Machine learning and molecular descriptors enable rational solvent selection in asymmetric catalysis
Rational solvent selection remains a significant challenge in process development. Here we describe a hybrid mechanistic-machine learning approach, geared towards automated process development workflow. A library of 459 solvents was used, for which 12 conventional molecular descriptors, two reaction...
Gespeichert in:
| Veröffentlicht in: | Chemical science (Cambridge) Jg. 1; H. 27; S. 6697 - 676 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
Royal Society of Chemistry
21.07.2019
|
| Schlagworte: | |
| ISSN: | 2041-6520, 2041-6539 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Rational solvent selection remains a significant challenge in process development. Here we describe a hybrid mechanistic-machine learning approach, geared towards automated process development workflow. A library of 459 solvents was used, for which 12 conventional molecular descriptors, two reaction-specific descriptors, and additional descriptors based on screening charge density, were calculated. Gaussian process surrogate models were trained on experimental data from a Rh(CO)
2
(acac)/Josiphos catalysed asymmetric hydrogenation of a chiral α-β unsaturated γ-lactam. With two simultaneous objectives - high conversion and high diastereomeric excess - the multi-objective algorithm, trained on the initial dataset of 25 solvents, has identified solvents leading to better reaction outcomes. In addition to being a powerful design of experiments (DoE) methodology, the resulting Gaussian process surrogate model for conversion is, in statistical terms, predictive, with a cross-validation correlation coefficient of 0.84. After identifying promising solvents, the composition of solvent mixtures and optimal reaction temperature were found using a black-box Bayesian optimisation. We then demonstrated the application of a new genetic programming approach to select an appropriate machine learning model for a specific physical system, which should allow the transition of the overall process development workflow into the future robotic laboratories.
Rational solvent selection remains a significant challenge in process development. |
|---|---|
| AbstractList | Rational solvent selection remains a significant challenge in process development. Here we describe a hybrid mechanistic-machine learning approach, geared towards automated process development workflow. A library of 459 solvents was used, for which 12 conventional molecular descriptors, two reaction-specific descriptors, and additional descriptors based on screening charge density, were calculated. Gaussian process surrogate models were trained on experimental data from a Rh(CO)
2
(acac)/Josiphos catalysed asymmetric hydrogenation of a chiral α-β unsaturated γ-lactam. With two simultaneous objectives – high conversion and high diastereomeric excess – the multi-objective algorithm, trained on the initial dataset of 25 solvents, has identified solvents leading to better reaction outcomes. In addition to being a powerful design of experiments (DoE) methodology, the resulting Gaussian process surrogate model for conversion is, in statistical terms, predictive, with a cross-validation correlation coefficient of 0.84. After identifying promising solvents, the composition of solvent mixtures and optimal reaction temperature were found using a black-box Bayesian optimisation. We then demonstrated the application of a new genetic programming approach to select an appropriate machine learning model for a specific physical system, which should allow the transition of the overall process development workflow into the future robotic laboratories. Rational solvent selection remains a significant challenge in process development. Rational solvent selection remains a significant challenge in process development. Here we describe a hybrid mechanistic-machine learning approach, geared towards automated process development workflow. A library of 459 solvents was used, for which 12 conventional molecular descriptors, two reaction-specific descriptors, and additional descriptors based on screening charge density, were calculated. Gaussian process surrogate models were trained on experimental data from a Rh(CO)2(acac)/Josiphos catalysed asymmetric hydrogenation of a chiral α-β unsaturated γ-lactam. With two simultaneous objectives – high conversion and high diastereomeric excess – the multi-objective algorithm, trained on the initial dataset of 25 solvents, has identified solvents leading to better reaction outcomes. In addition to being a