Intelligent agriculture: deep learning in UAV-based remote sensing imagery for crop diseases and pests detection
Controlling crop diseases and pests is essential for intelligent agriculture (IA) due to the significant reduction in crop yield and quality caused by these problems. In recent years, the remote sensing (RS) areas has been prevailed over by unmanned aerial vehicle (UAV)-based applications. Herein, b...
Uložené v:
| Vydané v: | Frontiers in plant science Ročník 15; s. 1435016 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
Frontiers Media SA
24.10.2024
Frontiers Media S.A |
| Predmet: | |
| ISSN: | 1664-462X, 1664-462X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Controlling crop diseases and pests is essential for intelligent agriculture (IA) due to the significant reduction in crop yield and quality caused by these problems. In recent years, the remote sensing (RS) areas has been prevailed over by unmanned aerial vehicle (UAV)-based applications. Herein, by using methods such as keyword co-contribution analysis and author co-occurrence analysis in bibliometrics, we found out the hot-spots of this field. UAV platforms equipped with various types of cameras and other advanced sensors, combined with artificial intelligence (AI) algorithms, especially for deep learning (DL) were reviewed. Acknowledging the critical role of comprehending crop diseases and pests, along with their defining traits, we provided a concise overview as indispensable foundational knowledge. Additionally, some widely used traditional machine learning (ML) algorithms were presented and the performance results were tabulated to form a comparison. Furthermore, we summarized crop diseases and pests monitoring techniques using DL and introduced the application for prediction and classification. Take it a step further, the newest and the most concerned applications of large language model (LLM) and large vision model (LVM) in agriculture were also mentioned herein. At the end of this review, we comprehensively discussed some deficiencies in the existing research and some challenges to be solved, as well as some practical solutions and suggestions in the near future. |
|---|---|
| AbstractList | Controlling crop diseases and pests is essential for intelligent agriculture (IA) due to the significant reduction in crop yield and quality caused by these problems. In recent years, the remote sensing (RS) areas has been prevailed over by unmanned aerial vehicle (UAV)-based applications. Herein, by using methods such as keyword co-contribution analysis and author co-occurrence analysis in bibliometrics, we found out the hot-spots of this field. UAV platforms equipped with various types of cameras and other advanced sensors, combined with artificial intelligence (AI) algorithms, especially for deep learning (DL) were reviewed. Acknowledging the critical role of comprehending crop diseases and pests, along with their defining traits, we provided a concise overview as indispensable foundational knowledge. Additionally, some widely used traditional machine learning (ML) algorithms were presented and the performance results were tabulated to form a comparison. Furthermore, we summarized crop diseases and pests monitoring techniques using DL and introduced the application for prediction and classification. Take it a step further, the newest and the most concerned applications of large language model (LLM) and large vision model (LVM) in agriculture were also mentioned herein. At the end of this review, we comprehensively discussed some deficiencies in the existing research and some challenges to be solved, as well as some practical solutions and suggestions in the near future. Controlling crop diseases and pests is essential for intelligent agriculture (IA) due to the significant reduction in crop yield and quality caused by these problems. In recent years, the remote sensing (RS) areas has been prevailed over by unmanned aerial vehicle (UAV)-based applications. Herein, by using methods such as keyword co-contribution analysis and author co-occurrence analysis in bibliometrics, we found out the hot-spots of this field. UAV platforms equipped with various types of cameras and other advanced sensors, combined with artificial intelligence (AI) algorithms, especially for deep learning (DL) were reviewed. Acknowledging the critical role of comprehending crop diseases and pests, along with their defining traits, we provided a concise overview as indispensable foundational knowledge. Additionally, some widely used traditional machine learning (ML) algorithms were presented and the performance results were tabulated to form a comparison. Furthermore, we summarized crop diseases and pests monitoring techniques using DL and introduced the application for prediction and classification. Take it a step further, the newest and the most concerned applications of large language model (LLM) and large vision model (LVM) in agriculture were also mentioned herein. At the end of this review, we comprehensively discussed some deficiencies in the existing research and some challenges to be solved, as well as some practical solutions and suggestions in the near future.Controlling crop diseases and pests is essential for intelligent agriculture (IA) due to the significant reduction in crop yield and quality caused by these problems. In recent years, the remote sensing (RS) areas has been prevailed over by unmanned aerial vehicle (UAV)-based applications. Herein, by using methods such as keyword co-contribution analysis and author co-occurrence analysis in bibliometrics, we found out the hot-spots of this field. UAV platforms equipped with various types of cameras and other advanced sensors, combined with artificial intelligence (AI) algorithms, especially for deep learning (DL) were reviewed. Acknowledging the critical role of comprehending crop diseases and pests, along with their defining traits, we provided a concise overview as indispensable foundational knowledge. Additionally, some widely used traditional machine learning (ML) algorithms were presented and the performance results were tabulated to form a comparison. Furthermore, we summarized crop diseases and pests monitoring techniques using DL and introduced the application for prediction and classification. Take it a step further, the newest and the most concerned applications of large language model (LLM) and large vision model (LVM) in agriculture were also mentioned herein. At the end of this review, we comprehensively discussed some deficiencies in the existing research and some challenges to be solved, as well as some practical solutions and suggestions in the near future. |
| Author | Wang, Dani Qin, Shuai Xu, Jun-Li Zhu, Hongyan Lin, Chengzhi Li, Anjie Liu, Gengqi He, Yong |
| AuthorAffiliation | 1 Guangxi Key Laboratory of Brain-inspired Computing and Intelligent Chips, School of Electronic and Information Engineering, Guangxi Normal University , Guilin , China 4 College of Biosystems Engineering and Food Science, Zhejiang University , Hangzhou , China 2 Key Laboratory of Integrated Circuits and Microsystems (Guangxi Normal University), Education Department of Guangxi Zhuang Autonomous Region , Guilin , China 3 School of Biosystems and Food Engineering, University College Dublin , Dublin , Ireland |
| AuthorAffiliation_xml | – name: 1 Guangxi Key Laboratory of Brain-inspired Computing and Intelligent Chips, School of Electronic and Information Engineering, Guangxi Normal University , Guilin , China – name: 4 College of Biosystems Engineering and Food Science, Zhejiang University , Hangzhou , China – name: 2 Key Laboratory of Integrated Circuits and Microsystems (Guangxi Normal University), Education Department of Guangxi Zhuang Autonomous Region , Guilin , China – name: 3 School of Biosystems and Food Engineering, University College Dublin , Dublin , Ireland |
| Author_xml | – sequence: 1 givenname: Hongyan surname: Zhu fullname: Zhu, Hongyan – sequence: 2 givenname: Chengzhi surname: Lin fullname: Lin, Chengzhi – sequence: 3 givenname: Gengqi surname: Liu fullname: Liu, Gengqi – sequence: 4 givenname: Dani surname: Wang fullname: Wang, Dani – sequence: 5 givenname: Shuai surname: Qin fullname: Qin, Shuai – sequence: 6 givenname: Anjie surname: Li fullname: Li, Anjie – sequence: 7 givenname: Jun-Li surname: Xu fullname: Xu, Jun-Li – sequence: 8 givenname: Yong surname: He fullname: He, Yong |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39512475$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1Ul1rFDEUDVKxde0P8EUCvvgya77myxcpRe1CwRcrvoVMcjNmmU3GJCP035vtbqUtNC8J9557ODnnvkYnPnhA6C0la867_qOdp7RmhIk1FbwmtHmBzmjTiEo07NfJg_cpOk9pS8qpCen79hU65X1NmWjrMzRvfIZpciP4jNUYnV6mvET4hA3AjCdQ0Ts_YufxzcXPalAJDI6wCxlwAp_uejs1QrzFNkSsY5ixcQkKMGHlDZ4h5VTYMujsgn-DXlo1JTg_3it08_XLj8ur6vr7t83lxXWlRS9yBQrAUsKGBkDX1gBhmumhrQfSdqzjmmoqGO1NzXtQeigF6FTDaMetYAPjK7Q58JqgtnKORWS8lUE5eVcIcZQqZqcnkMrqhg1Ed7ZnwoBRhFnVkeKRBm4GKFyfD1zzMuzA6OJVVNMj0scd737LMfyVlNaCtKQrDB-ODDH8WYojcueSLsYrD2FJktPyJ1bTEuUKvX8C3YYl-uKV5KzlHSnQpqDePZT0X8t9sgXQHgAlkZQiWKldVvsEikI3SUrkfo3kfo3kfo3kcY3KJH0yeU_-_Mw_B7zNwA |
| CitedBy_id | crossref_primary_10_3389_fpls_2025_1519001 crossref_primary_10_3390_agriculture15111146 crossref_primary_10_1016_j_compag_2025_110128 crossref_primary_10_3390_rs17091502 crossref_primary_10_3390_agronomy14112649 crossref_primary_10_3390_agriculture15131418 crossref_primary_10_1186_s13007_025_01396_3 crossref_primary_10_3390_computers14080309 crossref_primary_10_3390_plants14050671 crossref_primary_10_3390_robotics14090119 crossref_primary_10_1016_j_compag_2025_110287 crossref_primary_10_3390_ijms26115324 crossref_primary_10_3390_plants14162544 crossref_primary_10_3390_drones9080529 crossref_primary_10_3390_rs17050906 crossref_primary_10_3389_fpls_2025_1612898 crossref_primary_10_3390_su17177602 crossref_primary_10_3389_fpls_2025_1576756 crossref_primary_10_1016_j_engappai_2025_110117 |
| Cites_doi | 10.1016/j.biosystemseng.2020.02.016 10.1016/j.rse.2013.07.031 10.1564/v29_aug_04 10.1109/TCSVT.2022.3214430 10.3390/s22010031 10.1109/TPAMI.2020.2983686 10.1007/978-3-319-24574-4_28 10.1016/j.compag.2020.105234 10.1109/JSTARS.2013.2248345 10.1109/TASLP.2014.2339736 10.1007/s41348-022-00578-8 10.48550/arXiv.1704.04861 10.21275/ART20203995 10.1007/s11859-012-0809-4 10.3390/s17102173 10.1016/j.jnca.2019.102461 10.3390/rs13132567 10.48550/arXiv.2303.08774 10.3390/s20123535 10.1016/j.compag.2024.108924 10.1016/j.compag.2016.12.015 10.1038/nature14539 10.1038/srep16564 10.3390/info11020095 10.3390/app12020593 10.25165/j.ijabe.20211401.5714 10.1109/ACCESS.2019.2912200 10.48550/arXiv.1409.1556 10.1016/S0034-4257(99)00067-X 10.1016/j.srs.2021.100019 10.3390/s18030868 10.1016/j.compag.2018.10.014 10.48550/arXiv.2304.06136 10.3389/fpls.2017.01111 10.1016/j.compag.2022.107137 10.3389/fpls.2021.628575 10.1016/j.compag.2019.104943 10.3390/agronomy12030555 10.17660/ActaHortic.2002.578.36 10.1016/S0303-2434(03)00008-4 10.1109/5.726791 10.3390/f13030418 10.1016/j.cj.2022.07.003 10.1016/B978-0-12-741252-8.50010-8 10.1094/PDIS-12-17-1893-RE 10.1093/jxb/ert029 10.1016/j.sysarc.2019.01.011 10.1088/1755-1315/440/5/052041 10.3390/rs13163207 10.3390/rs13193841 10.1007/s41348-019-00234-8 10.1016/j.compag.2018.02.016 10.1007/s11356-020-09517-2 10.1007/s41348-021-00500-8 10.1109/LGRS.2011.2172185 10.3390/smartcities3030039 10.3390/s20051487 10.1016/j.ejrs.2022.04.006 10.3390/ijms20010206 10.1080/01431169508954588 10.1016/j.isprsjprs.2014.02.013 10.1016/j.infrared.2021.103898 10.3390/agronomy11040646 10.1007/s10812-021-01129-z 10.1016/j.comnet.2020.107148 10.1016/j.compag.2021.106476 10.1016/j.isprsjprs.2018.04.011 10.1080/01431161.2017.1410300 10.3390/app10196668 10.1016/j.compag.2023.108168 10.26438/ijcse/v6i9.451456 10.1079/PAVSNNR201611014 10.1109/MGRS.2016.2548504 10.1016/j.procs.2018.07.070 10.1016/j.compag.2020.105446 10.1016/j.indcrop.2016.07.008 10.1038/nature24270 10.3390/f11121258 10.1007/s00521-013-1522-8 10.1126/science.aaw1572 10.3864/j.issn.0578-1752.2022.05.005 10.1007/978-3-319-64332-8_3 10.7671/j.issn.1001-411X.201905082 10.1016/j.jep.2017.04.009 10.1016/j.procs.2020.02.082 10.3390/agriculture11050420 10.3390/rs12162659 10.1016/j.biosystemseng.2020.07.001 10.1016/j.agwat.2015.01.020 10.34133/plantphenomics.0022 10.3390/rs13224562 10.3390/agriculture11121216 10.1109/CVPRW.2019.00322 |
| ContentType | Journal Article |
| Copyright | Copyright © 2024 Zhu, Lin, Liu, Wang, Qin, Li, Xu and He. 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2024 Zhu, Lin, Liu, Wang, Qin, Li, Xu and He 2024 Zhu, Lin, Liu, Wang, Qin, Li, Xu and He |
| Copyright_xml | – notice: Copyright © 2024 Zhu, Lin, Liu, Wang, Qin, Li, Xu and He. – notice: 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2024 Zhu, Lin, Liu, Wang, Qin, Li, Xu and He 2024 Zhu, Lin, Liu, Wang, Qin, Li, Xu and He |
| DBID | AAYXX CITATION NPM 3V. 7X2 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M0K M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3389/fpls.2024.1435016 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Agricultural Science Collection ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Agricultural Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals - NZ |
| DatabaseTitle | CrossRef PubMed Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Agricultural Science Database PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals - NZ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Botany Agriculture |
| EISSN | 1664-462X |
| ExternalDocumentID | oai_doaj_org_article_afc62b0c8f924deda02fa80951ce3dbe PMC11540708 39512475 10_3389_fpls_2024_1435016 |
| Genre | Journal Article Review |
| GroupedDBID | 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION EBD ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM ACXDI IPNFZ NPM RIG 3V. 7X2 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M0K M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c494t-eaeef102b6eec5fde02c2cb75b078283c1c14219d539eacb3c1e8a62183f42b23 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 32 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001348664900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1664-462X |
| IngestDate | Fri Oct 03 12:50:39 EDT 2025 Thu Aug 21 18:30:10 EDT 2025 Fri Sep 05 13:25:35 EDT 2025 Fri Nov 21 21:20:47 EST 2025 Thu Apr 03 06:58:36 EDT 2025 Sat Nov 29 02:55:59 EST 2025 Tue Nov 18 22:42:27 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | unmanned aerial vehicle (UAV) crop diseases and pests remote sensing (RS) intelligent agriculture (IA) deep learning (DL) |
| Language | English |
| License | Copyright © 2024 Zhu, Lin, Liu, Wang, Qin, Li, Xu and He. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c494t-eaeef102b6eec5fde02c2cb75b078283c1c14219d539eacb3c1e8a62183f42b23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 Ke Xu, Anhui Polytechnic University, China José Luis Hernández-Hernández, Chilpancingo Institute of Technology, Mexico These authors have contributed equally to this work and share first authorship Reviewed by: Lingxian Zhang, China Agricultural University, China Edited by: Jun Ni, Nanjing Agricultural University, China |
| OpenAccessLink | https://www.proquest.com/docview/3273801286?pq-origsite=%requestingapplication% |
| PMID | 39512475 |
| PQID | 3273801286 |
| PQPubID | 7426805 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_afc62b0c8f924deda02fa80951ce3dbe pubmedcentral_primary_oai_pubmedcentral_nih_gov_11540708 proquest_miscellaneous_3128325114 proquest_journals_3273801286 pubmed_primary_39512475 crossref_citationtrail_10_3389_fpls_2024_1435016 crossref_primary_10_3389_fpls_2024_1435016 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-24 |
| PublicationDateYYYYMMDD | 2024-10-24 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-24 day: 24 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Lausanne |
| PublicationTitle | Frontiers in plant science |
| PublicationTitleAlternate | Front Plant Sci |
| PublicationYear | 2024 |
| Publisher | Frontiers Media SA Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media SA – name: Frontiers Media S.A |
| References | Bhujel (B8) 2022; 129 Su (B89) 2020; 3 van Iersel (B93) 2018; 141 Calderón (B12) 2013; 139 Song (B88) 2022; 10 Gao (B34) 2020; 20 He (B37) 2016 Howard (B40) 2017 Mardanisamani (B67) 2019 Ali (B6) 2022; 25 Xie (B99) 2017 Wang (B97) 2020; 43 Lei (B55) 2021; 13 Ren (B82) 2020; 440 Costa (B24) 2013; 64 Zhang (B110) 2003; 4 Kannojia (B46) 2018; 6 Liu (B59) 2018; 102 Kuska (B50) 2024; 221 Wang (B96) 2017; 204 Hecht-Nielsen (B39) 1992 Thenkabail (B91) 2000; 71 Yan (B103) 2020; 20 Li (B56) 2020; 11 Mittal (B69) 2019; 97 DadrasJavan (B25) 2019; 126 Dalsass (B26) 2016 Feng (B29) 2021; 13 Carvajal-Yepes (B15) 2019; 364 Abd El-Ghany (B1) 2020; 27 Alvarez-Vanhard (B7) 2021; 3 Xie (B100) 2015; 5 Colomina (B23) 2014; 92 LeCun (B54) 1998; 86 Qi (B76) 2019; 20 Ahmad (B5) 2022; 12 Achiam (B4) 2023 Ronneberger (B84) 2015 Yang (B107) 2020; 166 Zhao (B112) 2012; 17 Wang (B95) 2024 Chaube (B16) 2005 Simonyan (B87) 2014 Abdulridha (B3) 2020; 197 Oh (B73) 2021; 13 Qing (B77) 2023; 213 Chen (B17) 2021 Gayathri (B36) 2020 Gago (B33) 2015; 153 Kerkech (B47) 2020; 174 LeCun (B53) 2015; 521 Zhou (B114) 2023; 5 Calou (B13) 2020; 193 Liu (B60) 2023; 33 Rangarajan (B80) 2018; 133 Lu (B63) 2023 Wallelign (B94) 2018 Luo (B64) 2013; 6 Hunt (B42) 2018; 39 Feng (B31) 2022; 55 Lan (B52) 2020; 171 Ding (B28) 2014; 25 Li (B57) 2016; 91 Yang (B104) 2015; 31 Silver (B86) 2017; 550 Radoglou-Grammatikis (B78) 2020; 172 Mahesh (B66) 2020; 9 Shrestha (B85) 2019; 7 Darwin (B27) 2021; 11 Xiao (B98) 2022; 199 Chen (B19) 2017; 33 Chen (B20) 2002; 578 Khan (B48) 2022; 12 Ma (B65) 2021; 52 Tuia (B92) 2016; 4 Abdel-Hamid (B2) 2014; 22 Thangaraj (B90) 2021; 129 Huang (B41) 2021; 11 Chen (B18) 2021; 14 Xie (B101) 2017; 135 Bunting (B11) 2017 Carranza-Flores (B14) 2020 Lan (B51) 2019; 40 Zheng (B113) 2018; 18 Yinka-Banjo (B108) 2019 He (B38) 2018; 29 Zhang (B109) 2019; 165 Chen (B21) 2021; 11 Ribeiro-Gomes (B83) 2017; 17 Liu (B61) 2020; 11 Xu (B102) 2022; 13 Licciardi (B58) 2011; 9 Rao (B81) 2021; 12 Yang (B106) 2022 García (B35) 2020; 10 Lu (B62) 2020; 12 Jiang (B43) 2021; 118 Yang (B105) 2017; 8 Cock (B22) 2016; 2016 Feng (B30) 2021; 22 Kale (B44) 2021; 9 Kamilaris (B45) 2018; 147 Neupane (B72) 2021; 13 Zhao (B111) 2013; 44 Pang (B74) 2021; 87 Francesconi (B32) 2021; 12 Bravo-Reyna (B9) 2020 Kouadio (B49) 2018; 155 Peñuelas (B75) 1995; 16 Marin (B68) 2021; 190 Nazarenko (B71) 2019 Radosavovic (B79) 2020 Mukherjee (B70) 2019; 148 Brown (B10) 2020; 33 |
| References_xml | – volume: 193 start-page: 115 year: 2020 ident: B13 article-title: The use of UAVs in monitoring yellow sigatoka in banana publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2020.02.016 – volume: 139 start-page: 231 year: 2013 ident: B12 article-title: High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.07.031 – volume: 29 start-page: 162 year: 2018 ident: B38 article-title: Rapid development of unmanned aerial vehicles (UAV) for plant protection and application technology in China publication-title: Outlooks Pest Manage. doi: 10.1564/v29_aug_04 – volume: 33 start-page: 1643 year: 2023 ident: B60 article-title: Multi-purpose oriented single nighttime image haze removal based on unified variational retinex model publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2022.3214430 – start-page: 1 year: 2019 ident: B71 article-title: Features of application of machine learning methods for classification of network traffic (features, advantages, disadvantages) – volume: 22 year: 2021 ident: B30 article-title: Monitoring wheat powdery mildew based on hyperspectral, thermal infrared, and RGB image data fusion publication-title: Sensors doi: 10.3390/s22010031 – volume: 43 start-page: 3349 year: 2020 ident: B97 article-title: Deep high-resolution representation learning for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.2983686 – volume-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science year: 2015 ident: B84 article-title: U-net: Convolutional networks for biomedical image segmentation doi: 10.1007/978-3-319-24574-4_28 – volume: 171 year: 2020 ident: B52 article-title: Comparison of machine learning methods for citrus greening detection on UAV multispectral images publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105234 – volume: 6 start-page: 690 year: 2013 ident: B64 article-title: Detecting aphid density of winter wheat leaf using hyperspectral measurements publication-title: IEEE J. Selected Topics Appl. Earth Observations Remote Sens. doi: 10.1109/JSTARS.2013.2248345 – volume: 22 start-page: 1533 year: 2014 ident: B2 article-title: Convolutional neural networks for speech recognition publication-title: IEEE/ACM Trans. audio speech Lang. Process. doi: 10.1109/TASLP.2014.2339736 – volume: 33 start-page: 82 year: 2017 ident: B19 article-title: Evaluation and test of effective spraying width of aerial spraying on plant protection UAV publication-title: Trans. Chin. Soc. Agric. Eng. – volume: 129 start-page: 579 year: 2022 ident: B8 article-title: Detection of gray mold disease and its severity on strawberry using deep learning networks publication-title: J. Plant Dis. Prot. doi: 10.1007/s41348-022-00578-8 – year: 2024 ident: B95 article-title: Yolov10: Real-time end-to-end object detection doi: 10.48550/arXiv.1704.04861 – volume: 9 start-page: 381 year: 2020 ident: B66 article-title: Machine learning algorithms-a review publication-title: Int. J. Sci. Res. (IJSR) doi: 10.21275/ART20203995 – volume: 17 start-page: 86 year: 2012 ident: B112 article-title: Characterization of the rice canopy infested with brown spot disease using field hyperspectral data publication-title: Wuhan Univ. J. Natural Sci. doi: 10.1007/s11859-012-0809-4 – volume: 17 year: 2017 ident: B83 article-title: Uncooled thermal camera calibration and optimization of the photogrammetry process for UAV applications in agriculture publication-title: Sensors doi: 10.3390/s17102173 – volume: 148 start-page: 102461 year: 2019 ident: B70 article-title: A survey of unmanned aerial sensing solutions in precision agriculture publication-title: J. Network Comput. Appl. doi: 10.1016/j.jnca.2019.102461 – start-page: 398 year: 2020 ident: B36 article-title: Image analysis and detection of tea leaf disease using deep learning – volume: 13 year: 2021 ident: B73 article-title: Tar spot disease quantification using unmanned aircraft systems (UAS) data publication-title: Remote Sens. doi: 10.3390/rs13132567 – year: 2023 ident: B4 article-title: Gpt-4 technical report publication-title: arXiv preprint: arXiv:2303.08774 doi: 10.48550/arXiv.2303.08774 – volume: 20 year: 2020 ident: B103 article-title: Apple leaf diseases recognition based on an improved convolutional neural network publication-title: Sensors doi: 10.3390/s20123535 – volume: 221 year: 2024 ident: B50 article-title: AI for crop production–Where can large language models (LLMs) provide substantial value publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2024.108924 – volume: 135 start-page: 154 year: 2017 ident: B101 article-title: Hyperspectral imaging for classification of healthy and gray mold diseased tomato leaves with different infection severities publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2016.12.015 – volume: 521 start-page: 436 year: 2015 ident: B53 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 5 start-page: 1 year: 2015 ident: B100 article-title: Detection of early blight and late blight diseases on tomato leaves using hyperspectral imaging publication-title: Sci. Rep. doi: 10.1038/srep16564 – start-page: 10428 year: 2020 ident: B79 article-title: Designing network design spaces – volume-title: Crop diseases and their management year: 2005 ident: B16 – volume: 11 year: 2020 ident: B56 article-title: Using deep learning for Image-Based different degrees of ginkgo leaf disease classification publication-title: Information doi: 10.3390/info11020095 – volume: 12 year: 2022 ident: B48 article-title: Cucumber leaf diseases recognition using multi-level deep entropy-ELM feature Selection publication-title: Appl. Sci. doi: 10.3390/app12020593 – volume: 14 start-page: 38 year: 2021 ident: B18 article-title: Review of agricultural spraying technologies for plant protection using unmanned aerial vehicle (UAV) publication-title: Int. J. Agric. Biol. Eng. doi: 10.25165/j.ijabe.20211401.5714 – volume: 7 start-page: 53040 year: 2019 ident: B85 article-title: Review of deep learning algorithms and architectures publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2912200 – year: 2014 ident: B87 article-title: Very deep convolutional networks for large-scale image recognition doi: 10.48550/arXiv.1409.1556 – volume: 71 start-page: 158 year: 2000 ident: B91 article-title: Hyperspectral vegetation indices and their relationships with agricultural crop characteristics publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(99)00067-X – volume: 3 year: 2021 ident: B7 article-title: UAV & satellite synergies for optical remote sensing applications: A literature review publication-title: Sci. Remote Sens. doi: 10.1016/j.srs.2021.100019 – volume: 18 year: 2018 ident: B113 article-title: New spectral index for detecting wheat yellow rust using Sentinel-2 multispectral imagery publication-title: Sensors doi: 10.3390/s18030868 – volume: 155 start-page: 324 year: 2018 ident: B49 article-title: Artificial intelligence approach for the prediction of Robusta coffee yield using soil fertility properties publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.10.014 – year: 2023 ident: B63 article-title: AGI for agriculture doi: 10.48550/arXiv.2304.06136 – volume: 8 year: 2017 ident: B105 article-title: Unmanned aerial vehicle remote sensing for field-based crop phenotyping: current status and perspectives publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.01111 – volume: 199 year: 2022 ident: B98 article-title: Remote sensing detection algorithm for apple fire blight based on UAV multispectral image publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.107137 – volume: 12 year: 2021 ident: B32 article-title: UAV-based thermal, RGB imaging and gene expression analysis allowed detection of Fusarium head blight and gave new insights into the physiological responses to the disease in durum wheat publication-title: Front. Plant Sci. doi: 10.3389/fpls.2021.628575 – volume: 165 year: 2019 ident: B109 article-title: Monitoring plant diseases and pests through remote sensing technology: A review publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.104943 – volume: 33 start-page: 1877 year: 2020 ident: B10 article-title: Language models are few-shot learners publication-title: Adv. Neural Inf. Process. Syst. – volume: 9 start-page: 364 year: 2021 ident: B44 article-title: Analysis of crop disease detection with SVM, KNN and random forest classification publication-title: Inf. Technol. Industry – volume: 12 year: 2022 ident: B5 article-title: Technology and data fusion methods to enhance site-specific crop monitoring publication-title: Agronomy doi: 10.3390/agronomy12030555 – volume: 578 year: 2002 ident: B20 article-title: Remote sensing of crop growth characteristics in greenhouses publication-title: Acta Hortic. doi: 10.17660/ActaHortic.2002.578.36 – volume: 4 start-page: 295 year: 2003 ident: B110 article-title: Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing publication-title: Int. J. Appl. Earth Observation Geoinformation doi: 10.1016/S0303-2434(03)00008-4 – volume: 86 start-page: 2278 year: 1998 ident: B54 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 13 year: 2022 ident: B102 article-title: Monitoring the severity of Pantana phyllostachysae Chao infestation in Moso bamboo forests based on UAV multi-spectral remote sensing feature selection publication-title: Forests doi: 10.3390/f13030418 – volume: 10 start-page: 1312 year: 2022 ident: B88 article-title: Comparison of algorithms for monitoring wheat powdery mildew using multi-angular remote sensing data publication-title: Crop J. doi: 10.1016/j.cj.2022.07.003 – volume: 31 start-page: 184 year: 2015 ident: B104 article-title: UAV based multi-load remote sensing technologies for wheat breeding information acquirement publication-title: Trans. Chin. Soc. Agric. Eng. – start-page: 65 year: 1992 ident: B39 article-title: Theory of the backpropagation neural network. In publication-title: Neural Networks Percept. doi: 10.1016/B978-0-12-741252-8.50010-8 – volume: 102 start-page: 1981 year: 2018 ident: B59 article-title: Detecting wheat powdery mildew and predicting grain yield using unmanned aerial photography publication-title: Plant Dis. doi: 10.1094/PDIS-12-17-1893-RE – volume: 44 start-page: 260 year: 2013 ident: B111 article-title: On-line detection of apple surface defect based on image processing method publication-title: Trans. Chin. Soc Agric. Mach. – volume: 64 start-page: 3937 year: 2013 ident: B24 article-title: Thermography to explore plant–environment interactions publication-title: J. Exp. Bot. doi: 10.1093/jxb/ert029 – volume: 97 start-page: 428 year: 2019 ident: B69 article-title: A Survey on optimized implementation of deep learning models on the NVIDIA Jetson platform publication-title: J. Syst. Architecture doi: 10.1016/j.sysarc.2019.01.011 – volume: 440 year: 2020 ident: B82 article-title: Application and development of new drones in agriculture publication-title: IOP Conf. series: Earth Environ. Sci. doi: 10.1088/1755-1315/440/5/052041 – start-page: 111 year: 2020 ident: B9 article-title: Recognition of the damage caused by the cogollero worm to the corn plant, Using artificial vision – volume: 13 year: 2021 ident: B29 article-title: Rice leaf blast classification method based on fused features and one-dimensional deep convolutional neural network publication-title: Remote Sens. doi: 10.3390/rs13163207 – start-page: 37 volume-title: Precision agriculture’21 year: 2021 ident: B17 article-title: Early detection of soil-borne diseases in field crops via remote sensing – volume: 13 year: 2021 ident: B72 article-title: Automatic identification and monitoring of plant diseases using unmanned aerial vehicles: A review publication-title: Remote Sens. doi: 10.3390/rs13193841 – volume: 126 start-page: 307 year: 2019 ident: B25 article-title: UAV-based multispectral imagery for fast Citrus Greening detection publication-title: J. Plant Dis. Prot. doi: 10.1007/s41348-019-00234-8 – start-page: 770 year: 2016 ident: B37 article-title: Deep residual learning for image recognition – volume: 52 start-page: 171 year: 2021 ident: B65 article-title: Hyperspectral remote sensing monitoring of chinese chestnut red mite insect pests in UAV publication-title: Trans. Chin. Soc. Agric. Machinery – start-page: 146 year: 2018 ident: B94 article-title: Soybean plant disease identification using convolutional neural network – volume: 147 start-page: 70 year: 2018 ident: B45 article-title: Deep learning in agriculture: A survey publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.02.016 – volume: 27 start-page: 33503 year: 2020 ident: B1 article-title: A review: application of remote sensing as a promising strategy for insect pests and diseases management publication-title: Environ. Sci. pollut. Res. doi: 10.1007/s11356-020-09517-2 – volume: 129 start-page: 469 year: 2021 ident: B90 article-title: Artificial intelligence in tomato leaf disease detection: a comprehensive review and discussion publication-title: J. Plant Dis. Prot. doi: 10.1007/s41348-021-00500-8 – volume: 9 start-page: 447 year: 2011 ident: B58 article-title: Linear versus nonlinear PCA for the classification of hyperspectral data based on the extended morphological profiles publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2011.2172185 – start-page: 201 volume-title: Advanced Information Systems Engineering. CAiSE 2022. Lecture Notes in Computer Science year: 2022 ident: B106 article-title: Crop harvest forecast via agronomy-informed process modelling and predictive monitoring – volume: 3 start-page: 767 year: 2020 ident: B89 article-title: Advanced machine learning in point spectroscopy, RGB-and hyperspectral-imaging for automatic discriminations of crops and weeds: A review publication-title: Smart Cities doi: 10.3390/smartcities3030039 – volume: 20 year: 2020 ident: B34 article-title: A framework for agricultural pest and disease monitoring based on internet-of-things and unmanned aerial vehicles publication-title: Sensors doi: 10.3390/s20051487 – volume: 25 start-page: 711 year: 2022 ident: B6 article-title: Crop yield prediction using multi sensors remote sensing publication-title: Egyptian J. Remote Sens. Space Sci. doi: 10.1016/j.ejrs.2022.04.006 – volume: 20 year: 2019 ident: B76 article-title: Host-induced gene silencing: A powerful strategy to control diseases of wheat and barley publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20010206 – volume: 16 start-page: 2727 year: 1995 ident: B75 article-title: Reflectance assessment of mite effects on apple trees publication-title: Int. J. Remote Sens. doi: 10.1080/01431169508954588 – volume: 92 start-page: 79 year: 2014 ident: B23 article-title: Unmanned aerial systems for photogrammetry and remote sensing: A review publication-title: ISPRS J. Photogrammetry Remote Sens. doi: 10.1016/j.isprsjprs.2014.02.013 – volume: 118 year: 2021 ident: B43 article-title: Hyperspectral imaging for early identification of strawberry leaves diseases with machine learning and spectral fingerprint features publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2021.103898 – start-page: 85 year: 2020 ident: B14 article-title: Search for damage of the citrus miner to the lemon leaf, implementing artificial vision techniques – volume: 11 year: 2021 ident: B27 article-title: Recognition of bloom/yield in crop images using deep learning models for smart agriculture: a review publication-title: Agronomy doi: 10.3390/agronomy11040646 – volume: 87 start-page: 1196 year: 2021 ident: B74 article-title: Impruved prediction of soluble solid content of apple using a combination of spectral and textural features of hyperspectral images publication-title: J. Appl. Spectrosc. doi: 10.1007/s10812-021-01129-z – volume: 172 year: 2020 ident: B78 article-title: A compilation of UAV applications for precision agriculture publication-title: Comput. Networks doi: 10.1016/j.comnet.2020.107148 – volume: 190 year: 2021 ident: B68 article-title: Detecting coffee leaf rust with UAV-based vegetation indices and decision tree machine learning models publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106476 – volume: 141 start-page: 112 year: 2018 ident: B93 article-title: Monitoring height and greenness of non-woody floodplain vegetation with UAV time series publication-title: ISPRS J. Photogrammetry Remote Sens. doi: 10.1016/j.isprsjprs.2018.04.011 – volume: 39 start-page: 5345 year: 2018 ident: B42 article-title: What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2017.1410300 – volume: 10 start-page: 6668 year: 2020 ident: B35 article-title: DronAway: A proposal on the use of remote sensing drones as mobile gateway for WSN in precision agriculture publication-title: Appl. Sci. doi: 10.3390/app10196668 – volume: 213 year: 2023 ident: B77 article-title: GPT-aided diagnosis on agricultural image based on a new light YOLOPC publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2023.108168 – volume: 6 start-page: 451 year: 2018 ident: B46 article-title: Effects of varying resolution on performance of CNN based image classification: An experimental study publication-title: Int. J. Comput. Sci. Eng. doi: 10.26438/ijcse/v6i9.451456 – volume: 2016 start-page: 1 year: 2016 ident: B22 article-title: The main agricultural insect and disease pests of China and implications for the use of remote sensing for their management publication-title: CABI Rev. doi: 10.1079/PAVSNNR201611014 – volume: 4 start-page: 41 year: 2016 ident: B92 article-title: Domain adaptation for the classification of remote sensing data: An overview of recent advances publication-title: IEEE Geosci. Remote Sens. magazine doi: 10.1109/MGRS.2016.2548504 – volume: 133 start-page: 1040 year: 2018 ident: B80 article-title: Tomato crop disease classification using pre-trained deep learning algorithm publication-title: Proc. Comput. Sci. doi: 10.1016/j.procs.2018.07.070 – volume: 174 year: 2020 ident: B47 article-title: Vine disease detection in UAV multispectral images using optimized image registration and deep learning segmentation approach publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105446 – volume: 91 start-page: 194 year: 2016 ident: B57 article-title: Methods for estimating leaf nitrogen concentration of winter oilseed rape (Brassica napus L.) using in situ leaf spectroscopy publication-title: Ind. Crops Products doi: 10.1016/j.indcrop.2016.07.008 – volume: 550 start-page: 354 year: 2017 ident: B86 article-title: Mastering the game of go without human knowledge publication-title: Nature doi: 10.1038/nature24270 – volume: 11 year: 2020 ident: B61 article-title: Discriminant analysis of the damage degree caused by pine shoot beetle to yunnan pine using UAV-based hyperspectral images publication-title: Forests doi: 10.3390/f11121258 – volume: 25 start-page: 549 year: 2014 ident: B28 article-title: Extreme learning machine and its applications publication-title: Neural Computing Appl. doi: 10.1007/s00521-013-1522-8 – volume: 364 start-page: 1237 year: 2019 ident: B15 article-title: A global surveillance system for crop diseases publication-title: Science doi: 10.1126/science.aaw1572 – volume: 55 start-page: 890 year: 2022 ident: B31 article-title: Wheat Powdery Mildew monitoring based on information fusion of multi-spectral and thermal infrared images acquired with an unmanned aerial vehicle publication-title: Sci. Agric. Sin. doi: 10.3864/j.issn.0578-1752.2022.05.005 – start-page: 39 volume-title: The Roles of Remote Sensing in Nature Conservation year: 2017 ident: B11 article-title: Pre-processing of remotely sensed imagery doi: 10.1007/978-3-319-64332-8_3 – start-page: 107 year: 2019 ident: B108 article-title: Sky-farmers: Applications of unmanned aerial vehicles (UAV) in agriculture publication-title: Autonomous vehicles – volume: 40 start-page: 217 year: 2019 ident: B51 article-title: Development situation and problem analysis of plant protection unmanned aerial vehicle in China publication-title: J. South China Agric. Univ. doi: 10.7671/j.issn.1001-411X.201905082 – volume: 204 start-page: 118 year: 2017 ident: B96 article-title: Involvement of serotonergic, noradrenergic and dopaminergic systems in the antidepressant-like effect of ginsenoside Rb1, a major active ingredient of Panax ginseng CA Meyer publication-title: J. Ethnopharmacology doi: 10.1016/j.jep.2017.04.009 – volume: 166 start-page: 371 year: 2020 ident: B107 article-title: Research of control system for plant protection UAV based on Pixhawk publication-title: Proc. Comput. Sci. doi: 10.1016/j.procs.2020.02.082 – volume: 11 year: 2021 ident: B21 article-title: An approach for rice bacterial leaf streak disease segmentation and disease severity estimation publication-title: Agriculture doi: 10.3390/agriculture11050420 – volume: 12 year: 2020 ident: B62 article-title: Recent advances of hyperspectral imaging technology and applications in agriculture publication-title: Remote Sens. doi: 10.3390/rs12162659 – volume: 197 start-page: 135 year: 2020 ident: B3 article-title: Detecting powdery mildew disease in squash at different stages using UAV-based hyperspectral imaging and artificial intelligence publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2020.07.001 – volume: 153 start-page: 9 year: 2015 ident: B33 article-title: UAVs challenge to assess water stress for sustainable agriculture publication-title: Agric. Water Manage. doi: 10.1016/j.agwat.2015.01.020 – volume: 5 year: 2023 ident: B114 article-title: Phenotypic analysis of diseased plant leaves using supervised and weakly supervised deep learning publication-title: Plant Phenomics doi: 10.34133/plantphenomics.0022 – volume: 12 start-page: 140 year: 2021 ident: B81 article-title: Cassava leaf disease classification using separable convolutions UNet publication-title: Turkish J. Comput. Mathematics Educ. (TURCOMAT) – year: 2017 ident: B40 article-title: Mobilenets: Efficient convolutional neural networks for mobile vision applications doi: 10.48550/arXiv.1704.04861 – volume: 13 year: 2021 ident: B55 article-title: Remote sensing detecting of yellow leaf disease of Arecanut based on UAV multisource sensors publication-title: Remote Sens. doi: 10.3390/rs13224562 – start-page: 1492 year: 2017 ident: B99 article-title: Aggregated residual transformations for deep neural networks – volume: 11 year: 2021 ident: B41 article-title: A method for segmenting disease lesions of maize leaves in real time using attention YOLACT++ publication-title: Agriculture doi: 10.3390/agriculture11121216 – year: 2019 ident: B67 article-title: Crop lodging prediction from UAV-acquired images of wheat and canola using a DCNN augmented with handcrafted texture features doi: 10.1109/CVPRW.2019.00322 – start-page: 3113 year: 2016 ident: B26 article-title: Correlation between the generated string powers of a photovoltaic: Power plant and module defects detected by aerial thermography |
| SSID | ssj0000500997 |
| Score | 2.5225427 |
| SecondaryResourceType | review_article |
| Snippet | Controlling crop diseases and pests is essential for intelligent agriculture (IA) due to the significant reduction in crop yield and quality caused by these... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1435016 |
| SubjectTerms | Agricultural production Agriculture Algorithms Artificial intelligence Crop diseases crop diseases and pests Crop yield Deep learning deep learning (DL) intelligent agriculture (IA) Large language models Machine learning Pest control Pests Plant diseases Plant Science Remote sensing remote sensing (RS) Sensors unmanned aerial vehicle (UAV) Unmanned aerial vehicles |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals - NZ dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9UwDI7QtAMXxBg_ygYKEieksr4mbdPdNsQEl4kDQ7tFqeOMJ42-6rVD2n8_u82q9xCCy65JmqaxY39W3M9CvPfgHRTYpKrQVapd5VNHupQqBBV05WqFYSw2UZ2fm8vL-ttGqS_OCZvogaeNO3IByrzJwASKFDx6l-XBGQYGgMo3yNY3q-qNYGpi9WboU03XmBSF1Uehu2Z27lx_ZISQcX3zDUc08vX_DWT-mSu54XzOnoonETXKk2m1e-IRts_E7umKkN3tvui-zryag3RX60ingcfSI3YyFoa4kstWXpz8SNlxeblGEhLKnhPYue8Xk1ncSsKwkqt6yXhz00vXetnRYnuabRgTt9rn4uLs8_dPX9JYSSEFXeshRYcYCEo0JSIUwWOWQw5NVTSMEIyCBSw02S5fqJoscUMNaFzJ8CnovMnVC7HTrlp8JSSQaGtVOlUbpRG0I5MZSuOAjQEqSER2v60WIs04V7u4thRusCQsS8KyJGyURCI-zI90E8fGvwafsqzmgUyPPTaQ0tioNPZ_SpOIw3tJ23hme6v4LyX21_SOd3M3nTa-QnEtrm5ozIJLOxFI1Yl4OSnGvBJF0-e6KhJhtlRma6nbPe3y58jozZxIZHvN64f4uAPxmDeMHWyuD8XOsL7BN2IXfg_Lfv12PCd3BK8dEQ priority: 102 providerName: Directory of Open Access Journals |
| Title | Intelligent agriculture: deep learning in UAV-based remote sensing imagery for crop diseases and pests detection |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39512475 https://www.proquest.com/docview/3273801286 https://www.proquest.com/docview/3128325114 https://pubmed.ncbi.nlm.nih.gov/PMC11540708 https://doaj.org/article/afc62b0c8f924deda02fa80951ce3dbe |
| Volume | 15 |
| WOSCitedRecordID | wos001348664900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals - NZ customDbUrl: eissn: 1664-462X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000500997 issn: 1664-462X databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1664-462X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000500997 issn: 1664-462X databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 1664-462X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000500997 issn: 1664-462X databaseCode: M0K dateStart: 20110301 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1664-462X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000500997 issn: 1664-462X databaseCode: M7P dateStart: 20110301 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1664-462X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000500997 issn: 1664-462X databaseCode: BENPR dateStart: 20110301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1664-462X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000500997 issn: 1664-462X databaseCode: PIMPY dateStart: 20110301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RxwEOPAoFQ4kWiROSqeNdv7igBKWiQo0iRFE4WevdcYhUHBOnSL3w25lxNm6DUC9cfPCurZG_2dlvd8ffALy2xmoTYeHLSCW-0on1NfmSL9HIUiU6k1i2xSaS8TidTrOJ23BrXFrlJia2gdouDO-RH0v-h4Sjafy-_ulz1Sg-XXUlNHZgj1USwjZ1b9LtsQQRE6BkfZhJa7HsuKwvWKM7VG-ZJwRc5fzGdNSq9v-Lav6dMXljCjp58L_GP4T7jnyKwdpbHsEdrA7g3mC2dAIceAD7wwXRxavHUJ92Yp0roa-7vBMWsRau2sRMzCtxPvjq82xoxRIJeRQNZ8Vz2w9WyLgSRIwFlwoT7jioEbqyoib7G3rbqs0Gq57A-cnoy4ePvivP4BuVqZWPGrEkflLEiCYqLQahCU2RRAXTjlSavukrCog2khmF94JuYKpj5mSlCotQHsJutajwGQhD_pLJWMsslQqN0hSHyzjVhiMMSuNBsEEpN067nEtoXOS0hmFgcwY2Z2BzB6wHb7pH6rVwx22dhwx915E1t9sbi-Usd0M416WJwyIwaUlrVotWB2GpU6aoBqUt0IOjDfi5CwRNfo28B6-6ZhrCfC6jK1xcUp8-14si5qs8eLr2s84SSa8PVRJ5kG554Jap2y3V_HsrE85CSxTQ0-e32_UC7vKn4Pk4VEewu1pe4kvYN79W82bZg51kmvZgbzgaTz732h0Lup4Fn3rtUOPr7xG1T07PJt_-AGt_NR8 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB1VaSXgwEf5MhRYJLggmTre9RcSQilQNWob5dCi9mTWu-MQqTgmTkH5U_xGZhzHbRDqrQeu3o21Wb-ZeetdvwfwyhqrTYCZKwMVuUpH1tWEJVeikbmKdCIxr80mosEgPjlJhmvwe_ktDB-rXObEOlHbieF35NuSvyHhbBp-KH-47BrFu6tLC40FLPZx_ouWbNX7_id6vq99f_fz0cc9t3EVcI1K1MxFjZhTWc1CRBPkFj3f-CaLgoyrZSxN13QVxbENZEJZKaMLGOuQqUSu_IyFDijlrysGewfWh_3D4Wn7VscLmHJFi-1TWv0l23l5xqrgvnrLzMRjX_VLBbD2CfgXuf37jOalord753-brrtwu6HXoreIh3uwhsUm3OqNpo3ECG7Cxs6ECPH8PpT9Vo50JvRFl3fCIpai8dMYiXEhjntfXK73VkyRsI2i4nP_3PadNUDmgqi_YDM00Wx4VUIXVpQ0XxXdbVafdysewPG1_PeH0CkmBT4GYSgiEhlqmcRSoVGaKk0extpwDkVpHPCWqEhNo87OJiFnKa3SGEgpAyllIKUNkBx40_6kXEiTXNV5h6HWdmRV8frCZDpKmySV6tyEfuaZOKdVuUWrPT_XMZNwg9Jm6MDWEmxpk-qq9AJpDrxsmylJ8c6TLnByTn267IhF3F458GiB63Ykkm7vqyhwIF5B_MpQV1uK8bdaCJ2lpKhkxU-uHtcLuLF3dHiQHvQH-0_hJk8Lsw9fbUFnNj3HZ7Bhfs7G1fR5E84Cvl53SPwBle-N9Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+agriculture%3A+deep+learning+in+UAV-based+remote+sensing+imagery+for+crop+diseases+and+pests+detection&rft.jtitle=Frontiers+in+plant+science&rft.au=Zhu%2C+Hongyan&rft.au=Lin%2C+Chengzhi&rft.au=Liu%2C+Gengqi&rft.au=Wang%2C+Dani&rft.date=2024-10-24&rft.pub=Frontiers+Media+SA&rft.eissn=1664-462X&rft.volume=15&rft.spage=1435016&rft_id=info:doi/10.3389%2Ffpls.2024.1435016 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon |