Computational approaches in drug chemistry leveraging python powered QSPR study of antimalaria compounds by using artificial neural networks

The application of Machine Learning has become a revolutionary instrument in the domain of pharmaceutical research. Machine learning enables the modelling of Quantitative Structure Property Relationship, a crucial task in forecasting the physiochemical characteristics of drugs. In this study we util...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 15; no. 1; pp. 19307 - 18
Main Authors: Ahmed, Wakeel, Ashraf, Tamseela, Saleem, Maliha Tehseen, Mahmoud, Emad E., Ali, Kashif, Zaman, Shahid, Belay, Melaku Berhe
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 02.06.2025
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The application of Machine Learning has become a revolutionary instrument in the domain of pharmaceutical research. Machine learning enables the modelling of Quantitative Structure Property Relationship, a crucial task in forecasting the physiochemical characteristics of drugs. In this study we utilized machine learning algorithms namely Artificial Neural Networks and Random Forest to predict physiochemical characteristics of Anti-malaria drugs. These models utilize several topological indices global variables quantifying the connectivity and geometric characteristics of molecules to estimate the ability of prospective antimalarial compounds to interact with the target enzyme and other physicochemical parameters. Molecular descriptors such as size, shape, and electronic structure indices are a way of mapping molecular properties into a set of quantitative data that can be analyzed by Machine Learning techniques. By carrying out regression analysis with the help of Artificial Neural Networks and Random Forest, the corresponding changes in the molecular structures and their effects on effectiveness and properties of the potential drugs can be predicted, thereby supporting the search for new therapeutic compounds. Machine learning not only observe the drug development process but also facilitates to look at chemical datasets with respect to high order non-linear relationship, which are essential to improve antimalarial drug candidates and pharmacokinetic properties.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-025-01594-y