powerful design of experiments (DoE) methodology, the resulting Gaussian process surrogate model for conversion is, in statistical terms, predictive, with a cross-validation correlation coefficient of 0.84. After identifying promising solvents, the composition of solvent mixtures and optimal reaction temperature were found using a black-box Bayesian optimisation. We then demonstrated the application of a new genetic programming approach to select an appropriate machine learning model for a specific physical system, which should allow the transition of the overall process development workflow into the future robotic laboratories. Rational solvent selection remains a significant challenge in process development. Here we describe a hybrid mechanistic-machine learning approach, geared towards automated process development workflow. A library of 459 solvents was used, for which 12 conventional molecular descriptors, two reaction-specific descriptors, and additional descriptors based on screening charge density, were calculated. Gaussian process surrogate models were trained on experimental data from a Rh(CO)2(acac)/Josiphos catalysed asymmetric hydrogenation of a chiral α-β unsaturated γ-lactam. With two simultaneous objectives - high conversion and high diastereomeric excess - the multi-objective algorithm, trained on the initial dataset of 25 solvents, has identified solvents leading to better reaction outcomes. In addition to being a powerful design of experiments (DoE) methodology, the resulting Gaussian process surrogate model for conversion is, in statistical terms, predictive, with a cross-validation correlation coefficient of 0.84. After identifying promising solvents, the composition of solvent mixtures and optimal reaction temperature were found using a black-box Bayesian optimisation. We then demonstrated the application of a new genetic programming approach to select an appropriate machine learning model for a specific physical system, which should allow the transition of the overall process development workflow into the future robotic laboratories.Rational solvent selection remains a significant challenge in process development. Here we describe a hybrid mechanistic-machine learning approach, geared towards automated process development workflow. A library of 459 solvents was used, for which 12 conventional molecular descriptors, two reaction-specific descriptors, and additional descriptors based on screening charge density, were calculated. Gaussian process surrogate models were trained on experimental data from a Rh(CO)2(acac)/Josiphos catalysed asymmetric hydrogenation of a chiral α-β unsaturated γ-lactam. With two simultaneous objectives - high conversion and high diastereomeric excess - the multi-objective algorithm, trained on the initial dataset of 25 solvents, has identified solvents leading to better reaction outcomes. In addition to being a powerful design of experiments (DoE) methodology, the resulting Gaussian process surrogate model for conversion is, in statistical terms, predictive, with a cross-validation correlation coefficient of 0.84. After identifying promising solvents, the composition of solvent mixtures and optimal reaction temperature were found using a black-box Bayesian optimisation. We then demonstrated the application of a new genetic programming approach to select an appropriate machine learning model for a specific physical system, which should allow the transition of the overall process development workflow into the future robotic laboratories. Rational solvent selection remains a significant challenge in process development. Here we describe a hybrid mechanistic-machine learning approach, geared towards automated process development workflow. A library of 459 solvents was used, for which 12 conventional molecular descriptors, two reaction-specific descriptors, and additional descriptors based on screening charge density, were calculated. Gaussian process surrogate models were trained on experimental data from a Rh(CO) (acac)/Josiphos catalysed asymmetric hydrogenation of a chiral α-β unsaturated γ-lactam. With two simultaneous objectives - high conversion and high diastereomeric excess - the multi-objective algorithm, trained on the initial dataset of 25 solvents, has identified solvents leading to better reaction outcomes. In addition to being a powerful design of experiments (DoE) methodology, the resulting Gaussian process surrogate model for conversion is, in statistical terms, predictive, with a cross-validation correlation coefficient of 0.84. After identifying promising solvents, the composition of solvent mixtures and optimal reaction temperature were found using a black-box Bayesian optimisation. We then demonstrated the application of a new genetic programming approach to select an appropriate machine learning model for a specific physical system, which should allow the transition of the overall process development workflow into the future robotic laboratories. Rational solvent selection remains a significant challenge in process development. Here we describe a hybrid mechanistic-machine learning approach, geared towards automated process development workflow. A library of 459 solvents was used, for which 12 conventional molecular descriptors, two reaction-specific descriptors, and additional descriptors based on screening charge density, were calculated. Gaussian process surrogate models were trained on experimental data from a Rh(CO) 2 (acac)/Josiphos catalysed asymmetric hydrogenation of a chiral α-β unsaturated γ-lactam. With two simultaneous objectives - high conversion and high diastereomeric excess - the multi-objective algorithm, trained on the initial dataset of 25 solvents, has identified solvents leading to better reaction outcomes. In addition to being a powerful design of experiments (DoE) methodology, the resulting Gaussian process surrogate model for conversion is, in statistical terms, predictive, with a cross-validation correlation coefficient of 0.84. After identifying promising solvents, the composition of solvent mixtures and optimal reaction temperature were found using a black-box Bayesian optimisation. We then demonstrated the application of a new genetic programming approach to select an appropriate machine learning model for a specific physical system, which should allow the transition of the overall process development workflow into the future robotic laboratories. Rational solvent selection remains a significant challenge in process development. Rational solvent selection remains a significant challenge in process development. Here we describe a hybrid mechanistic-machine learning approach, geared towards automated process development workflow. A library of 459 solvents was used, for which 12 conventional molecular descriptors, two reaction-specific descriptors, and additional descriptors based on screening charge density, were calculated. Gaussian process surrogate models were trained on experimental data from a Rh(CO)2(acac)/Josiphos catalysed asymmetric hydrogenation of a chiral α-β unsaturated γ-lactam. With two simultaneous objectives – high conversion and high diastereomeric excess – the multi-objective algorithm, trained on the initial dataset of 25 solvents, has identified solvents leading to better reaction outcomes. In addition to being a powerful design of experiments (DoE) methodology, the resulting Gaussian process surrogate model for conversion is, in statistical terms, predictive, with a cross-validation correlation coefficient of 0.84. After identifying promising solvents, the composition of solvent mixtures and optimal reaction temperature were found using a black-box Bayesian optimisation. We then demonstrated the application of a new genetic programming approach to select an appropriate machine learning model for a specific physical system, which should allow the transition of the overall process development workflow into the future robotic laboratories. |
| Author | Lapkin, Alexei Schweidtmann, Artur M Deutsch, Paul Amar, Yehia Cao, Liwei |
| AuthorAffiliation | UCB Pharma S.A. Allée de la Recherche Aachener Verfahrenstechnik - Process Systems Engineering Department of Chemical Engineering and Biotechnology RWTH Aachen University University of Cambridge Cambridge Centre for Advanced Research and Education in Singapore Ltd |
| AuthorAffiliation_xml | – sequence: 0 name: UCB Pharma S.A. Allée de la Recherche – sequence: 0 name: Department of Chemical Engineering and Biotechnology – sequence: 0 name: Aachener Verfahrenstechnik - Process Systems Engineering – sequence: 0 name: Cambridge Centre for Advanced Research and Education in Singapore Ltd – sequence: 0 name: RWTH Aachen University – sequence: 0 name: University of Cambridge – name: c UCB Pharma S.A. Allée de la Recherche , 60 1070 , Brussels , Belgium – name: a Department of Chemical Engineering and Biotechnology , University of Cambridge , Philippa Fawcett Drive , Cambridge , CB3 0AS , UK . Email: aal35@cam.ac.uk – name: b Aachener Verfahrenstechnik – Process Systems Engineering , RWTH Aachen University , Aachen , Germany – name: d Cambridge Centre for Advanced Research and Education in Singapore Ltd. , 1 Create Way, CREATE Tower #05-05 , 138602 , Singapore |
| Author_xml | – sequence: 1 givenname: Yehia surname: Amar fullname: Amar, Yehia – sequence: 2 givenname: Artur M surname: Schweidtmann fullname: Schweidtmann, Artur M – sequence: 3 givenname: Paul surname: Deutsch fullname: Deutsch, Paul – sequence: 4 givenname: Liwei surname: Cao fullname: Cao, Liwei – sequence: 5 givenname: Alexei surname: Lapkin fullname: Lapkin, Alexei |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31367324$$D View this record in MEDLINE/PubMed |
| BookMark | eNptks1rFTEUxYNUbK3duFcCbkR4mq_JTDaF8vALKi7UdbiTudOmZJJnMlN4_715ffWpxWwScn_3cHJPnpKjmCIS8pyzt5xJ886Z4hjvlIJH5EQwxVe6kebocBbsmJyVcsPqkpI3on1CjiWXupVCnZDhC7hrH5EGhBx9vKIQBzqlgG4JkOmAxWW_mVMuFCP0AWmG2acIgZYUbjHOtGCld3fURwplO004Z--ogxnCtvjyjDweIRQ8u99PyY8P77-vP60uv378vL64XDll1LzCtjMwyL7TvQQp5SgGZA0fXdePI3a8x0YY0RslnVDcsNZI7DoYHTZydD3IU3K-190s_YSDq-YyBLvJfoK8tQm8_bcS_bW9SrdWa9EoI6rA63uBnH4uWGY7-eIwBIiYlmKF0G2rtBRNRV89QG_SkutYdlSjGq0V05V6-bejg5XfAVTgzR5wOZWScTwgnNldwHZtvq3vAr6oMHsAOz_fpVFf48P_W17sW3JxB-k_f0b-AtSrs_I |
| CitedBy_id | crossref_primary_10_1002_cmtd_202000044 crossref_primary_10_1039_D3RE00476G crossref_primary_10_1039_D2QO01680J crossref_primary_10_1002_cssc_202301639 crossref_primary_10_1126_science_abj0999 crossref_primary_10_3390_molecules28010322 crossref_primary_10_1016_j_ces_2025_122628 crossref_primary_10_1038_s41467_025_62825_4 crossref_primary_10_1246_bcsj_20200045 crossref_primary_10_1016_j_molliq_2024_125582 crossref_primary_10_1002_chem_202401626 crossref_primary_10_1038_s41529_024_00435_z crossref_primary_10_1016_j_coche_2021_100752 crossref_primary_10_3390_futurepharmacol5020024 crossref_primary_10_1002_cmtd_202100053 crossref_primary_10_1016_j_jddst_2023_104751 crossref_primary_10_1021_acs_joc_5c01229 crossref_primary_10_1021_acsengineeringau_5c00004 crossref_primary_10_1038_s41929_024_01150_3 crossref_primary_10_1002_wcms_1540 crossref_primary_10_1039_D1RE00549A crossref_primary_10_1039_D1SC00482D crossref_primary_10_1002_advs_202105547 crossref_primary_10_1039_D2SC05974F crossref_primary_10_1093_bib_bbaf286 crossref_primary_10_1016_j_ces_2021_116938 crossref_primary_10_1016_j_memsci_2020_117860 crossref_primary_10_1002_qre_3025 crossref_primary_10_1021_cbe_4c00170 crossref_primary_10_1016_j_trechm_2020_12_001 crossref_primary_10_1038_s41598_022_08997_1 crossref_primary_10_1016_j_cej_2019_123340 crossref_primary_10_1016_j_chemosphere_2022_136447 crossref_primary_10_1039_D4RE00175C crossref_primary_10_3390_pr11020330 crossref_primary_10_1186_s13321_025_01027_y crossref_primary_10_1002_aic_18182 crossref_primary_10_1021_acscentsci_3c00050 crossref_primary_10_1070_RCR5012 crossref_primary_10_1007_s12532_021_00204_y crossref_primary_10_1039_D2QO00448H crossref_primary_10_1002_cite_202100083 crossref_primary_10_1016_j_fuel_2022_125340 crossref_primary_10_1039_D3RE00628J crossref_primary_10_1016_j_pmatsci_2022_101043 crossref_primary_10_1002_wcms_1603 crossref_primary_10_1016_j_ces_2024_119881 crossref_primary_10_1039_D3RE00539A crossref_primary_10_1146_annurev_chembioeng_092320_120230 crossref_primary_10_1039_D2RE00008C crossref_primary_10_1002_aic_18698 crossref_primary_10_1002_aic_17248 crossref_primary_10_1093_bulcsj_uoaf022 crossref_primary_10_1039_D3CY00083D crossref_primary_10_1039_D3SC01261A crossref_primary_10_1016_j_cej_2022_138443 crossref_primary_10_1016_j_mcat_2021_111876 crossref_primary_10_1021_acs_oprd_4c00533 crossref_primary_10_1016_j_cej_2022_139099 crossref_primary_10_1016_j_molliq_2023_122355 crossref_primary_10_3390_suschem3010009 crossref_primary_10_1002_chem_202402207 crossref_primary_10_1016_j_compchemeng_2025_109236 crossref_primary_10_1016_j_ddtec_2020_06_002 crossref_primary_10_1039_D0EE02543G crossref_primary_10_1016_j_cep_2022_109148 |
| Cites_doi | 10.1021/acs.accounts.6b00261 10.1073/pnas.1013331108 10.1016/j.ces.2013.11.020 10.1021/ja01131a010 10.1039/C5CY02197A 10.3762/bjoc.13.18 10.1016/j.ijggc.2016.03.022 10.1186/s13065-015-0104-5 10.1039/C7SC04679K 10.1021/acs.accounts.6b00194 10.1039/b617536h 10.1016/j.compchemeng.2004.08.010 10.3891/acta.chem.scand.39b-0079 10.1002/anie.201705721 10.1038/nchem.1755 10.1016/j.memsci.2018.10.013 10.1007/978-1-84800-382-8 10.1111/j.1528-1167.2012.03598.x 10.1021/j100007a062 10.1039/C6RE00059B 10.1021/op300275p 10.1016/j.ces.2018.12.003 10.1039/C8RE00032H 10.1016/j.cej.2018.07.031 10.1039/C5CC03651H 10.1021/acssuschemeng.5b01721 10.1039/b211894g 10.1002/cssc.201700927 10.1093/oso/9780199296590.001.0001 10.1007/s10898-018-0609-2 10.1038/nchem.2501 10.1002/aic.14630 10.1021/jp050395e 10.1126/science.aar5169 10.1002/1521-3773(20020415)41:8<1335::AID-ANIE1335>3.0.CO;2-A 10.1039/b921393g 10.1021/om100648v 10.1016/j.ces.2015.07.010 10.7551/mitpress/3206.001.0001 10.1021/ja909853x 10.1016/j.compchemeng.2018.07.015 10.1002/anie.201501618 10.1021/ja00287a001 10.1186/s13321-018-0277-8 10.1021/jo048163j 10.1146/annurev.anchem.111808.073718 10.1021/bp00008a006 10.1093/bioinformatics/btm344 10.1038/nrd3078 10.1016/j.tet.2018.02.061 10.1093/biomet/25.3-4.285 10.1039/C5RE00083A 10.1039/C5OB01892G 10.1002/chem.200900317 |
| ContentType | Journal Article |
| Copyright | Copyright Royal Society of Chemistry 2019 This journal is © The Royal Society of Chemistry 2019 2019 |
| Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 – notice: This journal is © The Royal Society of Chemistry 2019 2019 |
| DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 5PM |
| DOI | 10.1039/c9sc01844a |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 2041-6539 |
| EndPage | 676 |
| ExternalDocumentID | PMC6625492 31367324 10_1039_C9SC01844A c9sc01844a |
| Genre | Journal Article |
| GroupedDBID | -JG 0-7 0R~ 53G 705 7~J AAEMU AAFWJ AAIWI AAJAE AARTK AAXHV ABEMK ABPDG ABXOH ACGFS ACIWK ADBBV ADMRA AEFDR AENEX AESAV AFLYV AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI AOIJS APEMP AUDPV AZFZN BCNDV BLAPV BSQNT C6K D0L EE0 EF- F5P GROUPED_DOAJ H13 HYE HZ~ H~N O-G O9- OK1 PGMZT R7C R7D RAOCF RCNCU RNS RPM RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH SMJ AAYXX ABIQK AFPKN AGMRB CITATION NPM 7SR 8BQ 8FD JG9 7X8 5PM |
| ID | FETCH-LOGICAL-c494t-e789ad3b86b3a333f2de051fc8bffe81be5292b943c24190793e88afce53fcba3 |
| IEDL.DBID | RRC |
| ISICitedReferencesCount | 103 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000477947800012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-6520 |
| IngestDate | Tue Nov 04 01:58:57 EST 2025 Wed Oct 01 13:58:43 EDT 2025 Fri Jul 25 03:11:13 EDT 2025 Mon Mar 03 18:06:50 EST 2025 Tue Nov 18 21:06:42 EST 2025 Sat Nov 29 05:54:04 EST 2025 Tue Dec 17 21:00:00 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 27 |
| Language | English |
| License | This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0) |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c494t-e789ad3b86b3a333f2de051fc8bffe81be5292b943c24190793e88afce53fcba3 |
| Notes | 10.1039/c9sc01844a Electronic supplementary information (ESI) available: Library of solvents and molecular descriptors. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-7621-0889 0000-0003-3097-3762 0000-0001-8885-6847 |
| OpenAccessLink | http://dx.doi.org/10.1039/c9sc01844a |
| PMID | 31367324 |
| PQID | 2254566406 |
| PQPubID | 2047492 |
| PageCount | 1 |
| ParticipantIDs | crossref_primary_10_1039_C9SC01844A rsc_primary_c9sc01844a crossref_citationtrail_10_1039_C9SC01844A proquest_journals_2254566406 proquest_miscellaneous_2267746325 pubmed_primary_31367324 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6625492 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-07-21 |
| PublicationDateYYYYMMDD | 2019-07-21 |
| PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-21 day: 21 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Cambridge |
| PublicationTitle | Chemical science (Cambridge) |
| PublicationTitleAlternate | Chem Sci |
| PublicationYear | 2019 |
| Publisher | Royal Society of Chemistry |
| Publisher_xml | – name: Royal Society of Chemistry |
| References | Todeschini (C9SC01844A-(cit16)/*[position()=1]) 2010 Reizman (C9SC01844A-(cit14)/*[position()=1]) 2016; 49 Taft (C9SC01844A-(cit17)/*[position()=1]) 1952; 74 Zhou (C9SC01844A-(cit43)/*[position()=1]) 2015; 137 Ley (C9SC01844A-(cit8)/*[position()=1]) 2015; 54 Reetz (C9SC01844A-(cit51)/*[position()=1]) 2002; 41 Echtermeyer (C9SC01844A-(cit4)/*[position()=1]) 2017; 13 Stenutz (C9SC01844A-(cit45)/*[position()=1]) Guyon (C9SC01844A-(cit29)/*[position()=1]) 2003; 3 Jessop (C9SC01844A-(cit60)/*[position()=1]) 2003; 5 Murray (C9SC01844A-(cit25)/*[position()=1]) 2016; 14 Capello (C9SC01844A-(cit56)/*[position()=1]) 2007; 9 Awonaike (C9SC01844A-(cit37)/*[position()=1]) 2017; 19 Kreutz (C9SC01844A-(cit13)/*[position()=1]) 2010; 132 Baumgartner (C9SC01844A-(cit11)/*[position()=1]) 2018; 3 Rall (C9SC01844A-(cit32)/*[position()=1]) 2019; 569 McMullen (C9SC01844A-(cit3)/*[position()=1]) 2010; 3 Bradford (C9SC01844A-(cit49)/*[position()=1]) 2018; 118 Fey (C9SC01844A-(cit19)/*[position()=1]) 2015; 9 Jeraal (C9SC01844A-(cit7)/*[position()=1]) 2018; 74 Paul (C9SC01844A-(cit1)/*[position()=1]) 2010; 9 Inza (C9SC01844A-(cit30)/*[position()=1]) 2007; 23 Olson (C9SC01844A-(cit53)/*[position()=1]) 2016; vol. 64 Thompson (C9SC01844A-(cit50)/*[position()=1]) 1933; 25 Martha Cornelius (C9SC01844A-(cit52)/*[position()=1]) 2009; 15 Jover (C9SC01844A-(cit18)/*[position()=1]) 2010; 29 Niemeyer (C9SC01844A-(cit22)/*[position()=1]) 2016; 8 Holmes (C9SC01844A-(cit6)/*[position()=1]) 2016; 1 Van Paesschen (C9SC01844A-(cit33)/*[position()=1]) 2012; 54 Grethe (C9SC01844A-(cit35)/*[position()=1]) 2018; 10 Gani (C9SC01844A-(cit61)/*[position()=1]) 2004; 28 Bentley (C9SC01844A-(cit58)/*[position()=1]) 2005; 70 Murray (C9SC01844A-(cit12)/*[position()=1]) 2013; 17 Atkinson (C9SC01844A-(cit2)/*[position()=1]) 2007 Schweidtmann (C9SC01844A-(cit9)/*[position()=1]) 2018; 352 Holmes (C9SC01844A-(cit5)/*[position()=1]) 2016; 1 Maldonado (C9SC01844A-(cit55)/*[position()=1]) 2010; 39 Klamt (C9SC01844A-(cit40)/*[position()=1]) 1995; 99 Dyson (C9SC01844A-(cit59)/*[position()=1]) 2016; 6 Reizman (C9SC01844A-(cit24)/*[position()=1]) 2015; 51 Rasmussen (C9SC01844A-(cit54)/*[position()=1]) 2005 Duros (C9SC01844A-(cit44)/*[position()=1]) 2017; 56 Bruce (C9SC01844A-(cit57)/*[position()=1]) 1991; 7 Santiago (C9SC01844A-(cit20)/*[position()=1]) 2018; 9 Chastrette (C9SC01844A-(cit26)/*[position()=1]) 1985; 107 Caramia (C9SC01844A-(cit48)/*[position()=1]) 2008 Sigman (C9SC01844A-(cit21)/*[position()=1]) 2016; 49 Bradford (C9SC01844A-(cit46)/*[position()=1]) 2018; 71 Struebing (C9SC01844A-(cit31)/*[position()=1]) 2013; 5 Zhou (C9SC01844A-(cit28)/*[position()=1]) 2014; 115 Zhou (C9SC01844A-(cit42)/*[position()=1]) 2015; 61 Ahneman (C9SC01844A-(cit23)/*[position()=1]) 2018; 360 Helmdach (C9SC01844A-(cit47)/*[position()=1]) 2017; 10 Harper (C9SC01844A-(cit10)/*[position()=1]) 2011; 108 Carlson (C9SC01844A-(cit27)/*[position()=1]) 1985; 38 Turchi (C9SC01844A-(cit38)/*[position()=1]) 2019; 197 Katritzky (C9SC01844A-(cit15)/*[position()=1]) 2005; 109 Suberu (C9SC01844A-(cit36)/*[position()=1]) 2016; 4 Gonfa (C9SC01844A-(cit41)/*[position()=1]) 2016; 49 |
| References_xml | – issn: 2010 publication-title: Molecular Descriptors for Chemoinformatics doi: Todeschini Consonni – publication-title: Dielectric constants and refractive index doi: Stenutz – issn: 2008 end-page: p 11-36 publication-title: Multi-objective Management in Freight Logistics: Increasing Capacity, Service Level and Safety with Optimization Algorithms doi: Caramia Dell'Olmo – issn: 2007 publication-title: Optimum Experimental Design with SAS doi: Atkinson Donev Tobias – publication-title: COSMOtherm, Version C3.0 Release 14.01 – issn: 2016 issue: vol. 64 end-page: p 66-74 publication-title: Proceedings of the Workshop on Automatic Machine Learning doi: Olson Bartley Urbanowicz Moore – issn: 2005 publication-title: Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) doi: Rasmussen Williams – volume: 49 start-page: 1786 year: 2016 ident: C9SC01844A-(cit14)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00261 – volume: 108 start-page: 2179 year: 2011 ident: C9SC01844A-(cit10)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1013331108 – volume: 115 start-page: 177 year: 2014 ident: C9SC01844A-(cit28)/*[position()=1] publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2013.11.020 – volume: 74 start-page: 2729 year: 1952 ident: C9SC01844A-(cit17)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01131a010 – volume: 6 start-page: 3302 year: 2016 ident: C9SC01844A-(cit59)/*[position()=1] publication-title: Catal. Sci. Technol. doi: 10.1039/C5CY02197A – volume: 13 start-page: 150 year: 2017 ident: C9SC01844A-(cit4)/*[position()=1] publication-title: Beilstein J. Org. Chem. doi: 10.3762/bjoc.13.18 – volume: 49 start-page: 372 year: 2016 ident: C9SC01844A-(cit41)/*[position()=1] publication-title: Int. J. Greenhouse Gas Control doi: 10.1016/j.ijggc.2016.03.022 – volume: 9 start-page: 38 year: 2015 ident: C9SC01844A-(cit19)/*[position()=1] publication-title: Chem. Cent. J. doi: 10.1186/s13065-015-0104-5 – volume: 9 start-page: 2398 year: 2018 ident: C9SC01844A-(cit20)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C7SC04679K – volume: 49 start-page: 1292 year: 2016 ident: C9SC01844A-(cit21)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00194 – volume: 9 start-page: 927 year: 2007 ident: C9SC01844A-(cit56)/*[position()=1] publication-title: Green Chem. doi: 10.1039/b617536h – volume: 28 start-page: 2441 year: 2004 ident: C9SC01844A-(cit61)/*[position()=1] publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2004.08.010 – volume: 38 start-page: 79 year: 1985 ident: C9SC01844A-(cit27)/*[position()=1] publication-title: Acta Chem. Scand., Ser. B doi: 10.3891/acta.chem.scand.39b-0079 – volume: 56 start-page: 10815 year: 2017 ident: C9SC01844A-(cit44)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201705721 – volume: 5 start-page: 952 year: 2013 ident: C9SC01844A-(cit31)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.1755 – volume: 569 start-page: 209 year: 2019 ident: C9SC01844A-(cit32)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2018.10.013 – volume-title: Multi-objective Management in Freight Logistics: Increasing Capacity, Service Level and Safety with Optimization Algorithms year: 2008 ident: C9SC01844A-(cit48)/*[position()=1] doi: 10.1007/978-1-84800-382-8 – volume: 54 start-page: 89 year: 2012 ident: C9SC01844A-(cit33)/*[position()=1] publication-title: Epilepsia doi: 10.1111/j.1528-1167.2012.03598.x – volume: 99 start-page: 2224 year: 1995 ident: C9SC01844A-(cit40)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/j100007a062 – volume: 1 start-page: 366 year: 2016 ident: C9SC01844A-(cit6)/*[position()=1] publication-title: React. Chem. Eng. doi: 10.1039/C6RE00059B – volume: 17 start-page: 40 year: 2013 ident: C9SC01844A-(cit12)/*[position()=1] publication-title: Org. Process Res. Dev. doi: 10.1021/op300275p – volume: 197 start-page: 150 year: 2019 ident: C9SC01844A-(cit38)/*[position()=1] publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2018.12.003 – volume: 3 start-page: 301 year: 2018 ident: C9SC01844A-(cit11)/*[position()=1] publication-title: React. Chem. Eng. doi: 10.1039/C8RE00032H – volume: 352 start-page: 277 year: 2018 ident: C9SC01844A-(cit9)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.07.031 – volume: 51 start-page: 13290 year: 2015 ident: C9SC01844A-(cit24)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C5CC03651H – volume: 4 start-page: 2559 year: 2016 ident: C9SC01844A-(cit36)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.5b01721 – volume: 5 start-page: 123 year: 2003 ident: C9SC01844A-(cit60)/*[position()=1] publication-title: Green Chem. doi: 10.1039/b211894g – volume: 10 start-page: 3632 year: 2017 ident: C9SC01844A-(cit47)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201700927 – volume-title: Optimum Experimental Design with SAS year: 2007 ident: C9SC01844A-(cit2)/*[position()=1] doi: 10.1093/oso/9780199296590.001.0001 – volume: 19 start-page: 288 year: 2017 ident: C9SC01844A-(cit37)/*[position()=1] publication-title: Environ. Sci.: Processes Impacts – volume: 71 start-page: 407 year: 2018 ident: C9SC01844A-(cit46)/*[position()=1] publication-title: J. Glob. Optim. doi: 10.1007/s10898-018-0609-2 – volume-title: Molecular Descriptors for Chemoinformatics year: 2010 ident: C9SC01844A-(cit16)/*[position()=1] – volume: 8 start-page: 610 year: 2016 ident: C9SC01844A-(cit22)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.2501 – volume-title: Dielectric constants and refractive index ident: C9SC01844A-(cit45)/*[position()=1] – volume: 61 start-page: 147 year: 2015 ident: C9SC01844A-(cit42)/*[position()=1] publication-title: AIChE J. doi: 10.1002/aic.14630 – volume: 109 start-page: 10323 year: 2005 ident: C9SC01844A-(cit15)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp050395e – volume: 360 start-page: 186 year: 2018 ident: C9SC01844A-(cit23)/*[position()=1] publication-title: Science doi: 10.1126/science.aar5169 – volume: 41 start-page: 1335 year: 2002 ident: C9SC01844A-(cit51)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20020415)41:8<1335::AID-ANIE1335>3.0.CO;2-A – volume: 39 start-page: 1891 year: 2010 ident: C9SC01844A-(cit55)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/b921393g – volume: 29 start-page: 6245 year: 2010 ident: C9SC01844A-(cit18)/*[position()=1] publication-title: Organometallics doi: 10.1021/om100648v – volume: 137 start-page: 613 year: 2015 ident: C9SC01844A-(cit43)/*[position()=1] publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2015.07.010 – volume-title: Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) year: 2005 ident: C9SC01844A-(cit54)/*[position()=1] doi: 10.7551/mitpress/3206.001.0001 – volume: 132 start-page: 3128 year: 2010 ident: C9SC01844A-(cit13)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja909853x – volume: 118 start-page: 143 year: 2018 ident: C9SC01844A-(cit49)/*[position()=1] publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2018.07.015 – volume: 54 start-page: 10122 year: 2015 ident: C9SC01844A-(cit8)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201501618 – volume: 107 start-page: 1 year: 1985 ident: C9SC01844A-(cit26)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00287a001 – volume: vol. 64 volume-title: Proceedings of the Workshop on Automatic Machine Learning year: 2016 ident: C9SC01844A-(cit53)/*[position()=1] – volume: 3 start-page: 1157 year: 2003 ident: C9SC01844A-(cit29)/*[position()=1] publication-title: J. Mach. Learn. Res. – volume: 10 start-page: 22 year: 2018 ident: C9SC01844A-(cit35)/*[position()=1] publication-title: J. Cheminf. doi: 10.1186/s13321-018-0277-8 – volume: 70 start-page: 1647 year: 2005 ident: C9SC01844A-(cit58)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/jo048163j – volume: 3 start-page: 19 year: 2010 ident: C9SC01844A-(cit3)/*[position()=1] publication-title: Annu. Rev. Anal. Chem. doi: 10.1146/annurev.anchem.111808.073718 – volume: 7 start-page: 116 year: 1991 ident: C9SC01844A-(cit57)/*[position()=1] publication-title: Biotechnol. Prog. doi: 10.1021/bp00008a006 – volume: 23 start-page: 2507 year: 2007 ident: C9SC01844A-(cit30)/*[position()=1] publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm344 – volume: 9 start-page: 203 year: 2010 ident: C9SC01844A-(cit1)/*[position()=1] publication-title: Nat. Rev. Drug Discovery doi: 10.1038/nrd3078 – volume: 74 start-page: 3158 year: 2018 ident: C9SC01844A-(cit7)/*[position()=1] publication-title: Tetrahedron doi: 10.1016/j.tet.2018.02.061 – volume: 25 start-page: 285 year: 1933 ident: C9SC01844A-(cit50)/*[position()=1] publication-title: Biometrika doi: 10.1093/biomet/25.3-4.285 – volume: 1 start-page: 96 year: 2016 ident: C9SC01844A-(cit5)/*[position()=1] publication-title: React. Chem. Eng. doi: 10.1039/C5RE00083A – volume: 14 start-page: 2373 year: 2016 ident: C9SC01844A-(cit25)/*[position()=1] publication-title: Org. Biomol. Chem. doi: 10.1039/C5OB01892G – volume: 15 start-page: 7368 year: 2009 ident: C9SC01844A-(cit52)/*[position()=1] publication-title: Chem.–Eur. J. doi: 10.1002/chem.200900317 |
| SSID | ssj0000331527 |
| Score | 2.5636384 |
| Snippet | Rational solvent selection remains a significant challenge in process development. Here we describe a hybrid mechanistic-machine learning approach, geared... Rational solvent selection remains a significant challenge in process development. Rational solvent selection remains a significant challenge in process... |
| SourceID | pubmedcentral proquest pubmed crossref rsc |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 6697 |
| SubjectTerms | Amides Artificial intelligence Bayesian analysis Catalysis Charge density Chemistry Conversion Correlation coefficients Design of experiments Gaussian process Genetic algorithms Machine learning Multiple objective analysis Optimization Solvents Workflow |
| Title | Machine learning and molecular descriptors enable rational solvent selection in asymmetric catalysis |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/31367324 https://www.proquest.com/docview/2254566406 https://www.proquest.com/docview/2267746325 https://pubmed.ncbi.nlm.nih.gov/PMC6625492 |
| Volume | 1 |
| WOSCitedRecordID | wos000477947800012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2041-6539 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331527 issn: 2041-6520 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAUL databaseName: Royal Society Of Chemistry Journals 2008- customDbUrl: eissn: 2041-6539 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331527 issn: 2041-6520 databaseCode: RRC dateStart: 20100101 isFulltext: true titleUrlDefault: https://pubs.rsc.org/ providerName: Royal Society of Chemistry |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS-QwFD6oCO6Lt13Xehki64sPYdskTZtHKYoviniBeStpero7sNORdhT89yaZtjK4gq_NKU2Tk5wvycn3AZzasGJKlUTUsBip0GFBCxGWFIURLqWyipT2YhPJzU06HqvbFTj95ASfq9-Zus9Cuw4R526iTWLnund32bCREnLeSbOyUERUxizsaUiX3l4OPB_Q5MekyNWm1wDxseZy62u13IbNDkuS80Xn78AK1ruwkfUSbt-hvPapkkg6bYg_RNclmfaKuKTExaQxa1qC_hIVabrNQWJ90qVCktYL5dhnZFIT3b5Op06DyxC_7-PoTH7A4-XFQ3ZFO1kFaoQSc4pJqnTJi1QWXHPOK1aiHZqVSYuqQgtjMWaKFUpwY8O7cgx6mKa6MhjzyhSa78FaPatxH4hWRogisasmRBGLUkcKFUOUWsSYyCiAs77Nc9Nxjjvpi3-5P_vmKn9vtwB-DbZPC6aN_1od9V2Xd6Otze2cZHGgtNgkgJOh2La1O_zQNc6enY20SFdyFgfwc9HTw2e4462zyDKAZMkHBgPHwb1cUk_-ei5uKd0KmwWwZ71lsDeqNb6--uBLf3UI3ywQc7fJKIuOYG3ePOMxrJuX-aRtRrCajNOR3y0Yed9_A_jc_KM |
| linkProvider | Royal Society of Chemistry |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+and+molecular+descriptors+enable+rational+solvent+selection+in+asymmetric+catalysis&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Amar%2C+Yehia&rft.au=Schweidtmann%2C+Artur%C2%A0M.&rft.au=Deutsch%2C+Paul&rft.au=Cao%2C+Liwei&rft.date=2019-07-21&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=10&rft.issue=27&rft.spage=6697&rft.epage=6706&rft_id=info:doi/10.1039%2FC9SC01844A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C9SC01844A |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |