Computational approaches in drug chemistry leveraging python powered QSPR study of antimalaria compounds by using artificial neural networks

The application of Machine Learning has become a revolutionary instrument in the domain of pharmaceutical research. Machine learning enables the modelling of Quantitative Structure Property Relationship, a crucial task in forecasting the physiochemical characteristics of drugs. In this study we util...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 15; H. 1; S. 19307 - 18
Hauptverfasser: Ahmed, Wakeel, Ashraf, Tamseela, Saleem, Maliha Tehseen, Mahmoud, Emad E., Ali, Kashif, Zaman, Shahid, Belay, Melaku Berhe
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 02.06.2025
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The application of Machine Learning has become a revolutionary instrument in the domain of pharmaceutical research. Machine learning enables the modelling of Quantitative Structure Property Relationship, a crucial task in forecasting the physiochemical characteristics of drugs. In this study we utilized machine learning algorithms namely Artificial Neural Networks and Random Forest to predict physiochemical characteristics of Anti-malaria drugs. These models utilize several topological indices global variables quantifying the connectivity and geometric characteristics of molecules to estimate the ability of prospective antimalarial compounds to interact with the target enzyme and other physicochemical parameters. Molecular descriptors such as size, shape, and electronic structure indices are a way of mapping molecular properties into a set of quantitative data that can be analyzed by Machine Learning techniques. By carrying out regression analysis with the help of Artificial Neural Networks and Random Forest, the corresponding changes in the molecular structures and their effects on effectiveness and properties of the potential drugs can be predicted, thereby supporting the search for new therapeutic compounds. Machine learning not only observe the drug development process but also facilitates to look at chemical datasets with respect to high order non-linear relationship, which are essential to improve antimalarial drug candidates and pharmacokinetic properties.
AbstractList The application of Machine Learning has become a revolutionary instrument in the domain of pharmaceutical research. Machine learning enables the modelling of Quantitative Structure Property Relationship, a crucial task in forecasting the physiochemical characteristics of drugs. In this study we utilized machine learning algorithms namely Artificial Neural Networks and Random Forest to predict physiochemical characteristics of Anti-malaria drugs. These models utilize several topological indices global variables quantifying the connectivity and geometric characteristics of molecules to estimate the ability of prospective antimalarial compounds to interact with the target enzyme and other physicochemical parameters. Molecular descriptors such as size, shape, and electronic structure indices are a way of mapping molecular properties into a set of quantitative data that can be analyzed by Machine Learning techniques. By carrying out regression analysis with the help of Artificial Neural Networks and Random Forest, the corresponding changes in the molecular structures and their effects on effectiveness and properties of the potential drugs can be predicted, thereby supporting the search for new therapeutic compounds. Machine learning not only observe the drug development process but also facilitates to look at chemical datasets with respect to high order non-linear relationship, which are essential to improve antimalarial drug candidates and pharmacokinetic properties.
The application of Machine Learning has become a revolutionary instrument in the domain of pharmaceutical research. Machine learning enables the modelling of Quantitative Structure Property Relationship, a crucial task in forecasting the physiochemical characteristics of drugs. In this study we utilized machine learning algorithms namely Artificial Neural Networks and Random Forest to predict physiochemical characteristics of Anti-malaria drugs. These models utilize several topological indices global variables quantifying the connectivity and geometric characteristics of molecules to estimate the ability of prospective antimalarial compounds to interact with the target enzyme and other physicochemical parameters. Molecular descriptors such as size, shape, and electronic structure indices are a way of mapping molecular properties into a set of quantitative data that can be analyzed by Machine Learning techniques. By carrying out regression analysis with the help of Artificial Neural Networks and Random Forest, the corresponding changes in the molecular structures and their effects on effectiveness and properties of the potential drugs can be predicted, thereby supporting the search for new therapeutic compounds. Machine learning not only observe the drug development process but also facilitates to look at chemical datasets with respect to high order non-linear relationship, which are essential to improve antimalarial drug candidates and pharmacokinetic properties.The application of Machine Learning has become a revolutionary instrument in the domain of pharmaceutical research. Machine learning enables the modelling of Quantitative Structure Property Relationship, a crucial task in forecasting the physiochemical characteristics of drugs. In this study we utilized machine learning algorithms namely Artificial Neural Networks and Random Forest to predict physiochemical characteristics of Anti-malaria drugs. These models utilize several topological indices global variables quantifying the connectivity and geometric characteristics of molecules to estimate the ability of prospective antimalarial compounds to interact with the target enzyme and other physicochemical parameters. Molecular descriptors such as size, shape, and electronic structure indices are a way of mapping molecular properties into a set of quantitative data that can be analyzed by Machine Learning techniques. By carrying out regression analysis with the help of Artificial Neural Networks and Random Forest, the corresponding changes in the molecular structures and their effects on effectiveness and properties of the potential drugs can be predicted, thereby supporting the search for new therapeutic compounds. Machine learning not only observe the drug development process but also facilitates to look at chemical datasets with respect to high order non-linear relationship, which are essential to improve antimalarial drug candidates and pharmacokinetic properties.
Abstract The application of Machine Learning has become a revolutionary instrument in the domain of pharmaceutical research. Machine learning enables the modelling of Quantitative Structure Property Relationship, a crucial task in forecasting the physiochemical characteristics of drugs. In this study we utilized machine learning algorithms namely Artificial Neural Networks and Random Forest to predict physiochemical characteristics of Anti-malaria drugs. These models utilize several topological indices global variables quantifying the connectivity and geometric characteristics of molecules to estimate the ability of prospective antimalarial compounds to interact with the target enzyme and other physicochemical parameters. Molecular descriptors such as size, shape, and electronic structure indices are a way of mapping molecular properties into a set of quantitative data that can be analyzed by Machine Learning techniques. By carrying out regression analysis with the help of Artificial Neural Networks and Random Forest, the corresponding changes in the molecular structures and their effects on effectiveness and properties of the potential drugs can be predicted, thereby supporting the search for new therapeutic compounds. Machine learning not only observe the drug development process but also facilitates to look at chemical datasets with respect to high order non-linear relationship, which are essential to improve antimalarial drug candidates and pharmacokinetic properties.
ArticleNumber 19307
Author Ashraf, Tamseela
Saleem, Maliha Tehseen
Ahmed, Wakeel
Mahmoud, Emad E.
Ali, Kashif
Belay, Melaku Berhe
Zaman, Shahid
Author_xml – sequence: 1
  givenname: Wakeel
  surname: Ahmed
  fullname: Ahmed, Wakeel
  email: wakeelahmed784@gmail.com
  organization: Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Department of Mathematics, University of Sialkot
– sequence: 2
  givenname: Tamseela
  surname: Ashraf
  fullname: Ashraf, Tamseela
  organization: Department of Mathematics, COMSATS University Islamabad, Lahore Campus
– sequence: 3
  givenname: Maliha Tehseen
  surname: Saleem
  fullname: Saleem, Maliha Tehseen
  organization: Department of Mathematics, University of Sialkot
– sequence: 4
  givenname: Emad E.
  surname: Mahmoud
  fullname: Mahmoud, Emad E.
  organization: Department of Mathematics and Statistics, Collage of Science, Taif University
– sequence: 5
  givenname: Kashif
  surname: Ali
  fullname: Ali, Kashif
  organization: Department of Mathematics, COMSATS University Islamabad, Lahore Campus
– sequence: 6
  givenname: Shahid
  surname: Zaman
  fullname: Zaman, Shahid
  email: zaman.ravian@gmail.com
  organization: Department of Mathematical and Physical Sciences, College of Arts and Sciences, University of Nizwa
– sequence: 7
  givenname: Melaku Berhe
  surname: Belay
  fullname: Belay, Melaku Berhe
  email: melaku.berhe@aastu.edu.et
  organization: Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, Mathematics, Physics and Statistics Division, Addis Ababa Science and Technology University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40456832$$D View this record in MEDLINE/PubMed
BookMark eNp9UsluFDEQbaEgspAf4IAsceHS4HXaPiE0ghApEvvZ8njp8dBjN7Y7Uf8DH41nJoSEA75U2fXeq2e7TpujEINtmmcIvkKQ8NeZIiZ4CzFrYc1oOz9qTjCkrMUE46N7-XFznvMG1sWwoEg8aY5prS04wSfNr2XcjlNRxcegBqDGMUWl1zYDH4BJUw_qZutzSTMY7LVNqvehB-Nc1jGAMd7YZA34_PXTF5DLZGYQHVCh-K0aVPIK6Cofp2AyWM1gyjuuSsU7r31tF-yU9qHcxPQjP20eOzVke34bz5rv7999W35orz5eXC7fXrWaClpaBzuKhUIEmW7FCaKYo84QxjB3xHKBXQetEoYgAalaMcF0x4ix2DqFHHHkrLk86JqoNnJM1W2aZVRe7g9i6uXOpB6sVMIKyqBGHaLUCrjSC4S0Y5DRhTOOVK03B61xWm2t0TaUeqUHog8rwa9lH68lwohAynFVeHmrkOLPyeYi63trOwwq2DhlSTBimHQQ8gp98Q90E6dUP26PopxxCneWnt-3dOflz69XAD4AdIo5J-vuIAjK3XTJw3TJOl1yP11yriRyIOUKDr1Nf3v_h_UbdXjUrA
Cites_doi 10.1111/pai.13835
10.1142/S0217984924502609
10.1007/978-3-662-70107-2_7
10.1021/ci00016a005
10.1007/s10910-022-01403-1
10.1142/S2424913024500115
10.3389/fphar.2024.1446774
10.1021/ja00856a001
10.3934/math.2021658
10.1080/00268976.2023.2212533
10.3390/math11102245
10.1002/qua.26778
10.1007/s10910-015-0480-z
10.1016/j.arabjc.2022.104160
10.1016/j.heliyon.2020.e04235
10.1080/10406638.2021.1993941
10.1140/epje/s10189-024-00446-3
10.33263/BRIAC123.41924199
10.1038/s41598-025-88044-x
10.22457/apam.v16n1a6
10.1080/03602532.2024.2405163
10.1093/bib/bbab159
10.1016/j.aej.2022.11.001
10.1002/qua.27391
10.33263/BRIAC131.071
10.1186/s13065-024-01266-4
10.1016/j.arr.2025.102665
10.1021/acsnano.4c05693
10.21275/ART20203995
10.1109/TQCEBT59414.2024.10545171
10.1038/s41598-024-62819-0
10.1080/10406638.2023.2217990
10.1080/10406638.2023.2196429
10.3390/math6100214
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-01594-y
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
Coronavirus Research Database
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database

MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 18
ExternalDocumentID oai_doaj_org_article_a9e9450c17144e90bc611cf50546fdf3
PMC12130482
40456832
10_1038_s41598_025_01594_y
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88A
8FK
COVID
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c494t-f07429a131d7b83142817d35528f3e892f70ea9d31904ab595c753de2efa1f3f3
IEDL.DBID M2P
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001501594400033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:52:43 EDT 2025
Tue Nov 04 02:01:50 EST 2025
Fri Sep 05 15:56:03 EDT 2025
Tue Oct 07 07:35:24 EDT 2025
Mon Jul 21 06:01:07 EDT 2025
Thu Nov 20 01:46:50 EST 2025
Mon Jul 21 06:07:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords QSPR analysis
Python Algorithm
Artificial Neural Networks
Machine Learning
Anti-malaria drugs
Random Forest
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-f07429a131d7b83142817d35528f3e892f70ea9d31904ab595c753de2efa1f3f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3214858403?pq-origsite=%requestingapplication%
PMID 40456832
PQID 3214858403
PQPubID 2041939
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_a9e9450c17144e90bc611cf50546fdf3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12130482
proquest_miscellaneous_3215237008
proquest_journals_3214858403
pubmed_primary_40456832
crossref_primary_10_1038_s41598_025_01594_y
springer_journals_10_1038_s41598_025_01594_y
PublicationCentury 2000
PublicationDate 2025-06-02
PublicationDateYYYYMMDD 2025-06-02
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-02
  day: 02
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References W Ahmed (1594_CR3) 2024; 18
S Zaman (1594_CR21) 2024; 44
A Ahmad (1594_CR35) 2023; 121
GK Jayanna (1594_CR33) 2021; 12
1594_CR14
AR Katritzky (1594_CR23) 1993; 33
S Hayat (1594_CR17) 2023; 11
GK Jayanna (1594_CR29) 2023; 23
QY Zhang (1594_CR9) 2024; 18
W Gao (1594_CR30) 2018; 6
W Ahmed (1594_CR13) 2024; 09
L Wang (1594_CR11) 2024; 15
N Awan (1594_CR48) 2024; 124
I Gutman (1594_CR37) 2012
W Ahmed (1594_CR12) 2024; 14
W Zhao (1594_CR40) 2021; 2021
A Ali (1594_CR44) 2022; 60
VR Kulli (1594_CR24) 2018; 16
V Ravi (1594_CR36) 2022; 42
S Vujošević (1594_CR45) 2021; 391
PS Ranjini (1594_CR47) 2013; 1
E Estrada (1594_CR41) 1998; 37A
S Hayat (1594_CR16) 2014; 59
W Gao (1594_CR42) 2016; 48
J Pei (1594_CR8) 2025; 104
M Naeem (1594_CR28) 2024; 44
CT Martınez-Martınez (1594_CR38) 2021; 85
M Randic (1594_CR43) 1975; 97
JB Liu (1594_CR25) 2021; 121
Z Wu (1594_CR6) 2024; 56
W Ahmed (1594_CR18) 2024; 38
W Ahmed (1594_CR20) 2024; 13
MC Shanmukha (1594_CR22) 2020; 6
AN Koam (1594_CR32) 2021; 6
M Arockiaraj (1594_CR19) 2025; 15
A Khan (1594_CR4) 2023; 66
P Poojary (1594_CR26) 2022; 13
I Gutman (1594_CR46) 2017; 42
1594_CR2
1594_CR1
B Mahesh (1594_CR7) 2020; 9
AN Koam (1594_CR31) 2021; 2021
AN Koam (1594_CR34) 2022; 15
B Furtula (1594_CR39) 2015; 53
Y Zhou (1594_CR10) 2022; 33
W Ahmed (1594_CR15) 2024; 09
T Gaudelet (1594_CR5) 2021; 22
M Arockiaraj (1594_CR27) 2024; 47
References_xml – volume: 33
  issue: 8
  year: 2022
  ident: 1594_CR10
  publication-title: Pediatr. Allergy Immunol.
  doi: 10.1111/pai.13835
– volume: 38
  start-page: 2450260
  issue: 27
  year: 2024
  ident: 1594_CR18
  publication-title: Mod. Phys. Lett. B
  doi: 10.1142/S0217984924502609
– ident: 1594_CR2
  doi: 10.1007/978-3-662-70107-2_7
– volume: 33
  start-page: 835
  issue: 6
  year: 1993
  ident: 1594_CR23
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci00016a005
– volume: 60
  start-page: 2081
  issue: 10
  year: 2022
  ident: 1594_CR44
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-022-01403-1
– volume: 09
  start-page: 77
  issue: 02n03
  year: 2024
  ident: 1594_CR13
  publication-title: J. Micromech. Mol. Phys.
  doi: 10.1142/S2424913024500115
– volume: 42
  start-page: 1
  year: 2017
  ident: 1594_CR46
  publication-title: Bulletin (Académie serbe des sciences et des arts. Classe des sciences mathématiques et naturelles. Sciences mathématiques).
– volume: 15
  start-page: 1446774
  year: 2024
  ident: 1594_CR11
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2024.1446774
– ident: 1594_CR14
– volume-title: Mathematical concepts in organic chemistry
  year: 2012
  ident: 1594_CR37
– volume: 97
  start-page: 6609
  issue: 23
  year: 1975
  ident: 1594_CR43
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00856a001
– volume: 6
  start-page: 11330
  issue: 10
  year: 2021
  ident: 1594_CR32
  publication-title: AIMS Math.
  doi: 10.3934/math.2021658
– volume: 121
  issue: 14
  year: 2023
  ident: 1594_CR35
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2023.2212533
– volume: 11
  start-page: 2245
  issue: 10
  year: 2023
  ident: 1594_CR17
  publication-title: Mathematics
  doi: 10.3390/math11102245
– volume: 121
  issue: 22
  year: 2021
  ident: 1594_CR25
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.26778
– volume: 53
  start-page: 1184
  issue: 4
  year: 2015
  ident: 1594_CR39
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-015-0480-z
– volume: 1
  start-page: 116
  issue: 4
  year: 2013
  ident: 1594_CR47
  publication-title: Int. J. Graph Theory
– volume: 15
  issue: 10
  year: 2022
  ident: 1594_CR34
  publication-title: Arab. J. Chem.
  doi: 10.1016/j.arabjc.2022.104160
– volume: 09
  start-page: 77
  issue: 02n03
  year: 2024
  ident: 1594_CR15
  publication-title: J. Micromech. Mol. Phys.
  doi: 10.1142/S2424913024500115
– volume: 6
  start-page: e04235
  issue: 6
  year: 2020
  ident: 1594_CR22
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2020.e04235
– volume: 42
  start-page: 6932
  issue: 10
  year: 2022
  ident: 1594_CR36
  publication-title: Polycyclic Aromat. Compd.
  doi: 10.1080/10406638.2021.1993941
– volume: 47
  start-page: 53
  issue: 8
  year: 2024
  ident: 1594_CR27
  publication-title: Eur. Phys. J. E
  doi: 10.1140/epje/s10189-024-00446-3
– volume: 12
  start-page: 4192
  issue: 3
  year: 2021
  ident: 1594_CR33
  publication-title: Biointerface Res. Appl. Chem.
  doi: 10.33263/BRIAC123.41924199
– volume: 2021
  start-page: 1
  year: 2021
  ident: 1594_CR40
  publication-title: J. Math.
– volume: 2021
  start-page: 4540276
  issue: 1
  year: 2021
  ident: 1594_CR31
  publication-title: J. Math.
– volume: 59
  start-page: 113
  issue: 4
  year: 2014
  ident: 1594_CR16
  publication-title: Stud. Univ. Babes-Bolyai, Chem.
– volume: 15
  start-page: 3639
  issue: 1
  year: 2025
  ident: 1594_CR19
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-025-88044-x
– volume: 16
  start-page: 47
  issue: 1
  year: 2018
  ident: 1594_CR24
  publication-title: Ann. Pure Appl. Math.
  doi: 10.22457/apam.v16n1a6
– volume: 56
  start-page: 349
  issue: 4
  year: 2024
  ident: 1594_CR6
  publication-title: Drug Metab. Rev.
  doi: 10.1080/03602532.2024.2405163
– volume: 85
  start-page: 395
  year: 2021
  ident: 1594_CR38
  publication-title: MATCH Commun. Math. Comput. Chem
– volume: 37A
  start-page: 849
  year: 1998
  ident: 1594_CR41
  publication-title: Indian J. Chem.
– volume: 22
  start-page: bbab159
  issue: 6
  year: 2021
  ident: 1594_CR5
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbab159
– volume: 66
  start-page: 957
  year: 2023
  ident: 1594_CR4
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2022.11.001
– volume: 124
  issue: 11
  year: 2024
  ident: 1594_CR48
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.27391
– volume: 13
  start-page: 71
  issue: 1
  year: 2022
  ident: 1594_CR26
  publication-title: Biointerface Res. Appl. Chem
  doi: 10.33263/BRIAC131.071
– volume: 18
  start-page: 1
  issue: 1
  year: 2024
  ident: 1594_CR3
  publication-title: BMC Chem.
  doi: 10.1186/s13065-024-01266-4
– volume: 104
  start-page: 102665
  year: 2025
  ident: 1594_CR8
  publication-title: Ageing Res. Rev.
  doi: 10.1016/j.arr.2025.102665
– volume: 18
  start-page: 33032
  issue: 48
  year: 2024
  ident: 1594_CR9
  publication-title: ACS Nano
  doi: 10.1021/acsnano.4c05693
– volume: 9
  start-page: 381
  issue: 1
  year: 2020
  ident: 1594_CR7
  publication-title: Int. J. Sci. Res. (IJSR)
  doi: 10.21275/ART20203995
– volume: 23
  start-page: 175
  issue: 1
  year: 2023
  ident: 1594_CR29
  publication-title: Appl. Math. E-Notes
– volume: 391
  year: 2021
  ident: 1594_CR45
  publication-title: Appl. Math. Comput.
– ident: 1594_CR1
  doi: 10.1109/TQCEBT59414.2024.10545171
– volume: 13
  start-page: 1
  year: 2024
  ident: 1594_CR20
  publication-title: J. Mol. Eng. Mater.
– volume: 14
  start-page: 12264
  issue: 1
  year: 2024
  ident: 1594_CR12
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-62819-0
– volume: 44
  start-page: 2458
  issue: 4
  year: 2024
  ident: 1594_CR21
  publication-title: Polycyclic Aromat. Compd.
  doi: 10.1080/10406638.2023.2217990
– volume: 44
  start-page: 1452
  issue: 3
  year: 2024
  ident: 1594_CR28
  publication-title: Polycyclic Aromat. Compd.
  doi: 10.1080/10406638.2023.2196429
– volume: 48
  start-page: 543
  issue: 3
  year: 2016
  ident: 1594_CR42
  publication-title: Bul. Chem. Commun.
– volume: 6
  start-page: 214
  issue: 10
  year: 2018
  ident: 1594_CR30
  publication-title: Mathematics
  doi: 10.3390/math6100214
SSID ssj0000529419
Score 2.4623785
Snippet The application of Machine Learning has become a revolutionary instrument in the domain of pharmaceutical research. Machine learning enables the modelling of...
Abstract The application of Machine Learning has become a revolutionary instrument in the domain of pharmaceutical research. Machine learning enables the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 19307
SubjectTerms 631/154
631/45
639/638
692/699
Algorithms
Anti-malaria drugs
Antimalarial agents
Antimalarials - chemistry
Antimalarials - pharmacology
Antiparasitic agents
Artificial Neural Networks
Drug development
Enzymes
Humanities and Social Sciences
Humans
Learning algorithms
Machine Learning
Malaria
multidisciplinary
Neural networks
Neural Networks, Computer
Observational learning
Pharmacokinetics
Physicochemical properties
Python Algorithm
QSPR analysis
Quantitative Structure-Activity Relationship
Random Forest
Regression analysis
Science
Science (multidisciplinary)
Vector-borne diseases
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYltNBLSd9u0qJCb62JHt6VdExLQ08hfUFuQpal1NB6l_VuwP8hPzozkr3N9kEvPRks2cjzkGas0fcR8io0Yi5ckKWHXKCsTDUra0h-ShGZVIhnojxLZBPq9FSfn5uzG1RfWBOW4YGz4I6cCfAC5pGouwqG1X7OuY-wcFfz2MSE88mUuZFMZVRvYSpuxlMyTOqjHlYqPE0msFZtZqpy2FmJEmD_n6LM34slf9kxTQvRyT65N0aQ9DiP_D65FboH5E7mlBwekqvM0zD-46MTZnjoadvRZrW5oH7ieKPfAxhyoimiywFBBOgSSdNCQz9-PvtEE_QsXUQK0m9_OMiBW0exBh2pmHpaDxSr5i8oCjEDUVCEx0yXVFzePyJfT95_efehHCkXSg96WpcRU2XjuOSNqrVEODauGohJhI4yaCOiYsGZBhyXVa6emZmHfKcJIkTHo4zyMdnrFl14SmisOZ-HwCFChBwUQg1dQbBiVC0E0140BXk9id8uM7KGTTviUtusLAvKsklZdijIW9TQtieiYqcbYCt2tBX7L1spyOGkXzu6am-RqUlDGMag-eW2GfSAOyeuC4tN6gMJu4KPKMiTbA7bkVQYFMO8WBC9Yyg7Q91t6dpvCcgb4fRgBoVH30w29XNcf5fFs_8hiwNyVyRnwBr0Q7K3Xm3Cc3LbX67bfvUiedM1wXcjrw
  priority: 102
  providerName: Directory of Open Access Journals
Title Computational approaches in drug chemistry leveraging python powered QSPR study of antimalaria compounds by using artificial neural networks
URI https://link.springer.com/article/10.1038/s41598-025-01594-y
https://www.ncbi.nlm.nih.gov/pubmed/40456832
https://www.proquest.com/docview/3214858403
https://www.proquest.com/docview/3215237008
https://pubmed.ncbi.nlm.nih.gov/PMC12130482
https://doaj.org/article/a9e9450c17144e90bc611cf50546fdf3
Volume 15
WOSCitedRecordID wos001501594400033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xW5C48H4ElspI3CDa2E5r-4RYtCs4bBUWkMopShy7VIK0NC1S_wM_mhkn6aq8LlxcKQ_J7szY88r3ATxzlRiLwsnYYiwQpyYdxSUGP7HwiVSEZ6JsEsgm1GSip1OTdQm3pmur7PfEsFFXC0s58mMi1NF4Wiby5fJbTKxRVF3tKDQOYICeDaeWrnOR7XIsVMVKuem-lUmkPm7wvKJvygR1rI1MGm_3zqMA2_8nX_P3lslf6qbhODq7-b8LuQU3OkeUvWo15zZccfUduNZSU27vwo-W7qFLFbIeetw1bF6zarWZMdtTxbEvDu0hsB2x5ZawCNiSuNdcxd69zy5YQLBlC89QiPOvBYbS84JRKzsxOjWs3DJqvp8xUuIWz4IRymb4CT3qzT34eHb64fWbuGNuiC2Kex17irhNwSWvVKklobpxVaFrI7SXThvhVeIKU6H9J2lRjszIYthUOeF8wb308j4c1ovaPQTmS87HznF0NDGURY9Fp-jzGFUKkWgrqgie9_LLly1ARx4K61LnrbRzlHYepJ1vIzghEe-eJHDtcGGxmuWdreaFcaiziSVu-NSZpLRjzq1HXzEd-8rLCI56yeadxTf5pVgjeLq7jXKgAkxRu8UmPINxv8JFRPCg1afdTFLyrXF7jUDvadreVPfv1PPPAQ-cUPlwI8ZXX_RKeTmvv_8Xj_69jMdwXQQ7oSb1IzhcrzbuCVy139fzZjWEAzVVYdRDGJycTrKLYchnDIMJ0qhwHGRvz7NPPwHa8jj_
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAioX3o9AASPBCaLGdnZjHxDiVbVqWS3QSr2FxLG3K5XsstkF5T_wW_iNzDjJVsvr1gOnSHnJcb7xzNjj7wN4bAvRF5mVocFcIIx13AtzTH5C4SKZEJ9JYiIvNpEMBuroSA_X4Ee3F4bKKrsx0Q_UxcTQHPkWCeoo9JaRfDH9EpJqFK2udhIaDSz2bP0NU7bq-e4b_L9PhNh-e_B6J2xVBUKDTZmHjrJBnXHJiyRXkhjHeFKg2xXKSau0cElkM10gNqM4y3u6ZzCkL6ywLuNOOonvPQfnY2IWo1JBMVzO6dCqWcx1uzcnkmqrQv9Ie9gEVcj1dBzWK_7PywT8Kbb9vUTzl3Va7_62r_xvHXcVLreBNnvZWMY1WLPldbjYSG_WN-B7I2fRToWyjlrdVmxcsmK2GDHTSeGxE4v27tWc2LQmrgU2JW05W7D3H4cfmGfoZRPHEKTjz9lJhjbNqFSfFKsqlteMNheMGBlpw9fBiEXUH3wNfnUTDs-kK27Bejkp7R1gLue8by3HQBpTdYzIVIwxnU5yISJlRBHA0w4v6bQhIEl94YBUaYOuFNGVenSldQCvCFLLO4k83J-YzEZpOxalmbZok5HhCWbTVke56XNuHMbCcd8VTgaw2SEpbUe0Kj2FUQCPlpfxP9ACU1baycLf0xNo4pEK4HaD32VLYsod0H0EoFaQvdLU1Svl-NjznRPrIDoafPRZZwSn7fp7X9z992c8hI2dg3f76f7uYO8eXBLeRqkgfxPW57OFvQ8XzNf5uJo98EbO4NNZG8dPD7mNCw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LjtMwFL0aOjBiw3sgMICRYAVREztt4gVCwFBRDVTlMdKwMoljl0pDWpoWlH_gi_g67nWSjsprNwtWlZq0cpxzX_b1OQD3Tc77PDXC11gL-JGMen6GxY_PbSBi4jOJdeDEJuLRKDk6kuMt-NGehaG2ytYnOkedzzStkXdJUCfBaBmIrm3aIsb7gyfzLz4pSNFOayunUUPkwFTfsHwrHw_38V0_4Hzw4v3zl36jMOBrHNbSt1QZyjQUYR5niSD2sTDOMQTzxAqTSG7jwKQyR5wGUZr1ZE9jep8bbmwaWmEF_u8Z2MaUPOId2B4PX48_rFd4aA8tCmVzUicQSbfEaEkn2jj1y_Vk5Fcb0dCJBvwp0_29YfOXXVsXDAcX_-dpvAQXmhScPa1t5jJsmeIKnKtFOaur8L0WumgWSVlLum5KNi1YvlhNmG5F8tixQU_gdJ7YvCIWBjYn1TmTszfvxm-Z4-5lM8sQvtPP6XGK1s6oiZ-0rEqWVYyOHUwYmW_N5MGIX9R9uO788hocnspU7EKnmBXmBjCbhWHfmBBTbCziMVdLIsz2ZJxxHiSa5x48bLGj5jU1iXItBSJRNdIUIk05pKnKg2cEr_WdRCvuvpgtJqrxUiqVBq010GGMdbaRQab7YagtZslR3-ZWeLDXoko1vq5UJ5Dy4N76Mr4H2npKCzNbuXt6HI0_SDy4XmN5PZKIqgoMLB4kGyjfGOrmlWL6yTGhEx8hhiD86aPWIE7G9fe5uPnvx7gLO2gT6tVwdHALznNnrtSpvwed5WJlbsNZ_XU5LRd3Gotn8PG0reMnQ6iXVA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+approaches+in+drug+chemistry+leveraging+python+powered+QSPR+study+of+antimalaria+compounds+by+using+artificial+neural+networks&rft.jtitle=Scientific+reports&rft.date=2025-06-02&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=19307&rft_id=info:doi/10.1038%2Fs41598-025-01594-y&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon