enhanced significantly, making DDoS attacks a predominant threat. This work introduces several approaches for effectively detecting IoT-based DDoS threats. Classical machine learning (ML) techniques mostly face difficulty in managing real-world traffic characteristics effectually, making them less appropriate for detecting DDoS attacks. In contrast, Artificial Intelligence (AI)-based methods have proven more effective in detecting cyber-attacks than conventional approaches. This manuscript proposes an effective Feature Pruning with Optimal Deep Learning-based DDoS Attack Detection (FPODL-DDoSAD) technique in the IoT framework. The FPODL-DDoSAD technique initially uses a min-max scalar for the data scaling into the standard layout. Besides, the feature pruning process is performed using an improved pelican optimization algorithm (IPOA), which enables the choice of an optimal subset of features. Meanwhile, DDoS attacks are recognized using a sparse denoising autoencoder (SDAE) model. Furthermore, the parameter tuning of the SDAE classifier is accomplished by utilizing the Fish Migration Optimizer (FMO) technique. The experimental values of the FPODL-DDoSAD approach are assessed on the benchmark BoT-IoT dataset. The comparison study of the FPODL-DDoSAD method demonstrates a superior accuracy value of 99.80% over existing techniques.The swift development of the Internet of Things (IoT) devices has created a pressing need for effective cybersecurity measures. They are vulnerable to different cyber threats that can compromise the functionality and security of urban systems. Distributed Denial of Service (DDoS) attacks are among IoT networks' most challenging and destructive cyber threats. With the rapid growth in IoT devices and users, the vulnerability of IoT devices to such attacks has enhanced significantly, making DDoS attacks a predominant threat. This work introduces several approaches for effectively detecting IoT-based DDoS threats. Classical machine learning (ML) techniques mostly face difficulty in managing real-world traffic characteristics effectually, making them less appropriate for detecting DDoS attacks. In contrast, Artificial Intelligence (AI)-based methods have proven more effective in detecting cyber-attacks than conventional approaches. This manuscript proposes an effective Feature Pruning with Optimal Deep Learning-based DDoS Attack Detection (FPODL-DDoSAD) technique in the IoT framework. The FPODL-DDoSAD technique initially uses a min-max scalar for the data scaling into the standard layout. Besides, the feature pruning process is performed using an improved pelican optimization algorithm (IPOA), which enables the choice of an optimal subset of features. Meanwhile, DDoS attacks are recognized using a sparse denoising autoencoder (SDAE) model. Furthermore, the parameter tuning of the SDAE classifier is accomplished by utilizing the Fish Migration Optimizer (FMO) technique. The experimental values of the FPODL-DDoSAD approach are assessed on the benchmark BoT-IoT dataset. The comparison study of the FPODL-DDoSAD method demonstrates a superior accuracy value of 99.80% over existing techniques.
ArticleNumber 17516
Author Seo, Changho
Jeong, Sooyong
Yang, Eunmok
Author_xml – sequence: 1
  givenname: Eunmok
  surname: Yang
  fullname: Yang, Eunmok
  organization: Department of Financial Information Security, Kookmin University
– sequence: 2
  givenname: Sooyong
  surname: Jeong
  fullname: Jeong, Sooyong
  email: jsy8630@kongju.ac.kr
  organization: Department of Convergence Science, Kongju National University, Basic Science Research Institution, Kongju National University
– sequence: 3
  givenname: Changho
  surname: Seo
  fullname: Seo, Changho
  organization: Department of Convergence Science, Kongju National University, Basic Science Research Institution, Kongju National University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40394115$$D View this record in MEDLINE/PubMed
BookMark eNp9ks9vFCEUx4mpsXXtP-DBTOLFyygwMDucjGnVbtLEg_VM-PHYss7CCkyb_veyO7W2HiQQfrzP-_IevJfoKMQACL0m-D3B3fAhM8LF0GLK6yCctvQZOqGY8ZZ2lB49Wh-j05w3uDZOBSPiBTpmuKsrwk-Qv1ApQM4-rBsHqkwJml2awn5_68t1E3fFb9XYWIBdM0Kl9yatMtjm_Dx-b8ydhqRKUeZnhQqY4mNoal_FqwbCjU8xbCGUV-i5U2OG0_t5gX58-Xx1dtFefvu6Ovt02RomWGmd5ZTo5cAw01wBEQ5A654rvp_0oGveuGahMe-ZsNaC01ZVgFgqejp0C7SadW1UG7lLNfp0J6Py8nAQ01qqVLwZQS4FLNXglBPUMO2E5r2w2kAvDBHEuar1cdbaTXoL1tQ0khqfiD61BH8t1_FGEooF5UtSFd7dK6T4a4Jc5NZnA-OoAsQpy47innY9rT-yQG__QTdxSqG-1YHqCO4xr9SbxyE9xPLnSytAZ8CkmHMC94AQLPelI-fSkbV05KF0JK1O3eyUKxzWkP7e_R-v3wQTx78
Cites_doi 10.1155/2023/2039217
10.1109/AIC57670.2023.10263974
10.1007/978-3-031-54547-4_8
10.1016/j.ijepes.2024.109960
10.1109/ACCESS.2023.3318316
10.3390/computers12060115
10.1007/978-3-030-81462-5_26
10.1109/ACCESS.2023.3260256
10.1007/s40747-024-01712-9
10.4018/978-1-7998-7789-9.ch002
10.3390/s22093367
10.1016/j.compeleceng.2022.107716
10.1155/2022/8530312
10.1016/j.future.2020.02.017
10.54216/JCIM.140217
10.1109/ACCESS.2024.3411612
10.1109/IOTM.003.2200001
10.3390/fractalfract8060350
10.1016/j.compeleceng.2023.108731
10.4018/978-1-7998-7789-9.ch011
10.1109/PCI60110.2023.10325985
10.1038/s41598-025-85547-5
10.1007/s10922-024-09882-0
10.1007/s13042-024-02147-x
10.1038/s41598-025-85866-7
10.2139/ssrn.4833390
10.1109/ACCESS.2023.3327620
10.1007/978-981-16-8664-1_30
10.1504/IJSNET.2020.109720
10.1109/ACCESS.2024.3409828
10.1016/j.ins.2024.120209
10.3390/electronics12244953
10.4018/IJISP.2021070101
10.3390/sym15122185
10.1109/ICENCO55801.2022.10032515
10.4018/979-8-3373-1102-9.ch007
10.1201/9781003264545-8
10.14569/IJACSA.2023.0140161
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-02152-2
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest
Natural Science Collection
ProQuest One Community College
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database


PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 15
ExternalDocumentID oai_doaj_org_article_79e7a8faf92c4bf9b569dbce69c191ff
PMC12092571
40394115
10_1038_s41598_025_02152_2
Genre Journal Article
GrantInformation_xml – fundername: Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT)
  grantid: 2021-0-00511; 2021-0-00511; 2021-0-00511
– fundername: Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT)
  grantid: 2021-0-00511
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
PJZUB
PPXIY
PQGLB
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c494t-fd521b78404b5ae19feebb65a5ebb6b8b4150419b05649dddefbdab651d296283
IEDL.DBID M7P
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001492046300031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Oct 14 19:08:51 EDT 2025
Tue Nov 04 02:04:49 EST 2025
Fri Sep 05 16:03:53 EDT 2025
Tue Oct 07 08:10:43 EDT 2025
Mon Jul 21 06:07:07 EDT 2025
Sat Nov 29 07:52:47 EST 2025
Wed May 21 12:01:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Pelican optimization algorithm
Fish migration optimizer
Min–max scalar
Cyberattack detection
Sparse denoising autoencoder
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-fd521b78404b5ae19feebb65a5ebb6b8b4150419b05649dddefbdab651d296283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3206310605?pq-origsite=%requestingapplication%
PMID 40394115
PQID 3206310605
PQPubID 2041939
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_79e7a8faf92c4bf9b569dbce69c191ff
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12092571
proquest_miscellaneous_3206236240
proquest_journals_3206310605
pubmed_primary_40394115
crossref_primary_10_1038_s41598_025_02152_2
springer_journals_10_1038_s41598_025_02152_2
PublicationCentury 2000
PublicationDate 2025-05-20
PublicationDateYYYYMMDD 2025-05-20
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-20
  day: 20
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References 2152_CR30
H Chen (2152_CR5) 2021; 15
M Shafiq (2152_CR2) 2020; 107
M Shantal (2152_CR34) 2023; 15
JG Almaraz-Rivera (2152_CR7) 2022; 22
V Ravi (2152_CR16) 2022; 5
S Balasubramaniam (2152_CR12) 2023; 2023
2152_CR1
FM Aswad (2152_CR18) 2023; 32
2152_CR39
H Cheng (2152_CR6) 2020; 34
M Aljebreen (2152_CR38) 2023; 11
2152_CR35
2152_CR14
P Wang (2152_CR29) 2025; 11
2152_CR11
2152_CR33
A Alfatemi (2152_CR23) 2025; 33
2152_CR31
J Jang (2152_CR40) 2023; 12
2152_CR32
A Aldosary (2152_CR37) 2024; 8
AD Aguru (2152_CR17) 2024; 662
2152_CR4
A Ahmim (2152_CR15) 2023; 11
2152_CR8
Y Huang (2152_CR36) 2024; 158
V Kandasamy (2152_CR21) 2025; 15
SK Smmarwar (2152_CR19) 2022; 54
2152_CR28
S Ullah (2152_CR10) 2023; 12
S Sumathi (2152_CR13) 2022; 2022
2152_CR26
SK Smmarwar (2152_CR22) 2023; 108
2152_CR27
2152_CR24
A Mihoub (2152_CR9) 2022; 98
2152_CR25
WI Khedr (2152_CR3) 2023; 11
2152_CR20
References_xml – volume: 2023
  start-page: 2039217
  year: 2023
  ident: 2152_CR12
  publication-title: Int. J. Intell. Syst.
  doi: 10.1155/2023/2039217
– ident: 2152_CR27
  doi: 10.1109/AIC57670.2023.10263974
– ident: 2152_CR28
  doi: 10.1007/978-3-031-54547-4_8
– volume: 158
  start-page: 109960
  year: 2024
  ident: 2152_CR36
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2024.109960
– volume: 11
  start-page: 104745
  year: 2023
  ident: 2152_CR38
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2023.3318316
– volume: 12
  start-page: 115
  year: 2023
  ident: 2152_CR10
  publication-title: Computers
  doi: 10.3390/computers12060115
– ident: 2152_CR30
  doi: 10.1007/978-3-030-81462-5_26
– volume: 11
  start-page: 28934
  year: 2023
  ident: 2152_CR3
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2023.3260256
– volume: 11
  start-page: 93
  issue: 1
  year: 2025
  ident: 2152_CR29
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-024-01712-9
– ident: 2152_CR25
  doi: 10.4018/978-1-7998-7789-9.ch002
– volume: 22
  start-page: 3367
  year: 2022
  ident: 2152_CR7
  publication-title: Sensors
  doi: 10.3390/s22093367
– volume: 98
  start-page: 107716
  year: 2022
  ident: 2152_CR9
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2022.107716
– volume: 2022
  start-page: 8530312
  year: 2022
  ident: 2152_CR13
  publication-title: J. Sens.
  doi: 10.1155/2022/8530312
– volume: 107
  start-page: 433
  year: 2020
  ident: 2152_CR2
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.02.017
– ident: 2152_CR8
  doi: 10.54216/JCIM.140217
– ident: 2152_CR11
  doi: 10.1109/ACCESS.2024.3411612
– volume: 5
  start-page: 24
  year: 2022
  ident: 2152_CR16
  publication-title: IEEE Internet Things Mag
  doi: 10.1109/IOTM.003.2200001
– volume: 8
  start-page: 350
  year: 2024
  ident: 2152_CR37
  publication-title: Fractal Fract.
  doi: 10.3390/fractalfract8060350
– volume: 108
  start-page: 108731
  year: 2023
  ident: 2152_CR22
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2023.108731
– ident: 2152_CR24
  doi: 10.4018/978-1-7998-7789-9.ch011
– ident: 2152_CR39
  doi: 10.1109/PCI60110.2023.10325985
– volume: 15
  start-page: 1697
  issue: 1
  year: 2025
  ident: 2152_CR21
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-025-85547-5
– volume: 33
  start-page: 8
  issue: 1
  year: 2025
  ident: 2152_CR23
  publication-title: J. Netw. Syst. Manag.
  doi: 10.1007/s10922-024-09882-0
– ident: 2152_CR14
  doi: 10.1007/s13042-024-02147-x
– volume: 32
  start-page: 20220155
  year: 2023
  ident: 2152_CR18
  publication-title: J. Intell. Syst.
– ident: 2152_CR26
  doi: 10.1038/s41598-025-85866-7
– ident: 2152_CR33
  doi: 10.2139/ssrn.4833390
– volume: 11
  start-page: 119862
  year: 2023
  ident: 2152_CR15
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2023.3327620
– ident: 2152_CR20
  doi: 10.1007/978-981-16-8664-1_30
– volume: 34
  start-page: 56
  year: 2020
  ident: 2152_CR6
  publication-title: Int. J. Sens. Networks
  doi: 10.1504/IJSNET.2020.109720
– ident: 2152_CR35
  doi: 10.1109/ACCESS.2024.3409828
– volume: 662
  start-page: 120209
  year: 2024
  ident: 2152_CR17
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2024.120209
– volume: 12
  start-page: 4953
  issue: 24
  year: 2023
  ident: 2152_CR40
  publication-title: Electronics
  doi: 10.3390/electronics12244953
– volume: 15
  start-page: 1
  year: 2021
  ident: 2152_CR5
  publication-title: Int. J. Inf. Secur. Priv. (IJISP)
  doi: 10.4018/IJISP.2021070101
– volume: 15
  start-page: 2185
  year: 2023
  ident: 2152_CR34
  publication-title: Symmetry
  doi: 10.3390/sym15122185
– ident: 2152_CR4
  doi: 10.1109/ICENCO55801.2022.10032515
– ident: 2152_CR32
  doi: 10.4018/979-8-3373-1102-9.ch007
– ident: 2152_CR31
  doi: 10.1201/9781003264545-8
– volume: 54
  start-page: 102852
  year: 2022
  ident: 2152_CR19
  publication-title: Sustain. Energy Technol. Assess.
– ident: 2152_CR1
  doi: 10.14569/IJACSA.2023.0140161
SSID ssj0000529419
Score 2.4503083
Snippet The swift development of the Internet of Things (IoT) devices has created a pressing need for effective cybersecurity measures. They are vulnerable to...
Abstract The swift development of the Internet of Things (IoT) devices has created a pressing need for effective cybersecurity measures. They are vulnerable to...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 17516
SubjectTerms 639/166
639/705
Artificial intelligence
Cyberattack detection
Deep learning
Denial of service attacks
Fish migration optimizer
Humanities and Social Sciences
Internet of Things
Machine learning
Min–max scalar
multidisciplinary
Pelican optimization algorithm
Science
Science (multidisciplinary)
Sparse denoising autoencoder
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB-kKPgitn5Fq6zgm4Ym2c3HPFZrqSBFsELflv3Uo5gcdzmh_72zu7nzTi2-CIFAdhI2M7Mzv_2YGYBXWrVcaNvlptZNLlRjchTY5qW3iKIx5FJjoPDH9vy8u7zET1ulvsKZsJQeODHuqEXXqs4rj5UR2qOuG7TauAYNTTW8D9aXUM_WZCpl9a5QlDhFyRS8O1qSpwrRZFUISCanlVc7nigm7P8byvzzsORvO6bREZ3eh3sTgmTHqef7cMv1B3An1ZS8fgCzM7UI5oveZd7FtJ1svliF5Q8WFl3ZQEbiO33AOjdnU9GIryx4M8tOTobPzFzrkGl5VOaKiMZ4VqtndH0YLthWYNxD-HL6_uLdWT7VU8iNQDHm3pKv1i1N6YSulSvRO6d1U6s63HSniUUFcU0TKBJoyfB5bRURlLbChnDII9jrh949AcY9IfO2cLXhKLjiyEXHjS0swZ_GtDqD12veynlKmyHjdjfvZJKEJEnIKAlZZfA2sH9DGVJexwekCHJSBPkvRcjgcC08OY3DpeQVQTCa9RZ1Bi83zTSCwraI6t2wSjQV-XFRZPA4yXrTE1HQ_xFozqDb0YKdru629LNvMUt3CEome1hm8GatML_6dTMvnv4PXjyDu1XU9Jqs4CHsjYuVew63zY9xtly8iEPlJ3yjGi0
  priority: 102
  providerName: Directory of Open Access Journals
Title Harnessing feature pruning with optimal deep learning based DDoS cyberattack detection on IoT environment
URI https://link.springer.com/article/10.1038/s41598-025-02152-2
https://www.ncbi.nlm.nih.gov/pubmed/40394115
https://www.proquest.com/docview/3206310605
https://www.proquest.com/docview/3206236240
https://pubmed.ncbi.nlm.nih.gov/PMC12092571
https://doaj.org/article/79e7a8faf92c4bf9b569dbce69c191ff
Volume 15
WOSCitedRecordID wos001492046300031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3JbtQw9Im2IPXCvgTKyEjcIGoSO4tPiNJWrURHERRpOFleywg1GTIzSP17np3MlGG7IEWJFFuJ7ee3-K0AL5UsKVOminWuipjJQsec8TJOneGcFRpZaggUfl-Ox9VkwutB4TYf3CpXNDEQatNqryPfpxkyUzy_JPmb2bfYV43y1tWhhMYW7PgsCTS47tVrHYu3YrGUD7EyCa3258ivfExZ5sOSkXXF2QY_Cmn7_yRr_u4y-YvdNLCj4zv_O5G7cHsQRMnbfufcgxu2uQ-3-tKUVw9geiI7TwXx58TZkP2TzLql16IQr7slLdKaS_yAsXZGhtoTF8QzRUMOD9uPRF8pn7B5IfVX7LQILl8Nweu0PSc_xdc9hE_HR-fvTuKhLEOsGWeL2Blk-arEkyFTubQpd9YqVeQy9w9VKVzjBJddoWzFuEH66ZSR2CE1GS9QnHkE203b2CdAqEMBv0xsrilnVFJOWUW1SQxKUYUuVQSvVsARsz77hghWc1qJHpQCQSkCKEUWwYGH37qnz5wdXrTdhRgQUZTclrJy0vFMM-W4ygtulLYF13h0dS6CvRXYxIDOc3ENswherJsREb11RTa2XfZ9MhQHWBLB436zrEfCEpwfyt4RVBvbaGOomy3N9EtI9u1jm5GsphG8Xu2463H9fS2e_nsaz2A3C0iQI5ncg-1Ft7TP4ab-vpjOuxFslZMy3KsR7BwcjesPo6CswPtZVo8ClmFLfXpWf_4B-_ItPg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zj9MwEB4tXRC8cB-BBYwETxBtmjiHHxACyqrVdqtKFGl5Mj6XCpGUHqD-KX4jYyfpUq63fUCKFCl2LDv5PN-M7ZkBeCxFnlCpi1ClMgupyFTIKMvDrtWM0UwhpXpH4WE-GhXHx2y8A99bXxh3rLKViV5Q60q5NfL9JEYyRfslSl_MvoQua5TbXW1TaNSwODTrb2iyLZ4Pevh_n8TxwZvJ637YZBUIFWV0GVqNjCVzNGyoTIXpMmuMlFkqUneThURKi2iXSVQNKNM4_a3UAit0dcwyZGNs9xzsUgR70YHd8eBo_H6zquP2zfDdxjsnSor9BTbnvNhi5wiNZBnGWwzoEwX8Sbv9_ZDmLzu1ngAPrvxvn-4qXG5UbfKynhvXYMeU1-FCnXxzfQOmfTF3ch4HS6zx8U3JbL5y60TErU6TCqXpZ2xAGzMjTXaNE-JoX5Ner3pL1Fq6kNRLoT5hpaU_1FYSvAbVhPzkQXgT3p3JOG9Bp6xKcwdIYtGEySOTqoTRRCQsoUWidKRRT8xULgN42oKBz-r4ItyfC0gKXkOHI3S4hw6PA3jl8LKp6WKD-wfV_IQ3oobnzOSisMKyWFFpmUwzpqUyGVNonFsbwF4LE94IrAU_xUgAjzbFKGrc_pEoTbWq68So8NAogNs1ODc9oRGOD62LAIot2G51dbuknH704cyd9zYSRzeAZy3CT_v1929x99_DeAgX-5OjIR8ORof34FLsJ2CKpLAHneV8Ze7DefV1OV3MHzRzmMCHs8b-D7PUhpk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jj9MwFH4ahkVc2JfAAEaCE0RNE2fxASGgVFPNqKrEIM3NeB0qRFLSFNS_xq_j2Uk6lO02B6RKkRrHspPP73vPfgvAEynyhEpdhCqVWUhFpkJGWR4OrWaMZgop1QcKH-bTaXF8zGY78L2PhXFulb1M9IJaV8rtkQ-SGMkU7ZcoHdjOLWI2Gr9cfAldBSl30tqX02ghcmDW39B8W76YjPBbP43j8dujN_thV2EgVJTRJrQa2UvmaORQmQozZNYYKbNUpO4iC4n0FtEhk6gmUKZRFFipBTYY6phlyMzY7zk4n7uk5d5tcLbZ33EnaPhkF6cTJcVgiZ25eLbYhUQjbYbxFhf6kgF_0nN_d9f85czWU-H46v_8Eq_BlU4BJ6_aFXMddkx5Ay62JTnXN2G-L2on_XHixBqf9ZQs6pXbPSJuz5pUKGM_YwfamAXpam6cEKcMaDIaVe-IWkuXqLoR6hM2aryrW0nwN6mOyE9xhbfg_ZnM8zbsllVp7gJJLBo2eWRSlTCaiIQltEiUjjRqj5nKZQDPemDwRZt1hHtvgaTgLYw4woh7GPE4gNcOO5uWLmO4_6OqT3gngHjOTC4KKyyLFZWWyTRjWiqTMYUmu7UB7PWQ4Z0YW_JTvATweHMbBZA7VRKlqVZtmxjVIBoFcKcF6mYkNML5oc0RQLEF4a2hbt8p5x99knMX0410MgzgeY_203H9_V3c-_c0HsElBDw_nEwP7sPl2K_FFJliD3abemUewAX1tZkv64d-MRP4cNbA_wHAHI3Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Harnessing+feature+pruning+with+optimal+deep+learning+based+DDoS+cyberattack+detection+on+IoT+environment&rft.jtitle=Scientific+reports&rft.date=2025-05-20&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=17516&rft_id=info:doi/10.1038%2Fs41598-025-02152-2&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon