DOLPHIN advances single-cell transcriptomics beyond gene level by leveraging exon and junction reads

The advent of single-cell sequencing has revolutionized the study of cellular dynamics, providing unprecedented resolution into the molecular states and heterogeneity of individual cells. However, the rich potential of exon-level information and junction reads within single cells remains underutiliz...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications Vol. 16; no. 1; pp. 6202 - 26
Main Authors: Song, Kailu, Zheng, Yumin, Zhao, Bowen, Eidelman, David H., Tang, Jian, Ding, Jun
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 04.07.2025
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2041-1723, 2041-1723
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The advent of single-cell sequencing has revolutionized the study of cellular dynamics, providing unprecedented resolution into the molecular states and heterogeneity of individual cells. However, the rich potential of exon-level information and junction reads within single cells remains underutilized. Conventional gene-count methods overlook critical exon and junction data, limiting the quality of cell representation and downstream analyses such as subpopulation identification and alternative splicing detection. We introduce DOLPHIN, a deep learning method that integrates exon-level and junction read data, representing genes as graph structures. These graphs are processed by a variational graph autoencoder to improve cell embeddings. DOLPHIN not only demonstrates superior performance in cell clustering, biomarker discovery, and alternative splicing detection but also provides a distinct capability to detect subtle transcriptomic differences at the exon level that are often masked in gene-level analyses. By examining cellular dynamics with enhanced resolution, DOLPHIN provides new insights into disease mechanisms and potential therapeutic targets. Single-cell RNA-seq analysis is conventionally limited to gene-level quantification, missing transcript diversity. Here, authors present DOLPHIN, a deep learning method that enables exon- and junction-level analysis to improve cell representation and detect alternative splicing.
AbstractList The advent of single-cell sequencing has revolutionized the study of cellular dynamics, providing unprecedented resolution into the molecular states and heterogeneity of individual cells. However, the rich potential of exon-level information and junction reads within single cells remains underutilized. Conventional gene-count methods overlook critical exon and junction data, limiting the quality of cell representation and downstream analyses such as subpopulation identification and alternative splicing detection. We introduce DOLPHIN, a deep learning method that integrates exon-level and junction read data, representing genes as graph structures. These graphs are processed by a variational graph autoencoder to improve cell embeddings. DOLPHIN not only demonstrates superior performance in cell clustering, biomarker discovery, and alternative splicing detection but also provides a distinct capability to detect subtle transcriptomic differences at the exon level that are often masked in gene-level analyses. By examining cellular dynamics with enhanced resolution, DOLPHIN provides new insights into disease mechanisms and potential therapeutic targets.
The advent of single-cell sequencing has revolutionized the study of cellular dynamics, providing unprecedented resolution into the molecular states and heterogeneity of individual cells. However, the rich potential of exon-level information and junction reads within single cells remains underutilized. Conventional gene-count methods overlook critical exon and junction data, limiting the quality of cell representation and downstream analyses such as subpopulation identification and alternative splicing detection. We introduce DOLPHIN, a deep learning method that integrates exon-level and junction read data, representing genes as graph structures. These graphs are processed by a variational graph autoencoder to improve cell embeddings. DOLPHIN not only demonstrates superior performance in cell clustering, biomarker discovery, and alternative splicing detection but also provides a distinct capability to detect subtle transcriptomic differences at the exon level that are often masked in gene-level analyses. By examining cellular dynamics with enhanced resolution, DOLPHIN provides new insights into disease mechanisms and potential therapeutic targets.The advent of single-cell sequencing has revolutionized the study of cellular dynamics, providing unprecedented resolution into the molecular states and heterogeneity of individual cells. However, the rich potential of exon-level information and junction reads within single cells remains underutilized. Conventional gene-count methods overlook critical exon and junction data, limiting the quality of cell representation and downstream analyses such as subpopulation identification and alternative splicing detection. We introduce DOLPHIN, a deep learning method that integrates exon-level and junction read data, representing genes as graph structures. These graphs are processed by a variational graph autoencoder to improve cell embeddings. DOLPHIN not only demonstrates superior performance in cell clustering, biomarker discovery, and alternative splicing detection but also provides a distinct capability to detect subtle transcriptomic differences at the exon level that are often masked in gene-level analyses. By examining cellular dynamics with enhanced resolution, DOLPHIN provides new insights into disease mechanisms and potential therapeutic targets.
Abstract The advent of single-cell sequencing has revolutionized the study of cellular dynamics, providing unprecedented resolution into the molecular states and heterogeneity of individual cells. However, the rich potential of exon-level information and junction reads within single cells remains underutilized. Conventional gene-count methods overlook critical exon and junction data, limiting the quality of cell representation and downstream analyses such as subpopulation identification and alternative splicing detection. We introduce DOLPHIN, a deep learning method that integrates exon-level and junction read data, representing genes as graph structures. These graphs are processed by a variational graph autoencoder to improve cell embeddings. DOLPHIN not only demonstrates superior performance in cell clustering, biomarker discovery, and alternative splicing detection but also provides a distinct capability to detect subtle transcriptomic differences at the exon level that are often masked in gene-level analyses. By examining cellular dynamics with enhanced resolution, DOLPHIN provides new insights into disease mechanisms and potential therapeutic targets.
The advent of single-cell sequencing has revolutionized the study of cellular dynamics, providing unprecedented resolution into the molecular states and heterogeneity of individual cells. However, the rich potential of exon-level information and junction reads within single cells remains underutilized. Conventional gene-count methods overlook critical exon and junction data, limiting the quality of cell representation and downstream analyses such as subpopulation identification and alternative splicing detection. We introduce DOLPHIN, a deep learning method that integrates exon-level and junction read data, representing genes as graph structures. These graphs are processed by a variational graph autoencoder to improve cell embeddings. DOLPHIN not only demonstrates superior performance in cell clustering, biomarker discovery, and alternative splicing detection but also provides a distinct capability to detect subtle transcriptomic differences at the exon level that are often masked in gene-level analyses. By examining cellular dynamics with enhanced resolution, DOLPHIN provides new insights into disease mechanisms and potential therapeutic targets.Single-cell RNA-seq analysis is conventionally limited to gene-level quantification, missing transcript diversity. Here, authors present DOLPHIN, a deep learning method that enables exon- and junction-level analysis to improve cell representation and detect alternative splicing.
The advent of single-cell sequencing has revolutionized the study of cellular dynamics, providing unprecedented resolution into the molecular states and heterogeneity of individual cells. However, the rich potential of exon-level information and junction reads within single cells remains underutilized. Conventional gene-count methods overlook critical exon and junction data, limiting the quality of cell representation and downstream analyses such as subpopulation identification and alternative splicing detection. We introduce DOLPHIN, a deep learning method that integrates exon-level and junction read data, representing genes as graph structures. These graphs are processed by a variational graph autoencoder to improve cell embeddings. DOLPHIN not only demonstrates superior performance in cell clustering, biomarker discovery, and alternative splicing detection but also provides a distinct capability to detect subtle transcriptomic differences at the exon level that are often masked in gene-level analyses. By examining cellular dynamics with enhanced resolution, DOLPHIN provides new insights into disease mechanisms and potential therapeutic targets. Single-cell RNA-seq analysis is conventionally limited to gene-level quantification, missing transcript diversity. Here, authors present DOLPHIN, a deep learning method that enables exon- and junction-level analysis to improve cell representation and detect alternative splicing.
ArticleNumber 6202
Author Song, Kailu
Zheng, Yumin
Zhao, Bowen
Tang, Jian
Ding, Jun
Eidelman, David H.
Author_xml – sequence: 1
  givenname: Kailu
  orcidid: 0009-0003-5326-7593
  surname: Song
  fullname: Song, Kailu
  organization: Quantitative Life Sciences, McGill University, Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre
– sequence: 2
  givenname: Yumin
  orcidid: 0009-0008-4580-5247
  surname: Zheng
  fullname: Zheng, Yumin
  organization: Quantitative Life Sciences, McGill University, Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre
– sequence: 3
  givenname: Bowen
  surname: Zhao
  fullname: Zhao, Bowen
  organization: Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Division of Experimental Medicine, Department of Medicine, McGill University
– sequence: 4
  givenname: David H.
  surname: Eidelman
  fullname: Eidelman, David H.
  organization: Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Division of Experimental Medicine, Department of Medicine, McGill University
– sequence: 5
  givenname: Jian
  surname: Tang
  fullname: Tang, Jian
  organization: HEC Montréal, Mila - Quebec AI Institute
– sequence: 6
  givenname: Jun
  orcidid: 0000-0001-5183-6885
  surname: Ding
  fullname: Ding, Jun
  email: jun.ding@mcgill.ca
  organization: Quantitative Life Sciences, McGill University, Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Division of Experimental Medicine, Department of Medicine, McGill University, Mila - Quebec AI Institute, School of Computer Science, McGill University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40615408$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhiNUREvpH-CAInHhEvBXHPuEUFvoSivKAc6WP8Yhq6y92MmW_fd1d0tpOeCLx_bzvh6P52V1FGKAqnqN0XuMqPiQGWa8axBpG45bgZqbZ9UJQQw3uCP06FF8XJ3lvEJlUIkFYy-qY4aKhiFxUrmL6-W3q8XXWrutDhZynYfQj9BYGMd6Sjpkm4bNFNeDzbWBXQyu7iFAPcIWxtrs9kHSfZHV8DuGWhdiNQc7DWWRQLv8qnru9Zjh7H4-rX58vvx-ftUsr78szj8tG8skmxrAGhA3zAtOPFAQDANpPfGOG9l5jaWmrQPrGPMgpJeMgueayxa11GBNT6vFwddFvVKbNKx12qmoB7XfiKlXOk2DHUFRw6HD0gIHwkBS6YUG543gxlDrUfH6ePDazGYNzkIoxRifmD49CcNP1cetwoSQjnNZHN7dO6T4a4Y8qfWQ78qqA8Q5K1o4isojcUHf_oOu4pxCqdWewh3qmCjUm8cpPeTy5zcLQA6ATTHnBP4BwUjddY06dI0qXaP2XaNuiogeRLnAoYf09-7_qG4BXtPGbg
Cites_doi 10.1016/j.biopha.2023.114631
10.5281/zenodo.15602232
10.1007/s12033-023-00777-0
10.1038/s41592-019-0619-0
10.21105/joss.00861
10.1038/s41592-024-02201-0
10.1186/gb-2004-5-10-r74
10.1038/s41586-023-06139-9
10.7554/eLife.73520
10.1093/nar/gks1026
10.1038/s41467-022-30489-z
10.1016/j.molcel.2017.06.003
10.1109/TSMC.1976.5408784
10.1093/bib/bbab105
10.2174/0115748936376211250429102627
10.1038/s41573-023-00688-4
10.1037/1082-989X.5.4.496
10.1371/journal.pcbi.1008195
10.1186/s13059-017-1382-0
10.3390/cancers15153765
10.1038/s41467-022-29744-0
10.1142/9789812704856_0007
10.5281/zenodo.15611935
10.1186/s13059-021-02461-5
10.1534/genetics.119.302523
10.1038/nmeth.1315
10.1038/ncomms14049
10.1038/s41598-017-12989-x
10.1038/s41592-018-0254-1
10.1016/j.ygeno.2020.01.014
10.1111/imr.12182
10.1002/eji.201141907
10.1016/j.ejca.2013.06.005
10.1101/2021.05.05.442755
10.1016/j.csbj.2020.12.009
10.1093/nar/gkac1260
10.1038/s41467-023-39813-7
10.18632/oncotarget.9063
10.1007/BF01908075
10.3389/fonc.2021.638099
10.1016/j.molmed.2011.05.011
10.1093/nar/gki033
10.1038/nbt.3192
10.1214/aoms/1177706717
10.1080/21541264.2023.2213514
10.1093/nar/gkp427
10.3390/jcm6010005
10.1080/14786440109462720
10.1038/ng.259
10.1016/j.compbiomed.2023.106733
10.1038/nature14966
10.1093/nar/28.21.4364
10.1038/s41467-024-50150-1
10.1006/smim.2000.0218
10.1016/j.patrec.2005.10.010
10.1093/bioinformatics/btv272
10.1371/journal.pcbi.1006360
10.3390/ijms24032943
10.1038/s41598-019-41695-z
10.3390/biom13010156
10.1186/s13059-015-0844-5
10.3748/wjg.v24.i43.4846
10.1093/nar/gkx1153
10.1093/bioinformatics/btt656
10.7150/thno.40860
10.1093/bioinformatics/btr174
10.1186/s13059-018-1496-z
10.7554/eLife.54603
10.1038/s41587-022-01312-3
10.1038/s41467-024-50194-3
10.1097/MPA.0000000000001461
10.1016/j.cellsig.2019.109470
10.1186/s13059-019-1850-9
10.1186/s13059-024-03323-6
10.3390/ijms21103534
10.1186/1471-2105-15-S8-S1
10.1016/j.cell.2021.04.048
10.1016/j.prp.2022.154220
10.1093/bioinformatics/btaa293
10.1038/nbt.3519
10.1093/bib/bbac585
10.1093/bioinformatics/btu170
10.1136/jclinpath-2020-206927
10.1093/bioinformatics/bts635
10.1038/nature24489
10.1186/1471-2164-11-5
10.1038/s42256-019-0037-0
10.1126/science.1160342
10.1038/s41592-018-0229-2
10.1038/s41422-019-0195-y
10.1101/gr.278822.123
10.1016/j.molcel.2018.08.018
10.1186/s13059-017-1248-5
10.1038/s41467-024-46480-9
10.1073/pnas.1419161111
10.1002/cyto.a.24507
10.1158/1535-7163.MCT-19-0208
10.1093/nar/gkab1049
10.1093/nar/gkaa1024
10.1038/s41569-022-00805-7
10.1038/s41587-021-01091-3
10.1038/s41590-020-0762-x
10.1148/rycan.2020190020
10.1016/0377-0427(87)90125-7
10.1038/s42256-022-00534-z
10.1093/nar/gkw943
10.15252/emmm.201910515
10.1038/ng.2764
10.1038/s41551-025-01423-7
10.1007/978-1-4419-6646-9_2
10.1038/s41598-021-89938-2
10.1093/bioinformatics/btab807
10.1038/s41577-021-00646-4
10.1084/jem.20191130
10.1038/s41587-020-0546-8
10.1016/j.biopha.2023.115077
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
COVID
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-025-61580-w
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
Coronavirus Research Database
ProQuest Central
Engineering Research Database
ProQuest Health & Medical Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 26
ExternalDocumentID oai_doaj_org_article_3b6e719ce6e24e939f8aedfb86bb3cf0
PMC12227669
40615408
10_1038_s41467_025_61580_w
Genre Journal Article
GrantInformation_xml – fundername: Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (Conseil de Recherches en Sciences Naturelles et en Génie du Canada)
  grantid: RGPIN2022-04399
  funderid: 501100000038
– fundername: Meakins-Christie Chair in Respiratory Research
– fundername: Fonds de Recherche du Québec - Santé (Fonds de la recherche en sante du Quebec)
  grantid: 295299; 366764
  funderid: 501100000156
– fundername: Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de Recherche en Santé du Canada)
  grantid: PJT-180505
  funderid: 501100000024
– fundername: Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (Conseil de Recherches en Sciences Naturelles et en Génie du Canada)
  grantid: RGPIN2022-04399
– fundername: Fonds de Recherche du Québec - Santé (Fonds de la recherche en sante du Quebec)
  grantid: 295299
– fundername: Fonds de Recherche du Québec - Santé (Fonds de la recherche en sante du Quebec)
  grantid: 366764
– fundername: Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de Recherche en Santé du Canada)
  grantid: PJT-180505
GroupedDBID ---
0R~
39C
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
AASML
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AAYXX
AFFHD
CITATION
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
COVID
DWQXO
FR3
GNUQQ
H94
K9.
M48
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c494t-e1ae06b4f862fe3e841e25f2fd6b97fa19a35decd44fe89f943ef6a695053b1a3
IEDL.DBID BENPR
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001523057700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2041-1723
IngestDate Fri Oct 03 12:50:34 EDT 2025
Tue Nov 04 02:04:02 EST 2025
Fri Sep 05 15:44:01 EDT 2025
Tue Oct 07 07:44:42 EDT 2025
Tue Jul 08 01:41:15 EDT 2025
Sat Nov 29 07:47:11 EST 2025
Sat Jul 05 01:11:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-e1ae06b4f862fe3e841e25f2fd6b97fa19a35decd44fe89f943ef6a695053b1a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5183-6885
0009-0003-5326-7593
0009-0008-4580-5247
OpenAccessLink https://www.proquest.com/docview/3227170748?pq-origsite=%requestingapplication%
PMID 40615408
PQID 3227170748
PQPubID 546298
PageCount 26
ParticipantIDs doaj_primary_oai_doaj_org_article_3b6e719ce6e24e939f8aedfb86bb3cf0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12227669
proquest_miscellaneous_3227308411
proquest_journals_3227170748
pubmed_primary_40615408
crossref_primary_10_1038_s41467_025_61580_w
springer_journals_10_1038_s41467_025_61580_w
PublicationCentury 2000
PublicationDate 2025-07-04
PublicationDateYYYYMMDD 2025-07-04
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-04
  day: 04
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References T Sterne-Weiler (61580_CR121) 2018; 72
61580_CR34
WX Wen (61580_CR65) 2023; 51
Y Hu (61580_CR97) 2013; 41
T Fawcett (61580_CR95) 2006; 27
H Huang (61580_CR59) 2019; 11
M Frankenberger (61580_CR48) 2012; 42
X Chang (61580_CR7) 2024; 66
61580_CR27
61580_CR26
T Pelaseyed (61580_CR76) 2014; 260
W Liu (61580_CR67) 2020; 112
I Korsunsky (61580_CR41) 2019; 16
S Schafer (61580_CR28) 2015; 87
A Dobin (61580_CR100) 2013; 29
D Alexander (61580_CR70) 2000; 12
G Benegas (61580_CR23) 2022; 11
D Garrido-Martín (61580_CR72) 2018; 14
Z Zhang (61580_CR10) 2021; 22
Q Pan (61580_CR93) 2008; 40
J Dardare (61580_CR54) 2020; 21
M Büttner (61580_CR118) 2019; 16
W Mojica (61580_CR78) 2010; 11
A Hamosh (61580_CR113) 2005; 33
PJ Rousseeuw (61580_CR117) 1987; 20
W Jiang (61580_CR89) 2021; 19
M Sultan (61580_CR94) 2008; 321
SA Dudani (61580_CR37) 1976; 6
61580_CR38
X Zhu (61580_CR58) 2020; 66
AE Hall (61580_CR79) 2022; 13
Y Hao (61580_CR44) 2021; 184
X Xiang (61580_CR25) 2024; 15
C Cai (61580_CR3) 2023; 162
A Haber (61580_CR46) 2017; 551
AMA Miranda (61580_CR9) 2023; 20
F Wolf (61580_CR11) 2018; 19
L Vereecke (61580_CR77) 2011; 17
M-L Racu (61580_CR55) 2023; 15
61580_CR14
61580_CR96
CV Theodoris (61580_CR15) 2023; 618
V Hahaut (61580_CR29) 2022; 40
Y Wang (61580_CR30) 2019; 217
S Olkin (61580_CR108) 1958; 29
K Choe (61580_CR2) 2023; 13
Y Liao (61580_CR101) 2014; 30
T Tian (61580_CR84) 2019; 1
C-K Shiau (61580_CR49) 2023; 14
J Wang (61580_CR17) 2024; 15
Y Huang (61580_CR68) 2017; 18
F Yang (61580_CR16) 2022; 4
NL Bray (61580_CR82) 2016; 34
AC Morani (61580_CR51) 2020; 2
J Peng (61580_CR31) 2019; 29
T Hu (61580_CR73) 2020; 10
AM Bolger (61580_CR99) 2014; 30
N Erfanian (61580_CR36) 2023; 165
DA Mogilenko (61580_CR5) 2022; 22
D Grün (61580_CR45) 2015; 525
S Armstrong (61580_CR60) 2019; 18
K Kirschner (61580_CR57) 2010; 30
Y Li (61580_CR107) 2014; 15
MJ Goldman (61580_CR114) 2020; 38
AC Frazee (61580_CR122) 2015; 31
Y Huang (61580_CR24) 2021; 22
DW Barnett (61580_CR103) 2011; 27
J Zhang (61580_CR4) 2020; 21
K Pearson (61580_CR91) 1901; 2
H Hu (61580_CR21) 2023; 157
H-H Oh (61580_CR81) 2022; 240
Y Zhang (61580_CR74) 2013; 49
R Lopez (61580_CR13) 2018; 15
M Martens (61580_CR109) 2021; 49
61580_CR1
Y Song (61580_CR87) 2024; 25
S Shen (61580_CR120) 2014; 111
61580_CR6
61580_CR88
C Martino (61580_CR61) 2020; 49
61580_CR85
RB Darlington (61580_CR106) 2000; 5
F Cunningham (61580_CR98) 2022; 50
G Finak (61580_CR105) 2015; 16
S Rizzetto (61580_CR123) 2017; 7
JN Weinstein (61580_CR62) 2013; 45
CA Arzalluz-Luque (61580_CR33) 2018; 19
A of Genome Resources Consortium (61580_CR110) 2019; 213
WX Wen (61580_CR71) 2020; 16
MJ Landrum (61580_CR111) 2018; 46
M Burset (61580_CR116) 2000; 28
S Guo (61580_CR63) 2025; 35
61580_CR112
CF Buen Abad Najar (61580_CR80) 2020; 9
MA Al Barashdi (61580_CR69) 2021; 74
E Hasanaj (61580_CR18) 2022; 13
A Strehl (61580_CR40) 2002; 3
61580_CR119
Y Song (61580_CR22) 2017; 67
H Tran (61580_CR42) 2020; 21
F Tang (61580_CR32) 2009; 6
L Pan (61580_CR19) 2021; 38
CH Grønbech (61580_CR35) 2020; 36
Z Zeng (61580_CR43) 2024; 15
A McGuigan (61580_CR52) 2018; 24
S Ahmed (61580_CR53) 2017; 6
NX Vinh (61580_CR86) 2010; 11
RF Halperin (61580_CR92) 2021; 11
H Gao (61580_CR47) 2021; 11
H-Y Wang (61580_CR83) 2023; 24
R Satija (61580_CR12) 2015; 33
61580_CR124
VA Traag (61580_CR104) 2019; 9
L Hubert (61580_CR39) 1985; 2
G Zheng (61580_CR102) 2017; 8
61580_CR66
J Chen (61580_CR50) 2009; 37
61580_CR127
61580_CR125
61580_CR64
61580_CR126
D Sun (61580_CR115) 2022; 40
R Carsetti (61580_CR75) 2022; 101
A Joglekar (61580_CR20) 2023; 14
B Van de Sande (61580_CR8) 2023; 22
A Strippoli (61580_CR56) 2016; 7
G Yeo (61580_CR90) 2004; 5
References_xml – volume: 162
  start-page: 114631
  year: 2023
  ident: 61580_CR3
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2023.114631
– ident: 61580_CR127
  doi: 10.5281/zenodo.15602232
– volume: 66
  start-page: 1497
  year: 2024
  ident: 61580_CR7
  publication-title: Mol. Biotechnol.
  doi: 10.1007/s12033-023-00777-0
– volume: 16
  start-page: 1289
  year: 2019
  ident: 61580_CR41
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0619-0
– ident: 61580_CR38
  doi: 10.21105/joss.00861
– ident: 61580_CR14
  doi: 10.1038/s41592-024-02201-0
– volume: 5
  start-page: 1
  year: 2004
  ident: 61580_CR90
  publication-title: Genome Biol.
  doi: 10.1186/gb-2004-5-10-r74
– volume: 618
  start-page: 616
  year: 2023
  ident: 61580_CR15
  publication-title: Nature
  doi: 10.1038/s41586-023-06139-9
– volume: 11
  start-page: e73520
  year: 2022
  ident: 61580_CR23
  publication-title: eLife
  doi: 10.7554/eLife.73520
– ident: 61580_CR96
– volume: 41
  start-page: e39
  year: 2013
  ident: 61580_CR97
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks1026
– volume: 13
  year: 2022
  ident: 61580_CR79
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30489-z
– volume: 67
  start-page: 148
  year: 2017
  ident: 61580_CR22
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.06.003
– volume: 6
  start-page: 325
  year: 1976
  ident: 61580_CR37
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1976.5408784
– volume: 22
  start-page: bbab105
  year: 2021
  ident: 61580_CR10
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbab105
– ident: 61580_CR66
  doi: 10.2174/0115748936376211250429102627
– volume: 22
  start-page: 496
  year: 2023
  ident: 61580_CR8
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/s41573-023-00688-4
– volume: 5
  start-page: 496
  year: 2000
  ident: 61580_CR106
  publication-title: Psychol. Methods
  doi: 10.1037/1082-989X.5.4.496
– volume: 16
  start-page: e1008195
  year: 2020
  ident: 61580_CR71
  publication-title: PLOS Comput. Biol.
  doi: 10.1371/journal.pcbi.1008195
– volume: 19
  year: 2018
  ident: 61580_CR11
  publication-title: Genome Biol.
  doi: 10.1186/s13059-017-1382-0
– volume: 15
  start-page: 3765
  year: 2023
  ident: 61580_CR55
  publication-title: Cancers
  doi: 10.3390/cancers15153765
– volume: 13
  year: 2022
  ident: 61580_CR18
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29744-0
– ident: 61580_CR88
  doi: 10.1142/9789812704856_0007
– ident: 61580_CR126
  doi: 10.5281/zenodo.15611935
– volume: 22
  year: 2021
  ident: 61580_CR24
  publication-title: Genome Biol.
  doi: 10.1186/s13059-021-02461-5
– volume: 213
  start-page: 1189
  year: 2019
  ident: 61580_CR110
  publication-title: Genetics
  doi: 10.1534/genetics.119.302523
– volume: 6
  start-page: 377
  year: 2009
  ident: 61580_CR32
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1315
– volume: 8
  year: 2017
  ident: 61580_CR102
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14049
– volume: 7
  year: 2017
  ident: 61580_CR123
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-12989-x
– volume: 16
  start-page: 43
  year: 2019
  ident: 61580_CR118
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0254-1
– volume: 112
  start-page: 2418
  year: 2020
  ident: 61580_CR67
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2020.01.014
– volume: 260
  start-page: 8
  year: 2014
  ident: 61580_CR76
  publication-title: Immunol. Rev.
  doi: 10.1111/imr.12182
– volume: 42
  start-page: 957
  year: 2012
  ident: 61580_CR48
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.201141907
– volume: 49
  start-page: 3320
  year: 2013
  ident: 61580_CR74
  publication-title: Eur. J. Cancer
  doi: 10.1016/j.ejca.2013.06.005
– ident: 61580_CR119
  doi: 10.1101/2021.05.05.442755
– volume: 19
  start-page: 183
  year: 2021
  ident: 61580_CR89
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2020.12.009
– volume: 51
  start-page: e29
  year: 2023
  ident: 61580_CR65
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkac1260
– ident: 61580_CR124
– volume: 14
  year: 2023
  ident: 61580_CR49
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-39813-7
– volume: 7
  start-page: 35159
  year: 2016
  ident: 61580_CR56
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.9063
– ident: 61580_CR27
– volume: 2
  start-page: 193
  year: 1985
  ident: 61580_CR39
  publication-title: J. Classif.
  doi: 10.1007/BF01908075
– volume: 11
  start-page: 638099
  year: 2021
  ident: 61580_CR47
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2021.638099
– volume: 17
  start-page: 584
  year: 2011
  ident: 61580_CR77
  publication-title: Trends Mol. Med.
  doi: 10.1016/j.molmed.2011.05.011
– volume: 33
  start-page: D514
  year: 2005
  ident: 61580_CR113
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gki033
– volume: 33
  start-page: 495
  year: 2015
  ident: 61580_CR12
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3192
– volume: 29
  start-page: 201
  year: 1958
  ident: 61580_CR108
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177706717
– volume: 14
  start-page: 92
  year: 2023
  ident: 61580_CR20
  publication-title: Transcription
  doi: 10.1080/21541264.2023.2213514
– volume: 37
  start-page: W305
  year: 2009
  ident: 61580_CR50
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp427
– volume: 6
  start-page: 5
  year: 2017
  ident: 61580_CR53
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm6010005
– volume: 30
  start-page: 3223
  year: 2010
  ident: 61580_CR57
  publication-title: Anticancer Res.
– volume: 2
  start-page: 559
  year: 1901
  ident: 61580_CR91
  publication-title: Lond. Edinb. Dublin Philos. Mag. J. Sci.
  doi: 10.1080/14786440109462720
– volume: 40
  start-page: 1413
  year: 2008
  ident: 61580_CR93
  publication-title: Nat. Genet.
  doi: 10.1038/ng.259
– volume: 157
  start-page: 106733
  year: 2023
  ident: 61580_CR21
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2023.106733
– volume: 525
  start-page: 251
  year: 2015
  ident: 61580_CR45
  publication-title: Nature
  doi: 10.1038/nature14966
– volume: 28
  start-page: 4364
  year: 2000
  ident: 61580_CR116
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/28.21.4364
– volume: 15
  year: 2024
  ident: 61580_CR17
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-50150-1
– volume: 12
  start-page: 349
  year: 2000
  ident: 61580_CR70
  publication-title: Semin. Immunol.
  doi: 10.1006/smim.2000.0218
– volume: 27
  start-page: 861
  year: 2006
  ident: 61580_CR95
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– volume: 31
  start-page: 2778
  year: 2015
  ident: 61580_CR122
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv272
– volume: 14
  start-page: e1006360
  year: 2018
  ident: 61580_CR72
  publication-title: PLOS Comput. Biol.
  doi: 10.1371/journal.pcbi.1006360
– ident: 61580_CR1
  doi: 10.3390/ijms24032943
– volume: 9
  start-page: 1
  year: 2019
  ident: 61580_CR104
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-41695-z
– volume: 13
  start-page: 156
  year: 2023
  ident: 61580_CR2
  publication-title: Biomolecules
  doi: 10.3390/biom13010156
– volume: 16
  year: 2015
  ident: 61580_CR105
  publication-title: Genome Biol.
  doi: 10.1186/s13059-015-0844-5
– volume: 24
  start-page: 4846
  year: 2018
  ident: 61580_CR52
  publication-title: World J. Gastroenterol.
  doi: 10.3748/wjg.v24.i43.4846
– volume: 46
  start-page: D1062
  year: 2018
  ident: 61580_CR111
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1153
– volume: 30
  start-page: 923
  year: 2014
  ident: 61580_CR101
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt656
– volume: 10
  start-page: 4056
  year: 2020
  ident: 61580_CR73
  publication-title: Theranostics
  doi: 10.7150/thno.40860
– volume: 27
  start-page: 1691
  year: 2011
  ident: 61580_CR103
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr174
– volume: 19
  year: 2018
  ident: 61580_CR33
  publication-title: Genome Biol.
  doi: 10.1186/s13059-018-1496-z
– volume: 9
  start-page: e54603
  year: 2020
  ident: 61580_CR80
  publication-title: eLife
  doi: 10.7554/eLife.54603
– volume: 40
  start-page: 1447
  year: 2022
  ident: 61580_CR29
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-022-01312-3
– volume: 15
  year: 2024
  ident: 61580_CR43
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-50194-3
– volume: 49
  start-page: 143
  year: 2020
  ident: 61580_CR61
  publication-title: Pancreas
  doi: 10.1097/MPA.0000000000001461
– volume: 66
  start-page: 109470
  year: 2020
  ident: 61580_CR58
  publication-title: Cell. Signal.
  doi: 10.1016/j.cellsig.2019.109470
– ident: 61580_CR34
– volume: 21
  year: 2020
  ident: 61580_CR42
  publication-title: Genome Biol.
  doi: 10.1186/s13059-019-1850-9
– volume: 25
  year: 2024
  ident: 61580_CR87
  publication-title: Genome Biol.
  doi: 10.1186/s13059-024-03323-6
– volume: 21
  start-page: 3534
  year: 2020
  ident: 61580_CR54
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21103534
– volume: 15
  start-page: 1
  year: 2014
  ident: 61580_CR107
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-15-S8-S1
– volume: 184
  start-page: 3573
  year: 2021
  ident: 61580_CR44
  publication-title: Cell
  doi: 10.1016/j.cell.2021.04.048
– volume: 240
  start-page: 154220
  year: 2022
  ident: 61580_CR81
  publication-title: Pathol. Res. Pract.
  doi: 10.1016/j.prp.2022.154220
– volume: 36
  start-page: 4415
  year: 2020
  ident: 61580_CR35
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa293
– ident: 61580_CR125
– volume: 34
  start-page: 525
  year: 2016
  ident: 61580_CR82
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3519
– volume: 24
  start-page: bbac585
  year: 2023
  ident: 61580_CR83
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbac585
– volume: 30
  start-page: 2114
  year: 2014
  ident: 61580_CR99
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu170
– volume: 74
  start-page: 548
  year: 2021
  ident: 61580_CR69
  publication-title: J. Clin. Pathol.
  doi: 10.1136/jclinpath-2020-206927
– volume: 29
  start-page: 15
  year: 2013
  ident: 61580_CR100
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts635
– volume: 551
  start-page: 333
  year: 2017
  ident: 61580_CR46
  publication-title: Nature
  doi: 10.1038/nature24489
– volume: 11
  start-page: 1
  year: 2010
  ident: 61580_CR78
  publication-title: BMC Genom.
  doi: 10.1186/1471-2164-11-5
– volume: 1
  start-page: 191
  year: 2019
  ident: 61580_CR84
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-019-0037-0
– volume: 321
  start-page: 956
  year: 2008
  ident: 61580_CR94
  publication-title: Science
  doi: 10.1126/science.1160342
– volume: 15
  start-page: 1053
  year: 2018
  ident: 61580_CR13
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0229-2
– volume: 29
  start-page: 725
  year: 2019
  ident: 61580_CR31
  publication-title: Cell Res.
  doi: 10.1038/s41422-019-0195-y
– volume: 35
  start-page: 147
  year: 2025
  ident: 61580_CR63
  publication-title: Genome Res.
  doi: 10.1101/gr.278822.123
– volume: 72
  start-page: 187–200.e6
  year: 2018
  ident: 61580_CR121
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.08.018
– volume: 18
  start-page: 1
  year: 2017
  ident: 61580_CR68
  publication-title: Genome Biol.
  doi: 10.1186/s13059-017-1248-5
– volume: 15
  year: 2024
  ident: 61580_CR25
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-46480-9
– volume: 111
  start-page: E5593
  year: 2014
  ident: 61580_CR120
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1419161111
– volume: 101
  start-page: 131
  year: 2022
  ident: 61580_CR75
  publication-title: Cytom. Part A
  doi: 10.1002/cyto.a.24507
– volume: 18
  start-page: 1899
  year: 2019
  ident: 61580_CR60
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-19-0208
– volume: 50
  start-page: D988
  year: 2022
  ident: 61580_CR98
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkab1049
– volume: 49
  start-page: D613
  year: 2021
  ident: 61580_CR109
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa1024
– volume: 20
  start-page: 289
  year: 2023
  ident: 61580_CR9
  publication-title: Nat. Rev. Cardiol.
  doi: 10.1038/s41569-022-00805-7
– volume: 11
  start-page: 2837
  year: 2010
  ident: 61580_CR86
  publication-title: J. Mach. Learn. Res.
– volume: 40
  start-page: 527
  year: 2022
  ident: 61580_CR115
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-021-01091-3
– volume: 21
  start-page: 1107
  year: 2020
  ident: 61580_CR4
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-020-0762-x
– volume: 2
  start-page: e190020
  year: 2020
  ident: 61580_CR51
  publication-title: Radiol. Imaging Cancer
  doi: 10.1148/rycan.2020190020
– volume: 20
  start-page: 53
  year: 1987
  ident: 61580_CR117
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(87)90125-7
– volume: 4
  start-page: 852
  year: 2022
  ident: 61580_CR16
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-022-00534-z
– ident: 61580_CR112
  doi: 10.1093/nar/gkw943
– volume: 11
  start-page: e10515
  year: 2019
  ident: 61580_CR59
  publication-title: EMBO Mol. Med.
  doi: 10.15252/emmm.201910515
– volume: 45
  start-page: 1113
  year: 2013
  ident: 61580_CR62
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2764
– ident: 61580_CR6
  doi: 10.1038/s41551-025-01423-7
– ident: 61580_CR64
  doi: 10.1007/978-1-4419-6646-9_2
– volume: 11
  year: 2021
  ident: 61580_CR92
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-89938-2
– volume: 38
  start-page: 1287
  year: 2021
  ident: 61580_CR19
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab807
– volume: 22
  start-page: 484
  year: 2022
  ident: 61580_CR5
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-021-00646-4
– volume: 217
  start-page: e20191130
  year: 2019
  ident: 61580_CR30
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20191130
– ident: 61580_CR26
– ident: 61580_CR85
– volume: 38
  start-page: 675
  year: 2020
  ident: 61580_CR114
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0546-8
– volume: 165
  start-page: 115077
  year: 2023
  ident: 61580_CR36
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2023.115077
– volume: 3
  start-page: 583
  year: 2002
  ident: 61580_CR40
  publication-title: J. Mach. Learn. Res.
– volume: 87
  start-page: 11
  year: 2015
  ident: 61580_CR28
  publication-title: Curr. Protoc. Hum. Genet.
SSID ssj0000391844
Score 2.4767582
Snippet The advent of single-cell sequencing has revolutionized the study of cellular dynamics, providing unprecedented resolution into the molecular states and...
Abstract The advent of single-cell sequencing has revolutionized the study of cellular dynamics, providing unprecedented resolution into the molecular states...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 6202
SubjectTerms 631/114/1305
631/114/1314
631/114/2397
631/114/794
Alternative splicing
Alternative Splicing - genetics
Animals
Aquatic mammals
Biomarkers
Clustering
Datasets
Deep Learning
Exons - genetics
Gene expression
Gene Expression Profiling - methods
Graph neural networks
Graph representations
Graphical representations
Heterogeneity
Humanities and Social Sciences
Humans
multidisciplinary
Science
Science (multidisciplinary)
Single-Cell Analysis - methods
Therapeutic targets
Transcriptome - genetics
Transcriptomics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEB9KseCL1O-tVSL4pks3m2wueVTbUqGcfbDQt5BsJlgpe-X2au1_7yS7d_aq4otvYZOFYWYy85skMwPwRkQTYqToxNVBlhJrXnrfGBpJbHzrQytyovDxZDrVZ2fm5Farr_QmbCgPPDBuT3iFE25aVFhLNMJE7TBEr5X3oo05Wq8m5lYwlW2wMBS6yDFLphJ6r5fZJqTureTEdVVer3miXLD_Tyjz98eSd25MsyM63IYHI4Jk7wfKH8IGdo9ga-gpefMYwv7n45OjT1M23u73LJ0GXGCZjujZIrmmbChSNnLPfE5gYaRFyC7S-yHmb_JgnrsXMfwx65ijFd_I_yUZMgKZoX8Cp4cHXz4elWMrhbKVRi5K5A4r5WWkACaiQC051k2sY1DeTKLjxokmYBukjKhNNFJgVE4ZAkjCcyeewmY36_A5sKatG-TCkYxTl9_odMJ93rlao_BRFfB2yVZ7OVTMsPmmW2g7CMGSEGwWgr0u4EPi_GplqnadP5AO2FEH7L90oIDdpdzsuAV7S5aKQlVCSLqA16tp2jyJ3a7D2dWwRlTEDF7As0HMK0oS0iE4S3_rNQVYI3V9pjv_mgt085RgrJQp4N1SV37R9Xde7PwPXryA-3VS8nQCLXdhczG_wpdwr_2-OO_nr_Iu-Qm5EBpK
  priority: 102
  providerName: Directory of Open Access Journals
Title DOLPHIN advances single-cell transcriptomics beyond gene level by leveraging exon and junction reads
URI https://link.springer.com/article/10.1038/s41467-025-61580-w
https://www.ncbi.nlm.nih.gov/pubmed/40615408
https://www.proquest.com/docview/3227170748
https://www.proquest.com/docview/3227308411
https://pubmed.ncbi.nlm.nih.gov/PMC12227669
https://doaj.org/article/3b6e719ce6e24e939f8aedfb86bb3cf0
Volume 16
WOSCitedRecordID wos001523057700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M7P
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: 7X7
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoCxKX8iwEyspI3CBqEjtZ-4QotGqlskQIpIVLZMdjKKqSdrOl9N8z42S3Wl4XLpYVO5Lt-ewZj-fB2DPhtfMebycmczKWkKWxtbnGmoTc1tbVIjgKH40nEzWd6nJQuHWDWeXiTAwHtWtr0pHvIPDw5oEMT708PYspaxS9rg4pNNbYBkUqQ5xv7O5NyvdLLQvFP1dSDt4yiVA7nQxnA2VxRWaukvhihSOFwP1_kjZ_N5r85eU0MKT9W_87ldtscxBF-aseO3fYNWjusht9csrLe8y9eXdUHhxO-GAm0HFSK5xATLp-PiceF04ccmvuuA2eMBzhCPyEDJG4vQyVWUiDxOFH23CDPb4hIyUwcJRWXXeffdzf-_D6IB5yMsS11HIeQ2ogKaz0eBPyIEDJFLLcZ94VVo-9SbURuYPaSelBaa-lAF-YQqOkJWxqxBZbb9oGHjKe11kOqTAIFkoX7I0iAdIakykQ1hcRe76gS3Xah96owpO5UFVPxQqpWAUqVhcR2yXSLXtS2OzwoZ19qYZdWAlbwDjVNRSQSdBCe2XAeasKa0Xtk4htLyhWDXu5q67IFbGny2bchbTcpoH2vO8jElyMNGIPepwsR0IiE8rF-LdaQdDKUFdbmuOvIdJ3Sp7KRaEj9mIBtqtx_X0tHv17Go_ZzYzwT0pquc3W57NzeMKu19_nx91sxNbG03Eo1WjYTqOgqRiRXWyJZZl_xpby8G356SchDy5Z
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKAcGF9yNQwEhwgqiJ7WTtA0JAqXbVZdlDkXozdjKGoiopmy3L_il-I2Mn2Wp53XrgZsVOZDvfjD-PZzyEPOFOlc7h7sSwUsQCWBpbmyksCchsYcuCh0Dh8WAykQcHarpBfvSxMN6tsteJQVGXdeFt5NsIPNx54IInXx5_jX3WKH-62qfQaGGxB8sFbtmaF6Md_L9PGdt9u_9mGHdZBeJCKDGPITWQ5FY45PIOOEiRAsscc2Vu1cCZVBmelVCUQjiQyinBweUmV8gVuE0Nx--eI-eRRrAkuApOVzYdf9u6FKKLzUm43G5E0EQ-ZyxSB5nEi7X1L6QJ-BO3_d1F85dz2rD87V793ybuGrnSEW36qpWM62QDqhvkYpt6c3mTlDvvx9PhaEI7J4iGeqPJEcT-JIPO_Qoe9KkP2m6oDXE-FIUN6JF3s6J2GQqzkOSJwve6ogZbfEGa4KFOkYuXzS3y4UyGeJtsVnUFdwnNCpZByg2Kgk-G7Iz09NgawyRw6_KIPOtxoI_bi0V0cAjgUreo0YgaHVCjFxF57aGyaukvBQ8P6tkn3ekYzW0Og1QVkAMToLhy0kDprMyt5YVLIrLVI0R3mqrRp_CIyONVNeoYP92mgvqkbcMTnIw0IndaXK564gkhsn58W64hdq2r6zXV4edwj3nq47DzXEXkeQ_u0379fS7u_XsYj8il4f67sR6PJnv3yWXmZc-b48UW2ZzPTuABuVB8mx82s4dBeCn5eNag_wkB6YXG
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELaW5SEuvB-BBYwEJ4iaxI5rHxACSrXVVqUHkFZcvHYyhkWrdGm6lP41fh1jJ-mqvG574GbFTmQ734w_j2c8hDxhTpXO4e7EZCWPOWRpbG2usMQht4UtCxYChcf9yUTu76vpFvnRxcJ4t8pOJwZFXc4KbyPvIfBw54ELnuy51i1iOhi-PP4a-wxS_qS1S6fRQGQPVkvcvtUvRgP810-zbPj2_ZvduM0wEBdc8UUMqYFEWO6Q1ztgIHkKWe4yVwqr-s6kyrC8hKLk3IFUTnEGThihkDcwmxqG3z1Hzve5kN6dbJp_XNt3_M3rkvM2TidhslfzoJV8_likETKJlxtrYUgZ8Cee-7u75i9ntmEpHF79nyfxGrnSEnD6qpGY62QLqhvkYpOSc3WTlIN34-nuaEJb54iaemPKEcT-hIMu_Moe9KwP5q6pDfE_FIUQ6JF3v6J2FQrzkPyJwvdZRQ22-IL0wYsARY5e1rfIhzMZ4m2yXc0quEtoXmQ5pMygiPgkyc5IT5utMZkEZp2IyLMOE_q4uXBEB0cBJnWDII0I0gFBehmR1x4265b-svDwYDb_pFvdo5kV0E9VAQIyDoopJw2UzkphLStcEpGdDi261WC1PoVKRB6vq1H3-Ok2FcxOmjYswclII3Knwei6J54o4m4A35Yb6N3o6mZNdfg53G-e-vhsIVREnndAP-3X3-fi3r-H8YhcQqzr8Wiyd59czrwYeis93yHbi_kJPCAXim-Lw3r-MMgxJQdnjfmfXL-OsA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DOLPHIN+advances+single-cell+transcriptomics+beyond+gene+level+by+leveraging+exon+and+junction+reads&rft.jtitle=Nature+communications&rft.au=Song%2C+Kailu&rft.au=Zheng%2C+Yumin&rft.au=Zhao%2C+Bowen&rft.au=Eidelman%2C+David+H.&rft.date=2025-07-04&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-025-61580-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_025_61580_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon