Harnessing feature pruning with optimal deep learning based DDoS cyberattack detection on IoT environment
The swift development of the Internet of Things (IoT) devices has created a pressing need for effective cybersecurity measures. They are vulnerable to different cyber threats that can compromise the functionality and security of urban systems. Distributed Denial of Service (DDoS) attacks are among I...
Gespeichert in:
| Veröffentlicht in: | Scientific reports Jg. 15; H. 1; S. 17516 - 15 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
20.05.2025
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The swift development of the Internet of Things (IoT) devices has created a pressing need for effective cybersecurity measures. They are vulnerable to different cyber threats that can compromise the functionality and security of urban systems. Distributed Denial of Service (DDoS) attacks are among IoT networks’ most challenging and destructive cyber threats. With the rapid growth in IoT devices and users, the vulnerability of IoT devices to such attacks has enhanced significantly, making DDoS attacks a predominant threat. This work introduces several approaches for effectively detecting IoT-based DDoS threats. Classical machine learning (ML) techniques mostly face difficulty in managing real-world traffic characteristics effectually, making them less appropriate for detecting DDoS attacks. In contrast, Artificial Intelligence (AI)-based methods have proven more effective in detecting cyber-attacks than conventional approaches. This manuscript proposes an effective Feature Pruning with Optimal Deep Learning-based DDoS Attack Detection (FPODL-DDoSAD) technique in the IoT framework. The FPODL-DDoSAD technique initially uses a min-max scalar for the data scaling into the standard layout. Besides, the feature pruning process is performed using an improved pelican optimization algorithm (IPOA), which enables the choice of an optimal subset of features. Meanwhile, DDoS attacks are recognized using a sparse denoising autoencoder (SDAE) model. Furthermore, the parameter tuning of the SDAE classifier is accomplished by utilizing the Fish Migration Optimizer (FMO) technique. The experimental values of the FPODL-DDoSAD approach are assessed on the benchmark BoT-IoT dataset. The comparison study of the FPODL-DDoSAD method demonstrates a superior accuracy value of 99.80% over existing techniques. |
|---|---|
| AbstractList | The swift development of the Internet of Things (IoT) devices has created a pressing need for effective cybersecurity measures. They are vulnerable to different cyber threats that can compromise the functionality and security of urban systems. Distributed Denial of Service (DDoS) attacks are among IoT networks’ most challenging and destructive cyber threats. With the rapid growth in IoT devices and users, the vulnerability of IoT devices to such attacks has enhanced significantly, making DDoS attacks a predominant threat. This work introduces several approaches for effectively detecting IoT-based DDoS threats. Classical machine learning (ML) techniques mostly face difficulty in managing real-world traffic characteristics effectually, making them less appropriate for detecting DDoS attacks. In contrast, Artificial Intelligence (AI)-based methods have proven more effective in detecting cyber-attacks than conventional approaches. This manuscript proposes an effective Feature Pruning with Optimal Deep Learning-based DDoS Attack Detection (FPODL-DDoSAD) technique in the IoT framework. The FPODL-DDoSAD technique initially uses a min-max scalar for the data scaling into the standard layout. Besides, the feature pruning process is performed using an improved pelican optimization algorithm (IPOA), which enables the choice of an optimal subset of features. Meanwhile, DDoS attacks are recognized using a sparse denoising autoencoder (SDAE) model. Furthermore, the parameter tuning of the SDAE classifier is accomplished by utilizing the Fish Migration Optimizer (FMO) technique. The experimental values of the FPODL-DDoSAD approach are assessed on the benchmark BoT-IoT dataset. The comparison study of the FPODL-DDoSAD method demonstrates a superior accuracy value of 99.80% over existing techniques. Abstract The swift development of the Internet of Things (IoT) devices has created a pressing need for effective cybersecurity measures. They are vulnerable to different cyber threats that can compromise the functionality and security of urban systems. Distributed Denial of Service (DDoS) attacks are among IoT networks’ most challenging and destructive cyber threats. With the rapid growth in IoT devices and users, the vulnerability of IoT devices to such attacks has enhanced significantly, making DDoS attacks a predominant threat. This work introduces several approaches for effectively detecting IoT-based DDoS threats. Classical machine learning (ML) techniques mostly face difficulty in managing real-world traffic characteristics effectually, making them less appropriate for detecting DDoS attacks. In contrast, Artificial Intelligence (AI)-based methods have proven more effective in detecting cyber-attacks than conventional approaches. This manuscript proposes an effective Feature Pruning with Optimal Deep Learning-based DDoS Attack Detection (FPODL-DDoSAD) technique in the IoT framework. The FPODL-DDoSAD technique initially uses a min-max scalar for the data scaling into the standard layout. Besides, the feature pruning process is performed using an improved pelican optimization algorithm (IPOA), which enables the choice of an optimal subset of features. Meanwhile, DDoS attacks are recognized using a sparse denoising autoencoder (SDAE) model. Furthermore, the parameter tuning of the SDAE classifier is accomplished by utilizing the Fish Migration Optimizer (FMO) technique. The experimental values of the FPODL-DDoSAD approach are assessed on the benchmark BoT-IoT dataset. The comparison study of the FPODL-DDoSAD method demonstrates a superior accuracy value of 99.80% over existing techniques. The swift development of the Internet of Things (IoT) devices has created a pressing need for effective cybersecurity measures. They are vulnerable to different cyber threats that can compromise the functionality and security of urban systems. Distributed Denial of Service (DDoS) attacks are among IoT networks' most challenging and destructive cyber threats. With the rapid growth in IoT devices and users, the vulnerability of IoT devices to such attacks has enhanced significantly, making DDoS attacks a predominant threat. This work introduces several approaches for effectively detecting IoT-based DDoS threats. Classical machine learning (ML) techniques mostly face difficulty in managing real-world traffic characteristics effectually, making them less appropriate for detecting DDoS attacks. In contrast, Artificial Intelligence (AI)-based methods have proven more effective in detecting cyber-attacks than conventional approaches. This manuscript proposes an effective Feature Pruning with Optimal Deep Learning-based DDoS Attack Detection (FPODL-DDoSAD) technique in the IoT framework. The FPODL-DDoSAD technique initially uses a min-max scalar for the data scaling into the standard layout. Besides, the feature pruning process is performed using an improved pelican optimization algorithm (IPOA), which enables the choice of an optimal subset of features. Meanwhile, DDoS attacks are recognized using a sparse denoising autoencoder (SDAE) model. Furthermore, the parameter tuning of the SDAE classifier is accomplished by utilizing the Fish Migration Optimizer (FMO) technique. The experimental values of the FPODL-DDoSAD approach are assessed on the benchmark BoT-IoT dataset. The comparison study of the FPODL-DDoSAD method demonstrates a superior accuracy value of 99.80% over existing techniques.The swift development of the Internet of Things (IoT) devices has created a pressing need for effective cybersecurity measures. They are vulnerable to different cyber threats that can compromise the functionality and security of urban systems. Distributed Denial of Service (DDoS) attacks are among IoT networks' most challenging and destructive cyber threats. With the rapid growth in IoT devices and users, the vulnerability of IoT devices to such attacks has enhanced significantly, making DDoS attacks a predominant threat. This work introduces several approaches for effectively detecting IoT-based DDoS threats. Classical machine learning (ML) techniques mostly face difficulty in managing real-world traffic characteristics effectually, making them less appropriate for detecting DDoS attacks. In contrast, Artificial Intelligence (AI)-based methods have proven more effective in detecting cyber-attacks than conventional approaches. This manuscript proposes an effective Feature Pruning with Optimal Deep Learning-based DDoS Attack Detection (FPODL-DDoSAD) technique in the IoT framework. The FPODL-DDoSAD technique initially uses a min-max scalar for the data scaling into the standard layout. Besides, the feature pruning process is performed using an improved pelican optimization algorithm (IPOA), which enables the choice of an optimal subset of features. Meanwhile, DDoS attacks are recognized using a sparse denoising autoencoder (SDAE) model. Furthermore, the parameter tuning of the SDAE classifier is accomplished by utilizing the Fish Migration Optimizer (FMO) technique. The experimental values of the FPODL-DDoSAD approach are assessed on the benchmark BoT-IoT dataset. The comparison study of the FPODL-DDoSAD method demonstrates a superior accuracy value of 99.80% over existing techniques. |
| ArticleNumber | 17516 |
| Author | Seo, Changho Jeong, Sooyong Yang, Eunmok |
| Author_xml | – sequence: 1 givenname: Eunmok surname: Yang fullname: Yang, Eunmok organization: Department of Financial Information Security, Kookmin University – sequence: 2 givenname: Sooyong surname: Jeong fullname: Jeong, Sooyong email: jsy8630@kongju.ac.kr organization: Department of Convergence Science, Kongju National University, Basic Science Research Institution, Kongju National University – sequence: 3 givenname: Changho surname: Seo fullname: Seo, Changho organization: Department of Convergence Science, Kongju National University, Basic Science Research Institution, Kongju National University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40394115$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9ks9vFCEUx4mpsXXtP-DBTOLFyygwMDucjGnVbtLEg_VM-PHYss7CCkyb_veyO7W2HiQQfrzP-_IevJfoKMQACL0m-D3B3fAhM8LF0GLK6yCctvQZOqGY8ZZ2lB49Wh-j05w3uDZOBSPiBTpmuKsrwk-Qv1ApQM4-rBsHqkwJml2awn5_68t1E3fFb9XYWIBdM0Kl9yatMtjm_Dx-b8ydhqRKUeZnhQqY4mNoal_FqwbCjU8xbCGUV-i5U2OG0_t5gX58-Xx1dtFefvu6Ovt02RomWGmd5ZTo5cAw01wBEQ5A654rvp_0oGveuGahMe-ZsNaC01ZVgFgqejp0C7SadW1UG7lLNfp0J6Py8nAQ01qqVLwZQS4FLNXglBPUMO2E5r2w2kAvDBHEuar1cdbaTXoL1tQ0khqfiD61BH8t1_FGEooF5UtSFd7dK6T4a4Jc5NZnA-OoAsQpy47innY9rT-yQG__QTdxSqG-1YHqCO4xr9SbxyE9xPLnSytAZ8CkmHMC94AQLPelI-fSkbV05KF0JK1O3eyUKxzWkP7e_R-v3wQTx78 |
| Cites_doi | 10.1155/2023/2039217 10.1109/AIC57670.2023.10263974 10.1007/978-3-031-54547-4_8 10.1016/j.ijepes.2024.109960 10.1109/ACCESS.2023.3318316 10.3390/computers12060115 10.1007/978-3-030-81462-5_26 10.1109/ACCESS.2023.3260256 10.1007/s40747-024-01712-9 10.4018/978-1-7998-7789-9.ch002 10.3390/s22093367 10.1016/j.compeleceng.2022.107716 10.1155/2022/8530312 10.1016/j.future.2020.02.017 10.54216/JCIM.140217 10.1109/ACCESS.2024.3411612 10.1109/IOTM.003.2200001 10.3390/fractalfract8060350 10.1016/j.compeleceng.2023.108731 10.4018/978-1-7998-7789-9.ch011 10.1109/PCI60110.2023.10325985 10.1038/s41598-025-85547-5 10.1007/s10922-024-09882-0 10.1007/s13042-024-02147-x 10.1038/s41598-025-85866-7 10.2139/ssrn.4833390 10.1109/ACCESS.2023.3327620 10.1007/978-981-16-8664-1_30 10.1504/IJSNET.2020.109720 10.1109/ACCESS.2024.3409828 10.1016/j.ins.2024.120209 10.3390/electronics12244953 10.4018/IJISP.2021070101 10.3390/sym15122185 10.1109/ICENCO55801.2022.10032515 10.4018/979-8-3373-1102-9.ch007 10.1201/9781003264545-8 10.14569/IJACSA.2023.0140161 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-025-02152-2 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals (WRLC) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 15 |
| ExternalDocumentID | oai_doaj_org_article_79e7a8faf92c4bf9b569dbce69c191ff PMC12092571 40394115 10_1038_s41598_025_02152_2 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) grantid: 2021-0-00511; 2021-0-00511; 2021-0-00511 – fundername: Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) grantid: 2021-0-00511 |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX AFFHD CITATION PJZUB PPXIY PQGLB NPM 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c494t-fd521b78404b5ae19feebb65a5ebb6b8b4150419b05649dddefbdab651d296283 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001492046300031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Tue Oct 14 19:08:51 EDT 2025 Tue Nov 04 02:04:49 EST 2025 Fri Sep 05 16:03:53 EDT 2025 Tue Oct 07 08:10:43 EDT 2025 Mon Jul 21 06:07:07 EDT 2025 Sat Nov 29 07:52:47 EST 2025 Wed May 21 12:01:56 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Pelican optimization algorithm Fish migration optimizer Min–max scalar Cyberattack detection Sparse denoising autoencoder |
| Language | English |
| License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c494t-fd521b78404b5ae19feebb65a5ebb6b8b4150419b05649dddefbdab651d296283 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/3206310605?pq-origsite=%requestingapplication% |
| PMID | 40394115 |
| PQID | 3206310605 |
| PQPubID | 2041939 |
| PageCount | 15 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_79e7a8faf92c4bf9b569dbce69c191ff pubmedcentral_primary_oai_pubmedcentral_nih_gov_12092571 proquest_miscellaneous_3206236240 proquest_journals_3206310605 pubmed_primary_40394115 crossref_primary_10_1038_s41598_025_02152_2 springer_journals_10_1038_s41598_025_02152_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-20 |
| PublicationDateYYYYMMDD | 2025-05-20 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | 2152_CR30 H Chen (2152_CR5) 2021; 15 M Shafiq (2152_CR2) 2020; 107 M Shantal (2152_CR34) 2023; 15 JG Almaraz-Rivera (2152_CR7) 2022; 22 V Ravi (2152_CR16) 2022; 5 S Balasubramaniam (2152_CR12) 2023; 2023 2152_CR1 FM Aswad (2152_CR18) 2023; 32 2152_CR39 H Cheng (2152_CR6) 2020; 34 M Aljebreen (2152_CR38) 2023; 11 2152_CR35 2152_CR14 P Wang (2152_CR29) 2025; 11 2152_CR11 2152_CR33 A Alfatemi (2152_CR23) 2025; 33 2152_CR31 J Jang (2152_CR40) 2023; 12 2152_CR32 A Aldosary (2152_CR37) 2024; 8 AD Aguru (2152_CR17) 2024; 662 2152_CR4 A Ahmim (2152_CR15) 2023; 11 2152_CR8 Y Huang (2152_CR36) 2024; 158 V Kandasamy (2152_CR21) 2025; 15 SK Smmarwar (2152_CR19) 2022; 54 2152_CR28 S Ullah (2152_CR10) 2023; 12 S Sumathi (2152_CR13) 2022; 2022 2152_CR26 SK Smmarwar (2152_CR22) 2023; 108 2152_CR27 2152_CR24 A Mihoub (2152_CR9) 2022; 98 2152_CR25 WI Khedr (2152_CR3) 2023; 11 2152_CR20 |
| References_xml | – volume: 2023 start-page: 2039217 year: 2023 ident: 2152_CR12 publication-title: Int. J. Intell. Syst. doi: 10.1155/2023/2039217 – ident: 2152_CR27 doi: 10.1109/AIC57670.2023.10263974 – ident: 2152_CR28 doi: 10.1007/978-3-031-54547-4_8 – volume: 158 start-page: 109960 year: 2024 ident: 2152_CR36 publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2024.109960 – volume: 11 start-page: 104745 year: 2023 ident: 2152_CR38 publication-title: IEEE Access. doi: 10.1109/ACCESS.2023.3318316 – volume: 12 start-page: 115 year: 2023 ident: 2152_CR10 publication-title: Computers doi: 10.3390/computers12060115 – ident: 2152_CR30 doi: 10.1007/978-3-030-81462-5_26 – volume: 11 start-page: 28934 year: 2023 ident: 2152_CR3 publication-title: IEEE Access. doi: 10.1109/ACCESS.2023.3260256 – volume: 11 start-page: 93 issue: 1 year: 2025 ident: 2152_CR29 publication-title: Complex Intell. Syst. doi: 10.1007/s40747-024-01712-9 – ident: 2152_CR25 doi: 10.4018/978-1-7998-7789-9.ch002 – volume: 22 start-page: 3367 year: 2022 ident: 2152_CR7 publication-title: Sensors doi: 10.3390/s22093367 – volume: 98 start-page: 107716 year: 2022 ident: 2152_CR9 publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2022.107716 – volume: 2022 start-page: 8530312 year: 2022 ident: 2152_CR13 publication-title: J. Sens. doi: 10.1155/2022/8530312 – volume: 107 start-page: 433 year: 2020 ident: 2152_CR2 publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2020.02.017 – ident: 2152_CR8 doi: 10.54216/JCIM.140217 – ident: 2152_CR11 doi: 10.1109/ACCESS.2024.3411612 – volume: 5 start-page: 24 year: 2022 ident: 2152_CR16 publication-title: IEEE Internet Things Mag doi: 10.1109/IOTM.003.2200001 – volume: 8 start-page: 350 year: 2024 ident: 2152_CR37 publication-title: Fractal Fract. doi: 10.3390/fractalfract8060350 – volume: 108 start-page: 108731 year: 2023 ident: 2152_CR22 publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2023.108731 – ident: 2152_CR24 doi: 10.4018/978-1-7998-7789-9.ch011 – ident: 2152_CR39 doi: 10.1109/PCI60110.2023.10325985 – volume: 15 start-page: 1697 issue: 1 year: 2025 ident: 2152_CR21 publication-title: Sci. Rep. doi: 10.1038/s41598-025-85547-5 – volume: 33 start-page: 8 issue: 1 year: 2025 ident: 2152_CR23 publication-title: J. Netw. Syst. Manag. doi: 10.1007/s10922-024-09882-0 – ident: 2152_CR14 doi: 10.1007/s13042-024-02147-x – volume: 32 start-page: 20220155 year: 2023 ident: 2152_CR18 publication-title: J. Intell. Syst. – ident: 2152_CR26 doi: 10.1038/s41598-025-85866-7 – ident: 2152_CR33 doi: 10.2139/ssrn.4833390 – volume: 11 start-page: 119862 year: 2023 ident: 2152_CR15 publication-title: IEEE Access. doi: 10.1109/ACCESS.2023.3327620 – ident: 2152_CR20 doi: 10.1007/978-981-16-8664-1_30 – volume: 34 start-page: 56 year: 2020 ident: 2152_CR6 publication-title: Int. J. Sens. Networks doi: 10.1504/IJSNET.2020.109720 – ident: 2152_CR35 doi: 10.1109/ACCESS.2024.3409828 – volume: 662 start-page: 120209 year: 2024 ident: 2152_CR17 publication-title: Inf. Sci. doi: 10.1016/j.ins.2024.120209 – volume: 12 start-page: 4953 issue: 24 year: 2023 ident: 2152_CR40 publication-title: Electronics doi: 10.3390/electronics12244953 – volume: 15 start-page: 1 year: 2021 ident: 2152_CR5 publication-title: Int. J. Inf. Secur. Priv. (IJISP) doi: 10.4018/IJISP.2021070101 – volume: 15 start-page: 2185 year: 2023 ident: 2152_CR34 publication-title: Symmetry doi: 10.3390/sym15122185 – ident: 2152_CR4 doi: 10.1109/ICENCO55801.2022.10032515 – ident: 2152_CR32 doi: 10.4018/979-8-3373-1102-9.ch007 – ident: 2152_CR31 doi: 10.1201/9781003264545-8 – volume: 54 start-page: 102852 year: 2022 ident: 2152_CR19 publication-title: Sustain. Energy Technol. Assess. – ident: 2152_CR1 doi: 10.14569/IJACSA.2023.0140161 |
| SSID | ssj0000529419 |
| Score | 2.4503083 |
| Snippet | The swift development of the Internet of Things (IoT) devices has created a pressing need for effective cybersecurity measures. They are vulnerable to... Abstract The swift development of the Internet of Things (IoT) devices has created a pressing need for effective cybersecurity measures. They are vulnerable to... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 17516 |
| SubjectTerms | 639/166 639/705 Artificial intelligence Cyberattack detection Deep learning Denial of service attacks Fish migration optimizer Humanities and Social Sciences Internet of Things Machine learning Min–max scalar multidisciplinary Pelican optimization algorithm Science Science (multidisciplinary) Sparse denoising autoencoder |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1da9wwzIyywV7Gus-s7fBgb1to7DiJ_di1K91LGayDvhkrlrdjLDnucoP--8pO7na3D_YyCARiOQhJ1odtSYy9xmC0FoXJsRGQK9Qhd6Ep81IW2jcGFSifmk00l5f6-tp83Gr1Fe-EjeWBR8IdE3zjdHDByFZBMFDVxkOLtWkp1Aghal_yeraCqbGqtzRKmClLpij18ZIsVcwmkzEhmYxWLncsUSrY_ycv8_fLkr-cmCZDdP6QPZg8SH4yYr7P7mD3iN0be0rePGazC7eI6ovm8oCpbCefL1Zx-4PHTVfek5L4Tj_wiHM-NY34wqM18_zsrP_E2xuIlZYH134joCHd1eo4PR_6K76VGPeEfT5_f3V6kU_9FPJWGTXkwZOthoZCOgWVQ2ECIkBduSq-QAORqCCqATlFynhSfAG8IwDhpanJD3nK9rq-w-eMC9QVYiNBYaNABChb7wWY2lWi1QVk7M2atnY-ls2w6bi71HbkhCVO2MQJKzP2LpJ_AxlLXqcPJAh2EgT7L0HI2OGaeXZah0tLIleTA0sxW8ZebYZpBcVjEddhvxphJNlxVWTs2cjrDSaqKEmOBM3WO1Kwg-ruSDf7mqp0x6Rk0ociY2_XAvMTr7_T4sX_oMUBuy-TpFekBQ_Z3rBY4RG72_4YZsvFy7RUbgFYbBs- priority: 102 providerName: Directory of Open Access Journals |
| Title | Harnessing feature pruning with optimal deep learning based DDoS cyberattack detection on IoT environment |
| URI | https://link.springer.com/article/10.1038/s41598-025-02152-2 https://www.ncbi.nlm.nih.gov/pubmed/40394115 https://www.proquest.com/docview/3206310605 https://www.proquest.com/docview/3206236240 https://pubmed.ncbi.nlm.nih.gov/PMC12092571 https://doaj.org/article/79e7a8faf92c4bf9b569dbce69c191ff |
| Volume | 15 |
| WOSCitedRecordID | wos001492046300031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals (WRLC) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQwcERbkLjwbgmUlZG4QdQ4cWL7hCht1R66iqBIyymKX2WFmiy7WaT-PWMnu2V5XZCiRIqdxPE8PeOZAXhlnRSCJjK2nKqYWeHi2vEsztJEGC4tU8yEYhN8PBaTiSwHg9ti2Fa54omBUZtWexv5AT5coCqC2vfb2bfYV43y3tWhhMYW7PgsCVnYuleubSzei8WoHGJlkkwcLFBe-Ziy1Iclo-iK0w15FNL2_0nX_H3L5C9-0yCOTu7_7488gHuDIkre9ZjzEG7Z5hHc6UtTXj-G6Wk991wQP06cDdk_yWy-9FYU4m23pEVec4UvMNbOyFB74pJ4oWjI0VH7kehr5RM2d7X-ip26sOWrIXictRfkp_i6J_Dp5Pji_Wk8lGWINZOsi51Bka84rgyZymtLpbNWqSKvc39RQuEcJzjtCnUrJg3yT6dMjR2oSWWB6swubDdtY58CoVbk1vJUMcuZok5l2hiqZFHnVItERfB6BZxq1mffqILXPBNVD8oKQVkFUFZpBIcefuuePnN2uNHOL6uBECvEP14LVzuZaqacVHkhjdK2kBqXrs5FsL8CWzWQ86K6gVkEL9fNSIjeu1I3tl32fVJUB1gSwV6PLOuRsCRDRKT4tNhAo42hbrY00y8h2bePbUa2SiN4s8K4m3H9fS6e_fs3nsPdNBBBjmxyH7a7-dK-gNv6ezddzEewxSc8nMUIdg6Px-WHUTBW4Pk8LUeByrClPDsvP_8A3BUuTw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQguvB-BAkaCE0RNHCexDwgBS9VV29VKLFI5mTi2ywqRLPsA7Z_iNzJ2ki3L69YDUqRIiW3ZyTfzjR8zA_DYWMF5HInQ5LEKmeE2LGyehAmNuM6FYYppn2wiHw758bEYbcH3zhfGHavsdKJX1Lou3Rr5LlbO0BRB6_vF9Evoska53dUuhUYDiwOz-oZTtvnzQR__7xNK996MX--HbVaBsGSCLUKrkbFUjhMbptLCxMIao1SWFqm7Ka6Q0iIWC4WmARMaxd8qXWCBWFORIRtju-dgmyHYeQ-2R4Oj0fv1qo7bN8O6rXdOlPDdOTbnvNioc4RGsgzpBgP6RAF_sm5_P6T5y06tJ8C9K__bp7sKl1tTm7xsZOMabJnqOlxokm-ubsBkv5g5PY-DJdb4-KZkOlu6dSLiVqdJjdr0MzagjZmSNrvGCXG0r0m_X78l5Uq5kNSLovyEhRb-UFtF8BrUY_KTB-FNeHcm47wFvaquzB0gseGpMTlVzORMxVYlpdaxElmRxiWPVABPOzDIaRNfRPpzAQmXDXQkQkd66EgawCuHl3VJFxvcP6hnJ7JVNRIlLC-4LaygJVNWqDQTWpUmEyVOzq0NYKeDiWwV1lyeYiSAR-vXqGrc_lFRmXrZlKFo8LAogNsNONc9YVGCwI-xNt-A7UZXN99Uk48-nLnz3kbiiAN41iH8tF9__xZ3_z2Mh3Bxf3x0KA8Hw4N7cIl6AUyRFHagt5gtzX04X35dTOazB60ME_hw1tj_Aejgh6o |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jj9MwFH4ahkVc2JfAAEaCE0RNHCexDwgBpZpqUFWJQZqbJ47toUIkpU1B_Wv8Op6dpEPZbnNAihQpXmQ731tsvwXgibGC8zgSocljFTLDbVjYPAkTGnGdC8MU0z7ZRD6Z8KMjMd2B770vjDOr7HmiZ9S6Lt0Z-QAbZ6iKoPY9sJ1ZxHQ4ejn_EroMUu6mtU-n0ULkwKy_4fZt-WI8xH_9lNLR28M3-2GXYSAsmWBNaDVKL5XjJoeptDCxsMYolaVF6l6KKxRvEYuFQjWBCY2swCpdYIVYU5GhZMZ-z8H53AUt92aD0835jrtBw5adn06U8MESO3P-bNS5RKPYDOmWLPQpA_6k5_5urvnLna0XhaOr__MiXoMrnQJOXrUUcx12THUDLrYpOdc3YbZfLBz3x4kTa3zUUzJfrNzpEXFn1qRGHvsZO9DGzEmXc-OEOGVAk-Gwfk_KtXKBqpui_ISVGm_qVhF8xvUh-cmv8BZ8OJN53obdqq7MXSCx4akxOVXM5EzFViWl1rESWZHGJY9UAM96YMh5G3VEemuBhMsWRhJhJD2MJA3gtcPOpqaLGO4_1IsT2TEgiXSXF9wWVtCSKStUmgmtSpOJErfs1gaw10NGdmxsKU_xEsDjTTEyIHerVFSmXrV1KKpBLArgTgvUzUhYlCARxNiab0F4a6jbJdXsow9y7ny6UZzEATzv0X46rr-vxb1_T-MRXELAy3fjycF9uEw9LaYoKfZgt1mszAO4UH5tZsvFQ0_MBI7PGvg_APKljuk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Harnessing+feature+pruning+with+optimal+deep+learning+based+DDoS+cyberattack+detection+on+IoT+environment&rft.jtitle=Scientific+reports&rft.date=2025-05-20&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=17516&rft_id=info:doi/10.1038%2Fs41598-025-02152-2&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |