Intelligent agriculture: deep learning in UAV-based remote sensing imagery for crop diseases and pests detection

Controlling crop diseases and pests is essential for intelligent agriculture (IA) due to the significant reduction in crop yield and quality caused by these problems. In recent years, the remote sensing (RS) areas has been prevailed over by unmanned aerial vehicle (UAV)-based applications. Herein, b...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Frontiers in plant science Ročník 15; s. 1435016
Hlavní autori: Zhu, Hongyan, Lin, Chengzhi, Liu, Gengqi, Wang, Dani, Qin, Shuai, Li, Anjie, Xu, Jun-Li, He, Yong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland Frontiers Media SA 24.10.2024
Frontiers Media S.A
Predmet:
ISSN:1664-462X, 1664-462X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Controlling crop diseases and pests is essential for intelligent agriculture (IA) due to the significant reduction in crop yield and quality caused by these problems. In recent years, the remote sensing (RS) areas has been prevailed over by unmanned aerial vehicle (UAV)-based applications. Herein, by using methods such as keyword co-contribution analysis and author co-occurrence analysis in bibliometrics, we found out the hot-spots of this field. UAV platforms equipped with various types of cameras and other advanced sensors, combined with artificial intelligence (AI) algorithms, especially for deep learning (DL) were reviewed. Acknowledging the critical role of comprehending crop diseases and pests, along with their defining traits, we provided a concise overview as indispensable foundational knowledge. Additionally, some widely used traditional machine learning (ML) algorithms were presented and the performance results were tabulated to form a comparison. Furthermore, we summarized crop diseases and pests monitoring techniques using DL and introduced the application for prediction and classification. Take it a step further, the newest and the most concerned applications of large language model (LLM) and large vision model (LVM) in agriculture were also mentioned herein. At the end of this review, we comprehensively discussed some deficiencies in the existing research and some challenges to be solved, as well as some practical solutions and suggestions in the near future.
AbstractList Controlling crop diseases and pests is essential for intelligent agriculture (IA) due to the significant reduction in crop yield and quality caused by these problems. In recent years, the remote sensing (RS) areas has been prevailed over by unmanned aerial vehicle (UAV)-based applications. Herein, by using methods such as keyword co-contribution analysis and author co-occurrence analysis in bibliometrics, we found out the hot-spots of this field. UAV platforms equipped with various types of cameras and other advanced sensors, combined with artificial intelligence (AI) algorithms, especially for deep learning (DL) were reviewed. Acknowledging the critical role of comprehending crop diseases and pests, along with their defining traits, we provided a concise overview as indispensable foundational knowledge. Additionally, some widely used traditional machine learning (ML) algorithms were presented and the performance results were tabulated to form a comparison. Furthermore, we summarized crop diseases and pests monitoring techniques using DL and introduced the application for prediction and classification. Take it a step further, the newest and the most concerned applications of large language model (LLM) and large vision model (LVM) in agriculture were also mentioned herein. At the end of this review, we comprehensively discussed some deficiencies in the existing research and some challenges to be solved, as well as some practical solutions and suggestions in the near future.
Controlling crop diseases and pests is essential for intelligent agriculture (IA) due to the significant reduction in crop yield and quality caused by these problems. In recent years, the remote sensing (RS) areas has been prevailed over by unmanned aerial vehicle (UAV)-based applications. Herein, by using methods such as keyword co-contribution analysis and author co-occurrence analysis in bibliometrics, we found out the hot-spots of this field. UAV platforms equipped with various types of cameras and other advanced sensors, combined with artificial intelligence (AI) algorithms, especially for deep learning (DL) were reviewed. Acknowledging the critical role of comprehending crop diseases and pests, along with their defining traits, we provided a concise overview as indispensable foundational knowledge. Additionally, some widely used traditional machine learning (ML) algorithms were presented and the performance results were tabulated to form a comparison. Furthermore, we summarized crop diseases and pests monitoring techniques using DL and introduced the application for prediction and classification. Take it a step further, the newest and the most concerned applications of large language model (LLM) and large vision model (LVM) in agriculture were also mentioned herein. At the end of this review, we comprehensively discussed some deficiencies in the existing research and some challenges to be solved, as well as some practical solutions and suggestions in the near future.Controlling crop diseases and pests is essential for intelligent agriculture (IA) due to the significant reduction in crop yield and quality caused by these problems. In recent years, the remote sensing (RS) areas has been prevailed over by unmanned aerial vehicle (UAV)-based applications. Herein, by using methods such as keyword co-contribution analysis and author co-occurrence analysis in bibliometrics, we found out the hot-spots of this field. UAV platforms equipped with various types of cameras and other advanced sensors, combined with artificial intelligence (AI) algorithms, especially for deep learning (DL) were reviewed. Acknowledging the critical role of comprehending crop diseases and pests, along with their defining traits, we provided a concise overview as indispensable foundational knowledge. Additionally, some widely used traditional machine learning (ML) algorithms were presented and the performance results were tabulated to form a comparison. Furthermore, we summarized crop diseases and pests monitoring techniques using DL and introduced the application for prediction and classification. Take it a step further, the newest and the most concerned applications of large language model (LLM) and large vision model (LVM) in agriculture were also mentioned herein. At the end of this review, we comprehensively discussed some deficiencies in the existing research and some challenges to be solved, as well as some practical solutions and suggestions in the near future.
Author Wang, Dani
Qin, Shuai
Xu, Jun-Li
Zhu, Hongyan
Lin, Chengzhi
Li, Anjie
Liu, Gengqi
He, Yong
AuthorAffiliation 1 Guangxi Key Laboratory of Brain-inspired Computing and Intelligent Chips, School of Electronic and Information Engineering, Guangxi Normal University , Guilin , China
4 College of Biosystems Engineering and Food Science, Zhejiang University , Hangzhou , China
2 Key Laboratory of Integrated Circuits and Microsystems (Guangxi Normal University), Education Department of Guangxi Zhuang Autonomous Region , Guilin , China
3 School of Biosystems and Food Engineering, University College Dublin , Dublin , Ireland
AuthorAffiliation_xml – name: 1 Guangxi Key Laboratory of Brain-inspired Computing and Intelligent Chips, School of Electronic and Information Engineering, Guangxi Normal University , Guilin , China
– name: 4 College of Biosystems Engineering and Food Science, Zhejiang University , Hangzhou , China
– name: 2 Key Laboratory of Integrated Circuits and Microsystems (Guangxi Normal University), Education Department of Guangxi Zhuang Autonomous Region , Guilin , China
– name: 3 School of Biosystems and Food Engineering, University College Dublin , Dublin , Ireland
Author_xml – sequence: 1
  givenname: Hongyan
  surname: Zhu
  fullname: Zhu, Hongyan
– sequence: 2
  givenname: Chengzhi
  surname: Lin
  fullname: Lin, Chengzhi
– sequence: 3
  givenname: Gengqi
  surname: Liu
  fullname: Liu, Gengqi
– sequence: 4
  givenname: Dani
  surname: Wang
  fullname: Wang, Dani
– sequence: 5
  givenname: Shuai
  surname: Qin
  fullname: Qin, Shuai
– sequence: 6
  givenname: Anjie
  surname: Li
  fullname: Li, Anjie
– sequence: 7
  givenname: Jun-Li
  surname: Xu
  fullname: Xu, Jun-Li
– sequence: 8
  givenname: Yong
  surname: He
  fullname: He, Yong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39512475$$D View this record in MEDLINE/PubMed
BookMark eNp1Ul1rFDEUDVKxde0P8EUCvvgya77myxcpRe1CwRcrvoVMcjNmmU3GJCP035vtbqUtNC8J9557ODnnvkYnPnhA6C0la867_qOdp7RmhIk1FbwmtHmBzmjTiEo07NfJg_cpOk9pS8qpCen79hU65X1NmWjrMzRvfIZpciP4jNUYnV6mvET4hA3AjCdQ0Ts_YufxzcXPalAJDI6wCxlwAp_uejs1QrzFNkSsY5ixcQkKMGHlDZ4h5VTYMujsgn-DXlo1JTg_3it08_XLj8ur6vr7t83lxXWlRS9yBQrAUsKGBkDX1gBhmumhrQfSdqzjmmoqGO1NzXtQeigF6FTDaMetYAPjK7Q58JqgtnKORWS8lUE5eVcIcZQqZqcnkMrqhg1Ed7ZnwoBRhFnVkeKRBm4GKFyfD1zzMuzA6OJVVNMj0scd737LMfyVlNaCtKQrDB-ODDH8WYojcueSLsYrD2FJktPyJ1bTEuUKvX8C3YYl-uKV5KzlHSnQpqDePZT0X8t9sgXQHgAlkZQiWKldVvsEikI3SUrkfo3kfo3kfo3kcY3KJH0yeU_-_Mw_B7zNwA
CitedBy_id crossref_primary_10_3389_fpls_2025_1519001
crossref_primary_10_3390_agriculture15111146
crossref_primary_10_1016_j_compag_2025_110128
crossref_primary_10_3390_rs17091502
crossref_primary_10_3390_agronomy14112649
crossref_primary_10_3390_agriculture15131418
crossref_primary_10_1186_s13007_025_01396_3
crossref_primary_10_3390_computers14080309
crossref_primary_10_3390_plants14050671
crossref_primary_10_3390_robotics14090119
crossref_primary_10_1016_j_compag_2025_110287
crossref_primary_10_3390_ijms26115324
crossref_primary_10_3390_plants14162544
crossref_primary_10_3390_drones9080529
crossref_primary_10_3390_rs17050906
crossref_primary_10_3389_fpls_2025_1612898
crossref_primary_10_3390_su17177602
crossref_primary_10_3389_fpls_2025_1576756
crossref_primary_10_1016_j_engappai_2025_110117
Cites_doi 10.1016/j.biosystemseng.2020.02.016
10.1016/j.rse.2013.07.031
10.1564/v29_aug_04
10.1109/TCSVT.2022.3214430
10.3390/s22010031
10.1109/TPAMI.2020.2983686
10.1007/978-3-319-24574-4_28
10.1016/j.compag.2020.105234
10.1109/JSTARS.2013.2248345
10.1109/TASLP.2014.2339736
10.1007/s41348-022-00578-8
10.48550/arXiv.1704.04861
10.21275/ART20203995
10.1007/s11859-012-0809-4
10.3390/s17102173
10.1016/j.jnca.2019.102461
10.3390/rs13132567
10.48550/arXiv.2303.08774
10.3390/s20123535
10.1016/j.compag.2024.108924
10.1016/j.compag.2016.12.015
10.1038/nature14539
10.1038/srep16564
10.3390/info11020095
10.3390/app12020593
10.25165/j.ijabe.20211401.5714
10.1109/ACCESS.2019.2912200
10.48550/arXiv.1409.1556
10.1016/S0034-4257(99)00067-X
10.1016/j.srs.2021.100019
10.3390/s18030868
10.1016/j.compag.2018.10.014
10.48550/arXiv.2304.06136
10.3389/fpls.2017.01111
10.1016/j.compag.2022.107137
10.3389/fpls.2021.628575
10.1016/j.compag.2019.104943
10.3390/agronomy12030555
10.17660/ActaHortic.2002.578.36
10.1016/S0303-2434(03)00008-4
10.1109/5.726791
10.3390/f13030418
10.1016/j.cj.2022.07.003
10.1016/B978-0-12-741252-8.50010-8
10.1094/PDIS-12-17-1893-RE
10.1093/jxb/ert029
10.1016/j.sysarc.2019.01.011
10.1088/1755-1315/440/5/052041
10.3390/rs13163207
10.3390/rs13193841
10.1007/s41348-019-00234-8
10.1016/j.compag.2018.02.016
10.1007/s11356-020-09517-2
10.1007/s41348-021-00500-8
10.1109/LGRS.2011.2172185
10.3390/smartcities3030039
10.3390/s20051487
10.1016/j.ejrs.2022.04.006
10.3390/ijms20010206
10.1080/01431169508954588
10.1016/j.isprsjprs.2014.02.013
10.1016/j.infrared.2021.103898
10.3390/agronomy11040646
10.1007/s10812-021-01129-z
10.1016/j.comnet.2020.107148
10.1016/j.compag.2021.106476
10.1016/j.isprsjprs.2018.04.011
10.1080/01431161.2017.1410300
10.3390/app10196668
10.1016/j.compag.2023.108168
10.26438/ijcse/v6i9.451456
10.1079/PAVSNNR201611014
10.1109/MGRS.2016.2548504
10.1016/j.procs.2018.07.070
10.1016/j.compag.2020.105446
10.1016/j.indcrop.2016.07.008
10.1038/nature24270
10.3390/f11121258
10.1007/s00521-013-1522-8
10.1126/science.aaw1572
10.3864/j.issn.0578-1752.2022.05.005
10.1007/978-3-319-64332-8_3
10.7671/j.issn.1001-411X.201905082
10.1016/j.jep.2017.04.009
10.1016/j.procs.2020.02.082
10.3390/agriculture11050420
10.3390/rs12162659
10.1016/j.biosystemseng.2020.07.001
10.1016/j.agwat.2015.01.020
10.34133/plantphenomics.0022
10.3390/rs13224562
10.3390/agriculture11121216
10.1109/CVPRW.2019.00322
ContentType Journal Article
Copyright Copyright © 2024 Zhu, Lin, Liu, Wang, Qin, Li, Xu and He.
2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2024 Zhu, Lin, Liu, Wang, Qin, Li, Xu and He 2024 Zhu, Lin, Liu, Wang, Qin, Li, Xu and He
Copyright_xml – notice: Copyright © 2024 Zhu, Lin, Liu, Wang, Qin, Li, Xu and He.
– notice: 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2024 Zhu, Lin, Liu, Wang, Qin, Li, Xu and He 2024 Zhu, Lin, Liu, Wang, Qin, Li, Xu and He
DBID AAYXX
CITATION
NPM
3V.
7X2
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M0K
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3389/fpls.2024.1435016
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Agricultural Science Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Agricultural Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals - NZ
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Agricultural Science Database
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals - NZ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
Agriculture
EISSN 1664-462X
ExternalDocumentID oai_doaj_org_article_afc62b0c8f924deda02fa80951ce3dbe
PMC11540708
39512475
10_3389_fpls_2024_1435016
Genre Journal Article
Review
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
ACXDI
IPNFZ
NPM
RIG
3V.
7X2
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M0K
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c494t-eaeef102b6eec5fde02c2cb75b078283c1c14219d539eacb3c1e8a62183f42b23
IEDL.DBID M7P
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001348664900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1664-462X
IngestDate Fri Oct 03 12:50:39 EDT 2025
Thu Aug 21 18:30:10 EDT 2025
Fri Sep 05 13:25:35 EDT 2025
Fri Nov 21 21:20:47 EST 2025
Thu Apr 03 06:58:36 EDT 2025
Sat Nov 29 02:55:59 EST 2025
Tue Nov 18 22:42:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords unmanned aerial vehicle (UAV)
crop diseases and pests
remote sensing (RS)
intelligent agriculture (IA)
deep learning (DL)
Language English
License Copyright © 2024 Zhu, Lin, Liu, Wang, Qin, Li, Xu and He.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-eaeef102b6eec5fde02c2cb75b078283c1c14219d539eacb3c1e8a62183f42b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
Ke Xu, Anhui Polytechnic University, China
José Luis Hernández-Hernández, Chilpancingo Institute of Technology, Mexico
These authors have contributed equally to this work and share first authorship
Reviewed by: Lingxian Zhang, China Agricultural University, China
Edited by: Jun Ni, Nanjing Agricultural University, China
OpenAccessLink https://www.proquest.com/docview/3273801286?pq-origsite=%requestingapplication%
PMID 39512475
PQID 3273801286
PQPubID 7426805
ParticipantIDs doaj_primary_oai_doaj_org_article_afc62b0c8f924deda02fa80951ce3dbe
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11540708
proquest_miscellaneous_3128325114
proquest_journals_3273801286
pubmed_primary_39512475
crossref_citationtrail_10_3389_fpls_2024_1435016
crossref_primary_10_3389_fpls_2024_1435016
PublicationCentury 2000
PublicationDate 2024-10-24
PublicationDateYYYYMMDD 2024-10-24
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-24
  day: 24
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in plant science
PublicationTitleAlternate Front Plant Sci
PublicationYear 2024
Publisher Frontiers Media SA
Frontiers Media S.A
Publisher_xml – name: Frontiers Media SA
– name: Frontiers Media S.A
References Bhujel (B8) 2022; 129
Su (B89) 2020; 3
van Iersel (B93) 2018; 141
Calderón (B12) 2013; 139
Song (B88) 2022; 10
Gao (B34) 2020; 20
He (B37) 2016
Howard (B40) 2017
Mardanisamani (B67) 2019
Ali (B6) 2022; 25
Xie (B99) 2017
Wang (B97) 2020; 43
Lei (B55) 2021; 13
Ren (B82) 2020; 440
Costa (B24) 2013; 64
Zhang (B110) 2003; 4
Kannojia (B46) 2018; 6
Liu (B59) 2018; 102
Kuska (B50) 2024; 221
Wang (B96) 2017; 204
Hecht-Nielsen (B39) 1992
Thenkabail (B91) 2000; 71
Yan (B103) 2020; 20
Li (B56) 2020; 11
Mittal (B69) 2019; 97
DadrasJavan (B25) 2019; 126
Dalsass (B26) 2016
Feng (B29) 2021; 13
Carvajal-Yepes (B15) 2019; 364
Abd El-Ghany (B1) 2020; 27
Alvarez-Vanhard (B7) 2021; 3
Xie (B100) 2015; 5
Colomina (B23) 2014; 92
LeCun (B54) 1998; 86
Qi (B76) 2019; 20
Ahmad (B5) 2022; 12
Achiam (B4) 2023
Ronneberger (B84) 2015
Yang (B107) 2020; 166
Zhao (B112) 2012; 17
Wang (B95) 2024
Chaube (B16) 2005
Simonyan (B87) 2014
Abdulridha (B3) 2020; 197
Oh (B73) 2021; 13
Qing (B77) 2023; 213
Chen (B17) 2021
Gayathri (B36) 2020
Gago (B33) 2015; 153
Kerkech (B47) 2020; 174
LeCun (B53) 2015; 521
Zhou (B114) 2023; 5
Calou (B13) 2020; 193
Liu (B60) 2023; 33
Rangarajan (B80) 2018; 133
Lu (B63) 2023
Wallelign (B94) 2018
Luo (B64) 2013; 6
Hunt (B42) 2018; 39
Feng (B31) 2022; 55
Lan (B52) 2020; 171
Ding (B28) 2014; 25
Li (B57) 2016; 91
Yang (B104) 2015; 31
Silver (B86) 2017; 550
Radoglou-Grammatikis (B78) 2020; 172
Mahesh (B66) 2020; 9
Shrestha (B85) 2019; 7
Darwin (B27) 2021; 11
Xiao (B98) 2022; 199
Chen (B19) 2017; 33
Chen (B20) 2002; 578
Khan (B48) 2022; 12
Ma (B65) 2021; 52
Tuia (B92) 2016; 4
Abdel-Hamid (B2) 2014; 22
Thangaraj (B90) 2021; 129
Huang (B41) 2021; 11
Chen (B18) 2021; 14
Xie (B101) 2017; 135
Bunting (B11) 2017
Carranza-Flores (B14) 2020
Lan (B51) 2019; 40
Zheng (B113) 2018; 18
Yinka-Banjo (B108) 2019
He (B38) 2018; 29
Zhang (B109) 2019; 165
Chen (B21) 2021; 11
Ribeiro-Gomes (B83) 2017; 17
Liu (B61) 2020; 11
Xu (B102) 2022; 13
Licciardi (B58) 2011; 9
Rao (B81) 2021; 12
Yang (B106) 2022
García (B35) 2020; 10
Lu (B62) 2020; 12
Jiang (B43) 2021; 118
Yang (B105) 2017; 8
Cock (B22) 2016; 2016
Feng (B30) 2021; 22
Kale (B44) 2021; 9
Kamilaris (B45) 2018; 147
Neupane (B72) 2021; 13
Zhao (B111) 2013; 44
Pang (B74) 2021; 87
Francesconi (B32) 2021; 12
Bravo-Reyna (B9) 2020
Kouadio (B49) 2018; 155
Peñuelas (B75) 1995; 16
Marin (B68) 2021; 190
Nazarenko (B71) 2019
Radosavovic (B79) 2020
Mukherjee (B70) 2019; 148
Brown (B10) 2020; 33
References_xml – volume: 193
  start-page: 115
  year: 2020
  ident: B13
  article-title: The use of UAVs in monitoring yellow sigatoka in banana
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2020.02.016
– volume: 139
  start-page: 231
  year: 2013
  ident: B12
  article-title: High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.07.031
– volume: 29
  start-page: 162
  year: 2018
  ident: B38
  article-title: Rapid development of unmanned aerial vehicles (UAV) for plant protection and application technology in China
  publication-title: Outlooks Pest Manage.
  doi: 10.1564/v29_aug_04
– volume: 33
  start-page: 1643
  year: 2023
  ident: B60
  article-title: Multi-purpose oriented single nighttime image haze removal based on unified variational retinex model
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2022.3214430
– start-page: 1
  year: 2019
  ident: B71
  article-title: Features of application of machine learning methods for classification of network traffic (features, advantages, disadvantages)
– volume: 22
  year: 2021
  ident: B30
  article-title: Monitoring wheat powdery mildew based on hyperspectral, thermal infrared, and RGB image data fusion
  publication-title: Sensors
  doi: 10.3390/s22010031
– volume: 43
  start-page: 3349
  year: 2020
  ident: B97
  article-title: Deep high-resolution representation learning for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.2983686
– volume-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science
  year: 2015
  ident: B84
  article-title: U-net: Convolutional networks for biomedical image segmentation
  doi: 10.1007/978-3-319-24574-4_28
– volume: 171
  year: 2020
  ident: B52
  article-title: Comparison of machine learning methods for citrus greening detection on UAV multispectral images
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105234
– volume: 6
  start-page: 690
  year: 2013
  ident: B64
  article-title: Detecting aphid density of winter wheat leaf using hyperspectral measurements
  publication-title: IEEE J. Selected Topics Appl. Earth Observations Remote Sens.
  doi: 10.1109/JSTARS.2013.2248345
– volume: 22
  start-page: 1533
  year: 2014
  ident: B2
  article-title: Convolutional neural networks for speech recognition
  publication-title: IEEE/ACM Trans. audio speech Lang. Process.
  doi: 10.1109/TASLP.2014.2339736
– volume: 33
  start-page: 82
  year: 2017
  ident: B19
  article-title: Evaluation and test of effective spraying width of aerial spraying on plant protection UAV
  publication-title: Trans. Chin. Soc. Agric. Eng.
– volume: 129
  start-page: 579
  year: 2022
  ident: B8
  article-title: Detection of gray mold disease and its severity on strawberry using deep learning networks
  publication-title: J. Plant Dis. Prot.
  doi: 10.1007/s41348-022-00578-8
– year: 2024
  ident: B95
  article-title: Yolov10: Real-time end-to-end object detection
  doi: 10.48550/arXiv.1704.04861
– volume: 9
  start-page: 381
  year: 2020
  ident: B66
  article-title: Machine learning algorithms-a review
  publication-title: Int. J. Sci. Res. (IJSR)
  doi: 10.21275/ART20203995
– volume: 17
  start-page: 86
  year: 2012
  ident: B112
  article-title: Characterization of the rice canopy infested with brown spot disease using field hyperspectral data
  publication-title: Wuhan Univ. J. Natural Sci.
  doi: 10.1007/s11859-012-0809-4
– volume: 17
  year: 2017
  ident: B83
  article-title: Uncooled thermal camera calibration and optimization of the photogrammetry process for UAV applications in agriculture
  publication-title: Sensors
  doi: 10.3390/s17102173
– volume: 148
  start-page: 102461
  year: 2019
  ident: B70
  article-title: A survey of unmanned aerial sensing solutions in precision agriculture
  publication-title: J. Network Comput. Appl.
  doi: 10.1016/j.jnca.2019.102461
– start-page: 398
  year: 2020
  ident: B36
  article-title: Image analysis and detection of tea leaf disease using deep learning
– volume: 13
  year: 2021
  ident: B73
  article-title: Tar spot disease quantification using unmanned aircraft systems (UAS) data
  publication-title: Remote Sens.
  doi: 10.3390/rs13132567
– year: 2023
  ident: B4
  article-title: Gpt-4 technical report
  publication-title: arXiv preprint: arXiv:2303.08774
  doi: 10.48550/arXiv.2303.08774
– volume: 20
  year: 2020
  ident: B103
  article-title: Apple leaf diseases recognition based on an improved convolutional neural network
  publication-title: Sensors
  doi: 10.3390/s20123535
– volume: 221
  year: 2024
  ident: B50
  article-title: AI for crop production–Where can large language models (LLMs) provide substantial value
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2024.108924
– volume: 135
  start-page: 154
  year: 2017
  ident: B101
  article-title: Hyperspectral imaging for classification of healthy and gray mold diseased tomato leaves with different infection severities
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2016.12.015
– volume: 521
  start-page: 436
  year: 2015
  ident: B53
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 5
  start-page: 1
  year: 2015
  ident: B100
  article-title: Detection of early blight and late blight diseases on tomato leaves using hyperspectral imaging
  publication-title: Sci. Rep.
  doi: 10.1038/srep16564
– start-page: 10428
  year: 2020
  ident: B79
  article-title: Designing network design spaces
– volume-title: Crop diseases and their management
  year: 2005
  ident: B16
– volume: 11
  year: 2020
  ident: B56
  article-title: Using deep learning for Image-Based different degrees of ginkgo leaf disease classification
  publication-title: Information
  doi: 10.3390/info11020095
– volume: 12
  year: 2022
  ident: B48
  article-title: Cucumber leaf diseases recognition using multi-level deep entropy-ELM feature Selection
  publication-title: Appl. Sci.
  doi: 10.3390/app12020593
– volume: 14
  start-page: 38
  year: 2021
  ident: B18
  article-title: Review of agricultural spraying technologies for plant protection using unmanned aerial vehicle (UAV)
  publication-title: Int. J. Agric. Biol. Eng.
  doi: 10.25165/j.ijabe.20211401.5714
– volume: 7
  start-page: 53040
  year: 2019
  ident: B85
  article-title: Review of deep learning algorithms and architectures
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2912200
– year: 2014
  ident: B87
  article-title: Very deep convolutional networks for large-scale image recognition
  doi: 10.48550/arXiv.1409.1556
– volume: 71
  start-page: 158
  year: 2000
  ident: B91
  article-title: Hyperspectral vegetation indices and their relationships with agricultural crop characteristics
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(99)00067-X
– volume: 3
  year: 2021
  ident: B7
  article-title: UAV & satellite synergies for optical remote sensing applications: A literature review
  publication-title: Sci. Remote Sens.
  doi: 10.1016/j.srs.2021.100019
– volume: 18
  year: 2018
  ident: B113
  article-title: New spectral index for detecting wheat yellow rust using Sentinel-2 multispectral imagery
  publication-title: Sensors
  doi: 10.3390/s18030868
– volume: 155
  start-page: 324
  year: 2018
  ident: B49
  article-title: Artificial intelligence approach for the prediction of Robusta coffee yield using soil fertility properties
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.10.014
– year: 2023
  ident: B63
  article-title: AGI for agriculture
  doi: 10.48550/arXiv.2304.06136
– volume: 8
  year: 2017
  ident: B105
  article-title: Unmanned aerial vehicle remote sensing for field-based crop phenotyping: current status and perspectives
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01111
– volume: 199
  year: 2022
  ident: B98
  article-title: Remote sensing detection algorithm for apple fire blight based on UAV multispectral image
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107137
– volume: 12
  year: 2021
  ident: B32
  article-title: UAV-based thermal, RGB imaging and gene expression analysis allowed detection of Fusarium head blight and gave new insights into the physiological responses to the disease in durum wheat
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.628575
– volume: 165
  year: 2019
  ident: B109
  article-title: Monitoring plant diseases and pests through remote sensing technology: A review
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.104943
– volume: 33
  start-page: 1877
  year: 2020
  ident: B10
  article-title: Language models are few-shot learners
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 9
  start-page: 364
  year: 2021
  ident: B44
  article-title: Analysis of crop disease detection with SVM, KNN and random forest classification
  publication-title: Inf. Technol. Industry
– volume: 12
  year: 2022
  ident: B5
  article-title: Technology and data fusion methods to enhance site-specific crop monitoring
  publication-title: Agronomy
  doi: 10.3390/agronomy12030555
– volume: 578
  year: 2002
  ident: B20
  article-title: Remote sensing of crop growth characteristics in greenhouses
  publication-title: Acta Hortic.
  doi: 10.17660/ActaHortic.2002.578.36
– volume: 4
  start-page: 295
  year: 2003
  ident: B110
  article-title: Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing
  publication-title: Int. J. Appl. Earth Observation Geoinformation
  doi: 10.1016/S0303-2434(03)00008-4
– volume: 86
  start-page: 2278
  year: 1998
  ident: B54
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 13
  year: 2022
  ident: B102
  article-title: Monitoring the severity of Pantana phyllostachysae Chao infestation in Moso bamboo forests based on UAV multi-spectral remote sensing feature selection
  publication-title: Forests
  doi: 10.3390/f13030418
– volume: 10
  start-page: 1312
  year: 2022
  ident: B88
  article-title: Comparison of algorithms for monitoring wheat powdery mildew using multi-angular remote sensing data
  publication-title: Crop J.
  doi: 10.1016/j.cj.2022.07.003
– volume: 31
  start-page: 184
  year: 2015
  ident: B104
  article-title: UAV based multi-load remote sensing technologies for wheat breeding information acquirement
  publication-title: Trans. Chin. Soc. Agric. Eng.
– start-page: 65
  year: 1992
  ident: B39
  article-title: Theory of the backpropagation neural network. In
  publication-title: Neural Networks Percept.
  doi: 10.1016/B978-0-12-741252-8.50010-8
– volume: 102
  start-page: 1981
  year: 2018
  ident: B59
  article-title: Detecting wheat powdery mildew and predicting grain yield using unmanned aerial photography
  publication-title: Plant Dis.
  doi: 10.1094/PDIS-12-17-1893-RE
– volume: 44
  start-page: 260
  year: 2013
  ident: B111
  article-title: On-line detection of apple surface defect based on image processing method
  publication-title: Trans. Chin. Soc Agric. Mach.
– volume: 64
  start-page: 3937
  year: 2013
  ident: B24
  article-title: Thermography to explore plant–environment interactions
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ert029
– volume: 97
  start-page: 428
  year: 2019
  ident: B69
  article-title: A Survey on optimized implementation of deep learning models on the NVIDIA Jetson platform
  publication-title: J. Syst. Architecture
  doi: 10.1016/j.sysarc.2019.01.011
– volume: 440
  year: 2020
  ident: B82
  article-title: Application and development of new drones in agriculture
  publication-title: IOP Conf. series: Earth Environ. Sci.
  doi: 10.1088/1755-1315/440/5/052041
– start-page: 111
  year: 2020
  ident: B9
  article-title: Recognition of the damage caused by the cogollero worm to the corn plant, Using artificial vision
– volume: 13
  year: 2021
  ident: B29
  article-title: Rice leaf blast classification method based on fused features and one-dimensional deep convolutional neural network
  publication-title: Remote Sens.
  doi: 10.3390/rs13163207
– start-page: 37
  volume-title: Precision agriculture’21
  year: 2021
  ident: B17
  article-title: Early detection of soil-borne diseases in field crops via remote sensing
– volume: 13
  year: 2021
  ident: B72
  article-title: Automatic identification and monitoring of plant diseases using unmanned aerial vehicles: A review
  publication-title: Remote Sens.
  doi: 10.3390/rs13193841
– volume: 126
  start-page: 307
  year: 2019
  ident: B25
  article-title: UAV-based multispectral imagery for fast Citrus Greening detection
  publication-title: J. Plant Dis. Prot.
  doi: 10.1007/s41348-019-00234-8
– start-page: 770
  year: 2016
  ident: B37
  article-title: Deep residual learning for image recognition
– volume: 52
  start-page: 171
  year: 2021
  ident: B65
  article-title: Hyperspectral remote sensing monitoring of chinese chestnut red mite insect pests in UAV
  publication-title: Trans. Chin. Soc. Agric. Machinery
– start-page: 146
  year: 2018
  ident: B94
  article-title: Soybean plant disease identification using convolutional neural network
– volume: 147
  start-page: 70
  year: 2018
  ident: B45
  article-title: Deep learning in agriculture: A survey
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.02.016
– volume: 27
  start-page: 33503
  year: 2020
  ident: B1
  article-title: A review: application of remote sensing as a promising strategy for insect pests and diseases management
  publication-title: Environ. Sci. pollut. Res.
  doi: 10.1007/s11356-020-09517-2
– volume: 129
  start-page: 469
  year: 2021
  ident: B90
  article-title: Artificial intelligence in tomato leaf disease detection: a comprehensive review and discussion
  publication-title: J. Plant Dis. Prot.
  doi: 10.1007/s41348-021-00500-8
– volume: 9
  start-page: 447
  year: 2011
  ident: B58
  article-title: Linear versus nonlinear PCA for the classification of hyperspectral data based on the extended morphological profiles
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2011.2172185
– start-page: 201
  volume-title: Advanced Information Systems Engineering. CAiSE 2022. Lecture Notes in Computer Science
  year: 2022
  ident: B106
  article-title: Crop harvest forecast via agronomy-informed process modelling and predictive monitoring
– volume: 3
  start-page: 767
  year: 2020
  ident: B89
  article-title: Advanced machine learning in point spectroscopy, RGB-and hyperspectral-imaging for automatic discriminations of crops and weeds: A review
  publication-title: Smart Cities
  doi: 10.3390/smartcities3030039
– volume: 20
  year: 2020
  ident: B34
  article-title: A framework for agricultural pest and disease monitoring based on internet-of-things and unmanned aerial vehicles
  publication-title: Sensors
  doi: 10.3390/s20051487
– volume: 25
  start-page: 711
  year: 2022
  ident: B6
  article-title: Crop yield prediction using multi sensors remote sensing
  publication-title: Egyptian J. Remote Sens. Space Sci.
  doi: 10.1016/j.ejrs.2022.04.006
– volume: 20
  year: 2019
  ident: B76
  article-title: Host-induced gene silencing: A powerful strategy to control diseases of wheat and barley
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20010206
– volume: 16
  start-page: 2727
  year: 1995
  ident: B75
  article-title: Reflectance assessment of mite effects on apple trees
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169508954588
– volume: 92
  start-page: 79
  year: 2014
  ident: B23
  article-title: Unmanned aerial systems for photogrammetry and remote sensing: A review
  publication-title: ISPRS J. Photogrammetry Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.02.013
– volume: 118
  year: 2021
  ident: B43
  article-title: Hyperspectral imaging for early identification of strawberry leaves diseases with machine learning and spectral fingerprint features
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2021.103898
– start-page: 85
  year: 2020
  ident: B14
  article-title: Search for damage of the citrus miner to the lemon leaf, implementing artificial vision techniques
– volume: 11
  year: 2021
  ident: B27
  article-title: Recognition of bloom/yield in crop images using deep learning models for smart agriculture: a review
  publication-title: Agronomy
  doi: 10.3390/agronomy11040646
– volume: 87
  start-page: 1196
  year: 2021
  ident: B74
  article-title: Impruved prediction of soluble solid content of apple using a combination of spectral and textural features of hyperspectral images
  publication-title: J. Appl. Spectrosc.
  doi: 10.1007/s10812-021-01129-z
– volume: 172
  year: 2020
  ident: B78
  article-title: A compilation of UAV applications for precision agriculture
  publication-title: Comput. Networks
  doi: 10.1016/j.comnet.2020.107148
– volume: 190
  year: 2021
  ident: B68
  article-title: Detecting coffee leaf rust with UAV-based vegetation indices and decision tree machine learning models
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106476
– volume: 141
  start-page: 112
  year: 2018
  ident: B93
  article-title: Monitoring height and greenness of non-woody floodplain vegetation with UAV time series
  publication-title: ISPRS J. Photogrammetry Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.04.011
– volume: 39
  start-page: 5345
  year: 2018
  ident: B42
  article-title: What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2017.1410300
– volume: 10
  start-page: 6668
  year: 2020
  ident: B35
  article-title: DronAway: A proposal on the use of remote sensing drones as mobile gateway for WSN in precision agriculture
  publication-title: Appl. Sci.
  doi: 10.3390/app10196668
– volume: 213
  year: 2023
  ident: B77
  article-title: GPT-aided diagnosis on agricultural image based on a new light YOLOPC
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.108168
– volume: 6
  start-page: 451
  year: 2018
  ident: B46
  article-title: Effects of varying resolution on performance of CNN based image classification: An experimental study
  publication-title: Int. J. Comput. Sci. Eng.
  doi: 10.26438/ijcse/v6i9.451456
– volume: 2016
  start-page: 1
  year: 2016
  ident: B22
  article-title: The main agricultural insect and disease pests of China and implications for the use of remote sensing for their management
  publication-title: CABI Rev.
  doi: 10.1079/PAVSNNR201611014
– volume: 4
  start-page: 41
  year: 2016
  ident: B92
  article-title: Domain adaptation for the classification of remote sensing data: An overview of recent advances
  publication-title: IEEE Geosci. Remote Sens. magazine
  doi: 10.1109/MGRS.2016.2548504
– volume: 133
  start-page: 1040
  year: 2018
  ident: B80
  article-title: Tomato crop disease classification using pre-trained deep learning algorithm
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2018.07.070
– volume: 174
  year: 2020
  ident: B47
  article-title: Vine disease detection in UAV multispectral images using optimized image registration and deep learning segmentation approach
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105446
– volume: 91
  start-page: 194
  year: 2016
  ident: B57
  article-title: Methods for estimating leaf nitrogen concentration of winter oilseed rape (Brassica napus L.) using in situ leaf spectroscopy
  publication-title: Ind. Crops Products
  doi: 10.1016/j.indcrop.2016.07.008
– volume: 550
  start-page: 354
  year: 2017
  ident: B86
  article-title: Mastering the game of go without human knowledge
  publication-title: Nature
  doi: 10.1038/nature24270
– volume: 11
  year: 2020
  ident: B61
  article-title: Discriminant analysis of the damage degree caused by pine shoot beetle to yunnan pine using UAV-based hyperspectral images
  publication-title: Forests
  doi: 10.3390/f11121258
– volume: 25
  start-page: 549
  year: 2014
  ident: B28
  article-title: Extreme learning machine and its applications
  publication-title: Neural Computing Appl.
  doi: 10.1007/s00521-013-1522-8
– volume: 364
  start-page: 1237
  year: 2019
  ident: B15
  article-title: A global surveillance system for crop diseases
  publication-title: Science
  doi: 10.1126/science.aaw1572
– volume: 55
  start-page: 890
  year: 2022
  ident: B31
  article-title: Wheat Powdery Mildew monitoring based on information fusion of multi-spectral and thermal infrared images acquired with an unmanned aerial vehicle
  publication-title: Sci. Agric. Sin.
  doi: 10.3864/j.issn.0578-1752.2022.05.005
– start-page: 39
  volume-title: The Roles of Remote Sensing in Nature Conservation
  year: 2017
  ident: B11
  article-title: Pre-processing of remotely sensed imagery
  doi: 10.1007/978-3-319-64332-8_3
– start-page: 107
  year: 2019
  ident: B108
  article-title: Sky-farmers: Applications of unmanned aerial vehicles (UAV) in agriculture
  publication-title: Autonomous vehicles
– volume: 40
  start-page: 217
  year: 2019
  ident: B51
  article-title: Development situation and problem analysis of plant protection unmanned aerial vehicle in China
  publication-title: J. South China Agric. Univ.
  doi: 10.7671/j.issn.1001-411X.201905082
– volume: 204
  start-page: 118
  year: 2017
  ident: B96
  article-title: Involvement of serotonergic, noradrenergic and dopaminergic systems in the antidepressant-like effect of ginsenoside Rb1, a major active ingredient of Panax ginseng CA Meyer
  publication-title: J. Ethnopharmacology
  doi: 10.1016/j.jep.2017.04.009
– volume: 166
  start-page: 371
  year: 2020
  ident: B107
  article-title: Research of control system for plant protection UAV based on Pixhawk
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2020.02.082
– volume: 11
  year: 2021
  ident: B21
  article-title: An approach for rice bacterial leaf streak disease segmentation and disease severity estimation
  publication-title: Agriculture
  doi: 10.3390/agriculture11050420
– volume: 12
  year: 2020
  ident: B62
  article-title: Recent advances of hyperspectral imaging technology and applications in agriculture
  publication-title: Remote Sens.
  doi: 10.3390/rs12162659
– volume: 197
  start-page: 135
  year: 2020
  ident: B3
  article-title: Detecting powdery mildew disease in squash at different stages using UAV-based hyperspectral imaging and artificial intelligence
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2020.07.001
– volume: 153
  start-page: 9
  year: 2015
  ident: B33
  article-title: UAVs challenge to assess water stress for sustainable agriculture
  publication-title: Agric. Water Manage.
  doi: 10.1016/j.agwat.2015.01.020
– volume: 5
  year: 2023
  ident: B114
  article-title: Phenotypic analysis of diseased plant leaves using supervised and weakly supervised deep learning
  publication-title: Plant Phenomics
  doi: 10.34133/plantphenomics.0022
– volume: 12
  start-page: 140
  year: 2021
  ident: B81
  article-title: Cassava leaf disease classification using separable convolutions UNet
  publication-title: Turkish J. Comput. Mathematics Educ. (TURCOMAT)
– year: 2017
  ident: B40
  article-title: Mobilenets: Efficient convolutional neural networks for mobile vision applications
  doi: 10.48550/arXiv.1704.04861
– volume: 13
  year: 2021
  ident: B55
  article-title: Remote sensing detecting of yellow leaf disease of Arecanut based on UAV multisource sensors
  publication-title: Remote Sens.
  doi: 10.3390/rs13224562
– start-page: 1492
  year: 2017
  ident: B99
  article-title: Aggregated residual transformations for deep neural networks
– volume: 11
  year: 2021
  ident: B41
  article-title: A method for segmenting disease lesions of maize leaves in real time using attention YOLACT++
  publication-title: Agriculture
  doi: 10.3390/agriculture11121216
– year: 2019
  ident: B67
  article-title: Crop lodging prediction from UAV-acquired images of wheat and canola using a DCNN augmented with handcrafted texture features
  doi: 10.1109/CVPRW.2019.00322
– start-page: 3113
  year: 2016
  ident: B26
  article-title: Correlation between the generated string powers of a photovoltaic: Power plant and module defects detected by aerial thermography
SSID ssj0000500997
Score 2.5225427
SecondaryResourceType review_article
Snippet Controlling crop diseases and pests is essential for intelligent agriculture (IA) due to the significant reduction in crop yield and quality caused by these...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1435016
SubjectTerms Agricultural production
Agriculture
Algorithms
Artificial intelligence
Crop diseases
crop diseases and pests
Crop yield
Deep learning
deep learning (DL)
intelligent agriculture (IA)
Large language models
Machine learning
Pest control
Pests
Plant diseases
Plant Science
Remote sensing
remote sensing (RS)
Sensors
unmanned aerial vehicle (UAV)
Unmanned aerial vehicles
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals - NZ
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9UwDI7QtAMXxBg_ygYKEieksr4mbdPdNsQEl4kDQ7tFqeOMJ42-6rVD2n8_u82q9xCCy65JmqaxY39W3M9CvPfgHRTYpKrQVapd5VNHupQqBBV05WqFYSw2UZ2fm8vL-ttGqS_OCZvogaeNO3IByrzJwASKFDx6l-XBGQYGgMo3yNY3q-qNYGpi9WboU03XmBSF1Uehu2Z27lx_ZISQcX3zDUc08vX_DWT-mSu54XzOnoonETXKk2m1e-IRts_E7umKkN3tvui-zryag3RX60ingcfSI3YyFoa4kstWXpz8SNlxeblGEhLKnhPYue8Xk1ncSsKwkqt6yXhz00vXetnRYnuabRgTt9rn4uLs8_dPX9JYSSEFXeshRYcYCEo0JSIUwWOWQw5NVTSMEIyCBSw02S5fqJoscUMNaFzJ8CnovMnVC7HTrlp8JSSQaGtVOlUbpRG0I5MZSuOAjQEqSER2v60WIs04V7u4thRusCQsS8KyJGyURCI-zI90E8fGvwafsqzmgUyPPTaQ0tioNPZ_SpOIw3tJ23hme6v4LyX21_SOd3M3nTa-QnEtrm5ozIJLOxFI1Yl4OSnGvBJF0-e6KhJhtlRma6nbPe3y58jozZxIZHvN64f4uAPxmDeMHWyuD8XOsL7BN2IXfg_Lfv12PCd3BK8dEQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Intelligent agriculture: deep learning in UAV-based remote sensing imagery for crop diseases and pests detection
URI https://www.ncbi.nlm.nih.gov/pubmed/39512475
https://www.proquest.com/docview/3273801286
https://www.proquest.com/docview/3128325114
https://pubmed.ncbi.nlm.nih.gov/PMC11540708
https://doaj.org/article/afc62b0c8f924deda02fa80951ce3dbe
Volume 15
WOSCitedRecordID wos001348664900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals - NZ
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: M0K
  dateStart: 20110301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: M7P
  dateStart: 20110301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: BENPR
  dateStart: 20110301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: PIMPY
  dateStart: 20110301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RxwEOPAoFQ4kWiROSqeNdv7igBKWiQo0iRFE4WevdcYhUHBOnSL3w25lxNm6DUC9cfPCurZG_2dlvd8ffALy2xmoTYeHLSCW-0on1NfmSL9HIUiU6k1i2xSaS8TidTrOJ23BrXFrlJia2gdouDO-RH0v-h4Sjafy-_ulz1Sg-XXUlNHZgj1USwjZ1b9LtsQQRE6BkfZhJa7HsuKwvWKM7VG-ZJwRc5fzGdNSq9v-Lav6dMXljCjp58L_GP4T7jnyKwdpbHsEdrA7g3mC2dAIceAD7wwXRxavHUJ92Yp0roa-7vBMWsRau2sRMzCtxPvjq82xoxRIJeRQNZ8Vz2w9WyLgSRIwFlwoT7jioEbqyoib7G3rbqs0Gq57A-cnoy4ePvivP4BuVqZWPGrEkflLEiCYqLQahCU2RRAXTjlSavukrCog2khmF94JuYKpj5mSlCotQHsJutajwGQhD_pLJWMsslQqN0hSHyzjVhiMMSuNBsEEpN067nEtoXOS0hmFgcwY2Z2BzB6wHb7pH6rVwx22dhwx915E1t9sbi-Usd0M416WJwyIwaUlrVotWB2GpU6aoBqUt0IOjDfi5CwRNfo28B6-6ZhrCfC6jK1xcUp8-14si5qs8eLr2s84SSa8PVRJ5kG554Jap2y3V_HsrE85CSxTQ0-e32_UC7vKn4Pk4VEewu1pe4kvYN79W82bZg51kmvZgbzgaTz732h0Lup4Fn3rtUOPr7xG1T07PJt_-AGt_NR8
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB1VaSXgwEf5MhRYJLggmTre9RcSQilQNWob5dCi9mTWu-MQqTgmTkH5U_xGZhzHbRDqrQeu3o21Wb-ZeetdvwfwyhqrTYCZKwMVuUpH1tWEJVeikbmKdCIxr80mosEgPjlJhmvwe_ktDB-rXObEOlHbieF35NuSvyHhbBp-KH-47BrFu6tLC40FLPZx_ouWbNX7_id6vq99f_fz0cc9t3EVcI1K1MxFjZhTWc1CRBPkFj3f-CaLgoyrZSxN13QVxbENZEJZKaMLGOuQqUSu_IyFDijlrysGewfWh_3D4Wn7VscLmHJFi-1TWv0l23l5xqrgvnrLzMRjX_VLBbD2CfgXuf37jOalord753-brrtwu6HXoreIh3uwhsUm3OqNpo3ECG7Cxs6ECPH8PpT9Vo50JvRFl3fCIpai8dMYiXEhjntfXK73VkyRsI2i4nP_3PadNUDmgqi_YDM00Wx4VUIXVpQ0XxXdbVafdysewPG1_PeH0CkmBT4GYSgiEhlqmcRSoVGaKk0extpwDkVpHPCWqEhNo87OJiFnKa3SGEgpAyllIKUNkBx40_6kXEiTXNV5h6HWdmRV8frCZDpKmySV6tyEfuaZOKdVuUWrPT_XMZNwg9Jm6MDWEmxpk-qq9AJpDrxsmylJ8c6TLnByTn267IhF3F458GiB63Ykkm7vqyhwIF5B_MpQV1uK8bdaCJ2lpKhkxU-uHtcLuLF3dHiQHvQH-0_hJk8Lsw9fbUFnNj3HZ7Bhfs7G1fR5E84Cvl53SPwBle-N9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+agriculture%3A+deep+learning+in+UAV-based+remote+sensing+imagery+for+crop+diseases+and+pests+detection&rft.jtitle=Frontiers+in+plant+science&rft.au=Zhu%2C+Hongyan&rft.au=Lin%2C+Chengzhi&rft.au=Liu%2C+Gengqi&rft.au=Wang%2C+Dani&rft.date=2024-10-24&rft.pub=Frontiers+Media+SA&rft.eissn=1664-462X&rft.volume=15&rft.spage=1435016&rft_id=info:doi/10.3389%2Ffpls.2024.1435016
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon