A Machine Learning Algorithm for Quantitatively Diagnosing Oxidative Stress Risks in Healthy Adult Individuals Based on Health Space Methodology: A Proof-of-Concept Study Using Korean Cross-Sectional Cohort Data

Oxidative stress aggravates the progression of lifestyle-related chronic diseases. However, knowledge and practices that enable quantifying oxidative stress are still lacking. Here, we performed a proof-of-concept study to predict the oxidative stress status in a healthy population using retrospecti...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Antioxidants Ročník 10; číslo 7; s. 1132
Hlavní autoři: Kim, Youjin, Kim, Yunsoo, Hwang, Jiyoung, van den Broek, Tim J., Oh, Bumjo, Kim, Ji Yeon, Wopereis, Suzan, Bouwman, Jildau, Kwon, Oran
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 16.07.2021
MDPI
Témata:
ISSN:2076-3921, 2076-3921
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Oxidative stress aggravates the progression of lifestyle-related chronic diseases. However, knowledge and practices that enable quantifying oxidative stress are still lacking. Here, we performed a proof-of-concept study to predict the oxidative stress status in a healthy population using retrospective cohort data from Boramae medical center in Korea (n = 1328). To obtain binary performance measures, we selected healthy controls versus oxidative disease cases based on the “health space” statistical methodology. We then developed a machine learning algorithm for discrimination of oxidative stress status using least absolute shrinkage and selection operator (LASSO)/elastic net regression with 10-fold cross-validation. A proposed fine-tune model included 16 features out of the full spectrum of diverse and complex data. The predictive performance was externally evaluated by generating receiver operating characteristic curves with area under the curve of 0.949 (CI 0.925 to 0.974), sensitivity of 0.923 (CI 0.879 to 0.967), and specificity of 0.855 (CI 0.795 to 0.915). Moreover, the discrimination power was confirmed by applying the proposed diagnostic model to the full dataset consisting of subjects with various degrees of oxidative stress. The results provide a feasible approach for stratifying the oxidative stress risks in the healthy population and selecting appropriate strategies for individual subjects toward implementing data-driven precision nutrition.
AbstractList Oxidative stress aggravates the progression of lifestyle-related chronic diseases. However, knowledge and practices that enable quantifying oxidative stress are still lacking. Here, we performed a proof-of-concept study to predict the oxidative stress status in a healthy population using retrospective cohort data from Boramae medical center in Korea (n = 1328). To obtain binary performance measures, we selected healthy controls versus oxidative disease cases based on the “health space” statistical methodology. We then developed a machine learning algorithm for discrimination of oxidative stress status using least absolute shrinkage and selection operator (LASSO)/elastic net regression with 10-fold cross-validation. A proposed fine-tune model included 16 features out of the full spectrum of diverse and complex data. The predictive performance was externally evaluated by generating receiver operating characteristic curves with area under the curve of 0.949 (CI 0.925 to 0.974), sensitivity of 0.923 (CI 0.879 to 0.967), and specificity of 0.855 (CI 0.795 to 0.915). Moreover, the discrimination power was confirmed by applying the proposed diagnostic model to the full dataset consisting of subjects with various degrees of oxidative stress. The results provide a feasible approach for stratifying the oxidative stress risks in the healthy population and selecting appropriate strategies for individual subjects toward implementing data-driven precision nutrition.
Oxidative stress aggravates the progression of lifestyle-related chronic diseases. However, knowledge and practices that enable quantifying oxidative stress are still lacking. Here, we performed a proof-of-concept study to predict the oxidative stress status in a healthy population using retrospective cohort data from Boramae medical center in Korea (n = 1328). To obtain binary performance measures, we selected healthy controls versus oxidative disease cases based on the "health space" statistical methodology. We then developed a machine learning algorithm for discrimination of oxidative stress status using least absolute shrinkage and selection operator (LASSO)/elastic net regression with 10-fold cross-validation. A proposed fine-tune model included 16 features out of the full spectrum of diverse and complex data. The predictive performance was externally evaluated by generating receiver operating characteristic curves with area under the curve of 0.949 (CI 0.925 to 0.974), sensitivity of 0.923 (CI 0.879 to 0.967), and specificity of 0.855 (CI 0.795 to 0.915). Moreover, the discrimination power was confirmed by applying the proposed diagnostic model to the full dataset consisting of subjects with various degrees of oxidative stress. The results provide a feasible approach for stratifying the oxidative stress risks in the healthy population and selecting appropriate strategies for individual subjects toward implementing data-driven precision nutrition.Oxidative stress aggravates the progression of lifestyle-related chronic diseases. However, knowledge and practices that enable quantifying oxidative stress are still lacking. Here, we performed a proof-of-concept study to predict the oxidative stress status in a healthy population using retrospective cohort data from Boramae medical center in Korea (n = 1328). To obtain binary performance measures, we selected healthy controls versus oxidative disease cases based on the "health space" statistical methodology. We then developed a machine learning algorithm for discrimination of oxidative stress status using least absolute shrinkage and selection operator (LASSO)/elastic net regression with 10-fold cross-validation. A proposed fine-tune model included 16 features out of the full spectrum of diverse and complex data. The predictive performance was externally evaluated by generating receiver operating characteristic curves with area under the curve of 0.949 (CI 0.925 to 0.974), sensitivity of 0.923 (CI 0.879 to 0.967), and specificity of 0.855 (CI 0.795 to 0.915). Moreover, the discrimination power was confirmed by applying the proposed diagnostic model to the full dataset consisting of subjects with various degrees of oxidative stress. The results provide a feasible approach for stratifying the oxidative stress risks in the healthy population and selecting appropriate strategies for individual subjects toward implementing data-driven precision nutrition.
Author Kim, Youjin
Hwang, Jiyoung
Wopereis, Suzan
Bouwman, Jildau
Kim, Ji Yeon
Kim, Yunsoo
Oh, Bumjo
Kwon, Oran
van den Broek, Tim J.
AuthorAffiliation 3 Netherlands Organization for Applied Scientific Research (TNO), Department of Microbiology and Systems Biology, Utrechtseweg 48, 3704 HE Zeist, The Netherlands; tim.vandenbroek@tno.nl (T.J.v.d.B.); suzan.wopereis@tno.nl (S.W.)
2 Department of Nutritional Science and Food Management, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodeamun-gu, Seoul 03760, Korea; cindy.jyhwang@gmail.com
5 Department of Food Science and Technology, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea; jiyeonk@seoultech.ac.kr
1 Department of Nutritional Science and Food Management, Ewha Womans University, 52 Ewhayeodae-gil, Seodeamun-gu, Seoul 03760, Korea; Youjin.Kim631782@tufts.edu (Y.K.); sookim726@gmail.com (Y.K.)
4 Boramae Medical Center, Department of Family Medicine, Seoul Metropolitan Government-Seoul National University, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul 07061, Korea; bo39@snu.ac.kr
AuthorAffiliation_xml – name: 4 Boramae Medical Center, Department of Family Medicine, Seoul Metropolitan Government-Seoul National University, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul 07061, Korea; bo39@snu.ac.kr
– name: 3 Netherlands Organization for Applied Scientific Research (TNO), Department of Microbiology and Systems Biology, Utrechtseweg 48, 3704 HE Zeist, The Netherlands; tim.vandenbroek@tno.nl (T.J.v.d.B.); suzan.wopereis@tno.nl (S.W.)
– name: 2 Department of Nutritional Science and Food Management, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodeamun-gu, Seoul 03760, Korea; cindy.jyhwang@gmail.com
– name: 1 Department of Nutritional Science and Food Management, Ewha Womans University, 52 Ewhayeodae-gil, Seodeamun-gu, Seoul 03760, Korea; Youjin.Kim631782@tufts.edu (Y.K.); sookim726@gmail.com (Y.K.)
– name: 5 Department of Food Science and Technology, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea; jiyeonk@seoultech.ac.kr
Author_xml – sequence: 1
  givenname: Youjin
  surname: Kim
  fullname: Kim, Youjin
– sequence: 2
  givenname: Yunsoo
  orcidid: 0000-0001-9376-6141
  surname: Kim
  fullname: Kim, Yunsoo
– sequence: 3
  givenname: Jiyoung
  surname: Hwang
  fullname: Hwang, Jiyoung
– sequence: 4
  givenname: Tim J.
  surname: van den Broek
  fullname: van den Broek, Tim J.
– sequence: 5
  givenname: Bumjo
  orcidid: 0000-0002-2468-0755
  surname: Oh
  fullname: Oh, Bumjo
– sequence: 6
  givenname: Ji Yeon
  orcidid: 0000-0002-4316-2726
  surname: Kim
  fullname: Kim, Ji Yeon
– sequence: 7
  givenname: Suzan
  orcidid: 0000-0001-9612-657X
  surname: Wopereis
  fullname: Wopereis, Suzan
– sequence: 8
  givenname: Jildau
  surname: Bouwman
  fullname: Bouwman, Jildau
– sequence: 9
  givenname: Oran
  orcidid: 0000-0002-2031-7238
  surname: Kwon
  fullname: Kwon, Oran
BookMark eNqFkkFv0zAUxyM0xMbYlbMlLlwy7DiJEw5IXQesotOAsrPl2C-NR2oX26nWz8kXwmk3iU5CWJZs2b_3f_Z7_5fJkbEGkuQ1weeU1vidMEHbe4IxI4Rmz5KTDLMypXVGjv7aHydn3t_hOGpCK1y_SI5pTouSlsVJ8nuCroXstAE0B-GMNks06ZfW6dCtUGsd-jaMaYIIegP9Fl1qsTTWj9zNvVa7Y7QIDrxH37X_6ZE26ApEH7otmqihD2hmlN5oNYjeowvhQSH7iKDFWkhA1xA6q2xvl9v3aIK-OmvbNM6pNRLWIeoPaotud1m_WAfCoKmz3qcLkLEERvRoajvrAroUQbxKnrcxF5w9rKfJ7aePP6ZX6fzm82w6macyr_OQKmC4ZUzSjNaNLGTdNEArEWspWVW2dS2okq2ClmEgLGvySrFWtW2exYILXNLTZLbXVVbc8bXTK-G23ArNdwfWLblwQcseuJJM1WVGCSOQU9HUDeAKmnZsA6uaKmp92Guth2YFSoIJTvQHooc3Rnd8aTe8opiQikaBtw8Czv4awAe-0l5C3wsDdvA8i_3OM0ZL_H-0KOqcZqQY0TdP0Ds7uFjvHZVTFj2VRSrfU3JsioOWy51h7PhU3XOC-ehXfujXGHb-JOzxu_8I-AMLgPKi
CitedBy_id crossref_primary_10_1016_j_advnut_2025_100398
crossref_primary_10_3390_ijms26136415
crossref_primary_10_3390_nu15143267
crossref_primary_10_1016_j_cbi_2022_109888
crossref_primary_10_1186_s12911_025_03026_3
Cites_doi 10.1016/j.freeradbiomed.2005.06.025
10.1007/s11886-013-0441-8
10.1016/j.orcp.2013.05.004
10.1002/bjs.9736
10.14336/AD.2014.0305
10.1111/j.1440-1746.2006.04231.x
10.1016/S0895-4356(03)00047-7
10.1002/dmrr.3230
10.1007/978-3-319-33486-8_6
10.1503/cmaj.110977
10.1016/j.surg.2015.12.029
10.1093/nar/gkaa1043
10.1007/BF02490453
10.1016/j.proeng.2017.09.615
10.1002/jbt.10058
10.1186/1755-8794-5-1
10.1109/TBME.2016.2573285
10.1016/j.mrfmmm.2009.02.007
10.1080/10408398.2010.543495
10.1038/ejcn.2011.120
10.1080/10826070701465720
10.1016/j.jnutbio.2013.02.009
10.1172/JCI21625
10.1001/jama.2013.393
10.1136/svn-2017-000101
10.1214/aos/1016218223
10.1016/j.clinbiochem.2008.07.005
10.1016/j.atherosclerosis.2005.11.036
10.1186/1475-2891-6-39
10.4297/najms.2011.3344
10.1089/ars.2009.2826
10.1186/1471-2105-11-394
10.1177/1535370217750088
10.1016/j.bpobgyn.2014.06.007
10.1093/aje/kwf029
10.1186/1471-2105-12-77
10.1016/j.foodres.2017.08.005
10.18637/jss.v039.i05
10.18637/jss.v033.i01
10.1016/S0169-7161(03)23001-7
10.1371/journal.pone.0232103
10.1093/jamia/ocv180
10.1093/clinchem/43.7.1209
10.1016/S0895-4356(01)00341-9
10.1136/bmj.b606
10.1016/S1570-0232(02)00273-8
10.1080/10503307.2018.1563312
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
7QR
7T5
7TO
8FD
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
H94
HCIFZ
LK8
M7P
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
DOA
DOI 10.3390/antiox10071132
DatabaseName CrossRef
Chemoreception Abstracts
Immunology Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
AIDS and Cancer Research Abstracts
ProQuest SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Immunology Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ : Directory of Open Access Journals [open access]
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2076-3921
ExternalDocumentID oai_doaj_org_article_dc7d9623171e43ab9be08ebf356378b8
PMC8301183
10_3390_antiox10071132
GeographicLocations Korean Peninsula
GeographicLocations_xml – name: Korean Peninsula
GroupedDBID 53G
5VS
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RPM
7QR
7T5
7TO
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
H94
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
ITC
7S9
L.6
5PM
ID FETCH-LOGICAL-c494t-de70f77c3239bc5c9bbe38a711c786f99a3dcfdef70e172b48d7fdff42007a063
IEDL.DBID DOA
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000675913400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3921
IngestDate Fri Oct 03 12:50:37 EDT 2025
Tue Nov 04 02:01:59 EST 2025
Sun Nov 09 14:09:04 EST 2025
Sun Nov 09 09:37:11 EST 2025
Fri Jul 25 12:09:22 EDT 2025
Sat Nov 29 07:12:26 EST 2025
Tue Nov 18 20:50:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-de70f77c3239bc5c9bbe38a711c786f99a3dcfdef70e172b48d7fdff42007a063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0001-9612-657X
0000-0002-4316-2726
0000-0002-2031-7238
0000-0001-9376-6141
0000-0002-2468-0755
OpenAccessLink https://doaj.org/article/dc7d9623171e43ab9be08ebf356378b8
PMID 34356365
PQID 2554370912
PQPubID 2032435
ParticipantIDs doaj_primary_oai_doaj_org_article_dc7d9623171e43ab9be08ebf356378b8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8301183
proquest_miscellaneous_2636427360
proquest_miscellaneous_2559432150
proquest_journals_2554370912
crossref_citationtrail_10_3390_antiox10071132
crossref_primary_10_3390_antiox10071132
PublicationCentury 2000
PublicationDate 20210716
PublicationDateYYYYMMDD 2021-07-16
PublicationDate_xml – month: 7
  year: 2021
  text: 20210716
  day: 16
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Antioxidants
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Murdoch (ref_15) 2013; 309
Block (ref_37) 2002; 156
Oh (ref_18) 2007; 28
ref_13
Aydin (ref_21) 2007; 30
Kim (ref_17) 2011; 65
Cherubini (ref_7) 2005; 39
Waggiallah (ref_39) 2011; 3
(ref_33) 2019; 2019
Natarajan (ref_24) 2006; 21
Wu (ref_44) 2017; 64
Cipierre (ref_22) 2013; 2013
Cohen (ref_27) 2020; 30
Simon (ref_26) 2011; 39
Collins (ref_10) 2015; 102
Bonomini (ref_1) 2015; 6
Nielsen (ref_6) 1997; 43
Friedman (ref_28) 2010; 33
Dhillon (ref_46) 2009; 665
Agarwal (ref_19) 2002; 775
Moons (ref_36) 2009; 338
Dilsizian (ref_16) 2014; 16
Widmer (ref_40) 2010; 12
Groenwold (ref_52) 2012; 184
Yamada (ref_38) 2006; 189
Kohler (ref_25) 2021; 49
Elmasry (ref_12) 2012; 52
Furukawa (ref_8) 2004; 114
Khoschsorur (ref_20) 2000; 52
Steyerberg (ref_48) 2001; 54
ref_35
ref_34
ref_32
ref_31
Ford (ref_43) 2016; 23
Pruimboom (ref_3) 2013; 24
Maritim (ref_23) 2003; 17
Vassalle (ref_51) 2008; 41
Bloomer (ref_5) 2007; 6
Melkumova (ref_30) 2017; 201
Roehrs (ref_41) 2017; 100
Matsuda (ref_9) 2013; 7
ref_47
ref_42
Hanson (ref_4) 2015; 29
Steyerberg (ref_29) 2003; 56
Friedman (ref_45) 2000; 28
ref_2
Jiang (ref_14) 2017; 2
Zhang (ref_53) 2016; 4
Califf (ref_11) 2018; 243
Carter (ref_49) 2016; 159
References_xml – volume: 39
  start-page: 841
  year: 2005
  ident: ref_7
  article-title: Potential markers of oxidative stress in stroke
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2005.06.025
– volume: 16
  start-page: 441
  year: 2014
  ident: ref_16
  article-title: Artificial intelligence in medicine and cardiac imaging: Harnessing big data and advanced computing to provide personalized medical diagnosis and treatment
  publication-title: Curr. Cardiol. Rep.
  doi: 10.1007/s11886-013-0441-8
– volume: 7
  start-page: e330
  year: 2013
  ident: ref_9
  article-title: Increased oxidative stress in obesity: Implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer
  publication-title: Obes. Res. Clin. Pract.
  doi: 10.1016/j.orcp.2013.05.004
– volume: 102
  start-page: 148
  year: 2015
  ident: ref_10
  article-title: Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): The TRIPOD Statement
  publication-title: Br. J. Surg.
  doi: 10.1002/bjs.9736
– ident: ref_35
– volume: 6
  start-page: 109
  year: 2015
  ident: ref_1
  article-title: Metabolic syndrome, aging and involvement of oxidative stress
  publication-title: Aging Dis.
  doi: 10.14336/AD.2014.0305
– volume: 21
  start-page: 947
  year: 2006
  ident: ref_24
  article-title: Oxidative stress in the development of liver cirrhosis: A comparison of two different experimental models
  publication-title: J. Gastroenterol. Hepatol.
  doi: 10.1111/j.1440-1746.2006.04231.x
– volume: 56
  start-page: 441
  year: 2003
  ident: ref_29
  article-title: Internal and external validation of predictive models: A simulation study of bias and precision in small samples
  publication-title: J. Clin. Epidemiol.
  doi: 10.1016/S0895-4356(03)00047-7
– ident: ref_50
  doi: 10.1002/dmrr.3230
– ident: ref_31
– ident: ref_2
  doi: 10.1007/978-3-319-33486-8_6
– volume: 184
  start-page: 1265
  year: 2012
  ident: ref_52
  article-title: Missing covariate data in clinical research: When and when not to use the missing-indicator method for analysis
  publication-title: CMAJ
  doi: 10.1503/cmaj.110977
– volume: 159
  start-page: 1638
  year: 2016
  ident: ref_49
  article-title: ROC-ing along: Evaluation and interpretation of receiver operating characteristic curves
  publication-title: Surgery
  doi: 10.1016/j.surg.2015.12.029
– volume: 2019
  start-page: 1
  year: 2019
  ident: ref_33
  article-title: Medical diagnostic tests: A review of test anatomy, phases, and statistical treatment of data
  publication-title: Comput. Math. Methods Med.
– volume: 49
  start-page: D1207
  year: 2021
  ident: ref_25
  article-title: The Human Phenotype Ontology in 2021
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa1043
– volume: 52
  start-page: 181
  year: 2000
  ident: ref_20
  article-title: Evaluation of a sensitive HPLC method for the determination of malondialdehyde, and application of the method to different biological materials
  publication-title: Chromatographia
  doi: 10.1007/BF02490453
– volume: 201
  start-page: 746
  year: 2017
  ident: ref_30
  article-title: Comparing Ridge and LASSO estimators for data analysis
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2017.09.615
– volume: 17
  start-page: 24
  year: 2003
  ident: ref_23
  article-title: Diabetes, oxidative stress, and antioxidants: A review
  publication-title: J. Biochem. Mol. Toxicol.
  doi: 10.1002/jbt.10058
– ident: ref_13
  doi: 10.1186/1755-8794-5-1
– volume: 64
  start-page: 263
  year: 2017
  ident: ref_44
  article-title: -Omic and Electronic Health Record Big Data Analytics for Precision Medicine
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2573285
– volume: 665
  start-page: 1
  year: 2009
  ident: ref_46
  article-title: Effect of common polymorphisms in folate uptake and metabolism genes on frequency of micronucleated lymphocytes in a South Australian cohort
  publication-title: Mutat. Res.
  doi: 10.1016/j.mrfmmm.2009.02.007
– volume: 52
  start-page: 999
  year: 2012
  ident: ref_12
  article-title: Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: A review
  publication-title: Crit. Rev. Food Sci. Nutr.
  doi: 10.1080/10408398.2010.543495
– volume: 2013
  start-page: 1
  year: 2013
  ident: ref_22
  article-title: Malondialdehyde adduct to hemoglobin: A new marker of oxidative stress suitable for full-term and preterm neonates
  publication-title: Oxidative Med. Cell. Longev.
– volume: 65
  start-page: 1271
  year: 2011
  ident: ref_17
  article-title: Diet quality scores and oxidative stress in Korean adults
  publication-title: Eur. J. Clin. Nutr.
  doi: 10.1038/ejcn.2011.120
– volume: 30
  start-page: 2435
  year: 2007
  ident: ref_21
  article-title: Rapid and simple determination of plasma and erythrocyte MDA levels in prostate cancer patients by a validated HPLC method
  publication-title: J. Liq. Chromatogr. Relat. Technol.
  doi: 10.1080/10826070701465720
– volume: 24
  start-page: 1183
  year: 2013
  ident: ref_3
  article-title: Lifestyle and nutritional imbalances associated with Western diseases: Causes and consequences of chronic systemic low-grade inflammation in an evolutionary context
  publication-title: J. Nutr. Biochem.
  doi: 10.1016/j.jnutbio.2013.02.009
– volume: 114
  start-page: 1752
  year: 2004
  ident: ref_8
  article-title: Increased oxidative stress in obesity and its impact on metabolic syndrome
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI21625
– volume: 309
  start-page: 1351
  year: 2013
  ident: ref_15
  article-title: The inevitable application of big data to health care
  publication-title: JAMA
  doi: 10.1001/jama.2013.393
– volume: 2
  start-page: 230
  year: 2017
  ident: ref_14
  article-title: Artificial intelligence in healthcare: Past, present and future
  publication-title: Stroke Vasc. Neurol.
  doi: 10.1136/svn-2017-000101
– volume: 28
  start-page: 337
  year: 2000
  ident: ref_45
  article-title: Additive logistic regression: A statistical view of boosting (with discussion and a rejoinder by the authors)
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1016218223
– volume: 41
  start-page: 1162
  year: 2008
  ident: ref_51
  article-title: An oxidative stress score as a combined measure of the pro-oxidant and anti-oxidant counterparts in patients with coronary artery disease
  publication-title: Clin. Biochem.
  doi: 10.1016/j.clinbiochem.2008.07.005
– volume: 189
  start-page: 198
  year: 2006
  ident: ref_38
  article-title: Elevated serum levels of alanine aminotransferase and gamma glutamyltransferase are markers of inflammation and oxidative stress independent of the metabolic syndrome
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2005.11.036
– volume: 6
  start-page: 39
  year: 2007
  ident: ref_5
  article-title: Decreased blood antioxidant capacity and increased lipid peroxidation in young cigarette smokers compared to nonsmokers: Impact of dietary intake
  publication-title: Nutr. J.
  doi: 10.1186/1475-2891-6-39
– volume: 3
  start-page: 344
  year: 2011
  ident: ref_39
  article-title: The effect of oxidative stress on human red cells glutathione peroxidase, glutathione reductase level, and prevalence of anemia among diabetics
  publication-title: N. Am. J. Med. Sci.
  doi: 10.4297/najms.2011.3344
– volume: 12
  start-page: 185
  year: 2010
  ident: ref_40
  article-title: Hemoglobin can attenuate hydrogen peroxide-induced oxidative stress by acting as an antioxidative peroxidase
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2009.2826
– ident: ref_47
  doi: 10.1186/1471-2105-11-394
– volume: 243
  start-page: 213
  year: 2018
  ident: ref_11
  article-title: Biomarker definitions and their applications
  publication-title: Exp. Biol. Med.
  doi: 10.1177/1535370217750088
– volume: 4
  start-page: 30
  year: 2016
  ident: ref_53
  article-title: Multiple imputation with multivariate imputation by chained equation (MICE) package
  publication-title: Ann. Transl. Med.
– volume: 29
  start-page: 24
  year: 2015
  ident: ref_4
  article-title: Developmental origins of health and disease--global public health implications
  publication-title: Best Pract. Res. Clin. Obstet. Gynaecol.
  doi: 10.1016/j.bpobgyn.2014.06.007
– volume: 156
  start-page: 274
  year: 2002
  ident: ref_37
  article-title: Factors associated with oxidative stress in human populations
  publication-title: Am. J. Epidemiol.
  doi: 10.1093/aje/kwf029
– ident: ref_32
  doi: 10.1186/1471-2105-12-77
– volume: 100
  start-page: 771
  year: 2017
  ident: ref_41
  article-title: Annatto carotenoids attenuate oxidative stress and inflammatory response after high-calorie meal in healthy subjects
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2017.08.005
– volume: 39
  start-page: 1
  year: 2011
  ident: ref_26
  article-title: Regularization Paths for Cox’s Proportional Hazards Model via Coordinate Descent
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v039.i05
– volume: 33
  start-page: 1
  year: 2010
  ident: ref_28
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v033.i01
– ident: ref_34
  doi: 10.1016/S0169-7161(03)23001-7
– ident: ref_42
  doi: 10.1371/journal.pone.0232103
– volume: 23
  start-page: 1007
  year: 2016
  ident: ref_43
  article-title: Extracting information from the text of electronic medical records to improve case detection: A systematic review
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1093/jamia/ocv180
– volume: 43
  start-page: 1209
  year: 1997
  ident: ref_6
  article-title: Plasma malondialdehyde as biomarker for oxidative stress: Reference interval and effects of life-style factors
  publication-title: Clin. Chem.
  doi: 10.1093/clinchem/43.7.1209
– volume: 54
  start-page: 774
  year: 2001
  ident: ref_48
  article-title: Internal validation of predictive models: Efficiency of some procedures for logistic regression analysis
  publication-title: J. Clin. Epidemiol.
  doi: 10.1016/S0895-4356(01)00341-9
– volume: 338
  start-page: b606
  year: 2009
  ident: ref_36
  article-title: Prognosis and prognostic research: Application and impact of prognostic models in clinical practice
  publication-title: BMJ
  doi: 10.1136/bmj.b606
– volume: 775
  start-page: 121
  year: 2002
  ident: ref_19
  article-title: Rapid, fluorimetric-liquid chromatographic determination of malondialdehyde in biological samples
  publication-title: J. Chromatogr. B Anal. Technol. Biomed. Life Sci.
  doi: 10.1016/S1570-0232(02)00273-8
– volume: 30
  start-page: 137
  year: 2020
  ident: ref_27
  article-title: A demonstration of a multi-method variable selection approach for treatment selection: Recommending cognitive-behavioral versus psychodynamic therapy for mild to moderate adult depression
  publication-title: Psychother. Res.
  doi: 10.1080/10503307.2018.1563312
– volume: 28
  start-page: 532
  year: 2007
  ident: ref_18
  article-title: Validity and reliability of Korean version of International Physical Activity Questionnaire (IPAQ) short form
  publication-title: J. Korean Acad. Fam. Med.
SSID ssj0000913809
Score 2.200731
Snippet Oxidative stress aggravates the progression of lifestyle-related chronic diseases. However, knowledge and practices that enable quantifying oxidative stress...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1132
SubjectTerms adults
Algorithms
Artificial intelligence
Blood
Chronic illnesses
composite biomarker
data collection
Datasets
diagnostic model
Disease
elastic net regularized generalized linear model
Fines & penalties
Generalized linear models
Hemoglobin
Korean Peninsula
Learning algorithms
Machine learning
medical facilities
Metabolic syndrome
nutrition
Nutrition research
Oxidative stress
Principal components analysis
Statistical analysis
Variables
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9NAEF1B4QAHvhGBggYJiZNVx2t7d7mgNKUCoZZAQOrNsvcjiQh2iR3U_E7-EDNrJ9QHekHKyR5Z63g882b89g1jrzAJIAyOsTZRUgfxUKZB7mIRGBO52KV5YkTuh02I01N5dqYmXcOt7miV25joA7WpNPXIDxD6xlxgdovenv8MaGoUfV3tRmhcZzdIJSHy1L3JrsdCmpcyVK1WI8fq_iAnCuEFMQNownovF3nJ_h7O7LMkL6Wd47v_u-B77E4HOGHUesh9ds2WD9jtSzKED9nvEZx4TqWFTm51BqPlDC_WzH8Aolr4vKZbarxI-HIDRy0_j-w-XSyMPwxTv-sEvizq7zUsSmg3OG1gRAof8GG38auGQ8ycBqqtCUyxbrdw4mdZ-y7_GxjBBCG9C_A3bjdWAjEeN-ApDvCxQqxbwpj-1mDq2WR0k-NqjtUEHOVN_oh9O373dfw-6IY9BDpWcRMYK0InhOYRV4VOtCoKy2WOz0kLmTqlcm60M9aJ0CLoKmJphDPOxdRszRFoPWZ7ZVXaJwy0NZFyERaiyiE-cXg97WyU8MRESREmAxZsH3umOyV0GsixzLAiIjfJ-m4yYK939uetBsg_LQ_Ji3ZWpN3tD1SrWdaFgsxoYRSizqEY2pjnhSpsKG3heJJyIQs5YPtbh8q6gFJnf71pwF7uTmMooO87eWmrtbdRMcf3ILzCJuVYcQqeoo3o-Xdv0f0z5WLuhcclZQPJn169wGfsVkTEH1IfTffZXrNa2-fspv7VLOrVC_-G_gFnhE0W
  priority: 102
  providerName: ProQuest
Title A Machine Learning Algorithm for Quantitatively Diagnosing Oxidative Stress Risks in Healthy Adult Individuals Based on Health Space Methodology: A Proof-of-Concept Study Using Korean Cross-Sectional Cohort Data
URI https://www.proquest.com/docview/2554370912
https://www.proquest.com/docview/2559432150
https://www.proquest.com/docview/2636427360
https://pubmed.ncbi.nlm.nih.gov/PMC8301183
https://doaj.org/article/dc7d9623171e43ab9be08ebf356378b8
Volume 10
WOSCitedRecordID wos000675913400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ : Directory of Open Access Journals [open access]
  customDbUrl:
  eissn: 2076-3921
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913809
  issn: 2076-3921
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3921
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913809
  issn: 2076-3921
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2076-3921
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913809
  issn: 2076-3921
  databaseCode: M7P
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3921
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913809
  issn: 2076-3921
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3921
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913809
  issn: 2076-3921
  databaseCode: PIMPY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELVg4QAHxKe2sFSDhMQp2jR2Yptb2-2KFWoJW5DKKUr8sa0oCdq2aHvhT_KHGDtp1RyAC1KVQzxKHXtiz0vevCHkNW4CGAYzxCZSqID1RBLklvFA68gym-Sx5rkvNsEnEzGbyfSg1JfjhNXywPXAnWrFtcQ9usd7htG8kIUJhSksjRPKReHTfEMuD8CUX4Nlj4pQ1iqNFHH9ae7IgzeOE-Bqq7d2IS_W34ow2_zIgw3n_CF50ESK0K97-IjcMuVjcv9AP_AJ-dWHsSdDGmh0Uq-gv7yqEPDPvwGGo_Bx43q09ureyy2c1cQ6Z_fhZqH9aZj6dBG4XKy-rmBRQp2ZtIW-k-aAi33G1goGuOVpqHYmMEXAbWDsi1D71_NvoQ8pxuI2wN-wzogER1XcgucmwPsKg9QShm5UgqmngbmbHFZzhAFwlq_zp-Tz-ejT8F3QVGkIFJNsHWjDQ8u5ohGVhYqVLApDRY7DrLhIrJQ51cpqY3loMFoqmNDcamuZe0uaY4T0jByVVWmOCSijI2kjRJDSYmBh8XrKmiimsY7iIow7JNjNWqYaCXNXSWOZIZRxs5y1Z7lD3uztv9fiHX-0HDgn2Fs50W1_Al0xa1wx-5crdsjJzoWyZiVYZQjZGOXoj_gfr_bN-Ay7DzN5aaqNt5GMYvAV_sUmoQgVOU3Qhrfcs9Xpdku5mHvFcOGWcUGf_4-7fEHuRY7X48RFkxNytL7emJfkrvqxXqyuu-Q2n4kuuTMYTdLLrn8ou45Pm7rjzxG2pBfj9Mtvn_FFmg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VFAk48EYECgwSiJNVx2t7vUgIpQlVozQhkCKVk7H3kUQEO-QBzZ_iz_CHmF07oT7QWw9IPtkja72enflmd-YbQl6gE0AY7GNswiPh-I0odBLtM0dKT_s6TALJEttsgvX70ekpH-yQX5taGJNWubGJ1lDLXJg98n2Evj5l6N28t7PvjukaZU5XNy00CrXoqvVPDNkWbzpt_L8vPe_w3UnryCm7CjjC5_7SkYq5mjFBPcpTEQiepopGCWs0BItCzXlCpdBSaeYq9O6pH0mmpda-2dVL0KPje6-QXd8oe43sDjq9weftro5h2YxcXrBDUsrd_cQkLZ6ZXATT073i_WyTgAqyreZlnnN0h7f-tym6TW6WkBqaxRq4Q3ZUdpfcOEe0eI_8bkLPZo0qKAllR9CcjnDwy_E3QNwOH1ZmCpeWBn26hnaRgWjk3p9NpL0NQ1tXAx8ni68LmGRQlHCtoWk4TKCzLW1bwAFiAwn5RgSGs0Qo6Nlu3fYc4zU0YYBBi3bwahWlo2ByOtdgkzigmyOaz6BlfqMztPly5iNb-RjjJWgny-Q--XQps_qA1LI8Uw8JCCU9rj0MtblGBKbxfUIrL6CB9ILUDerE2ahZLEqud9NyZBpjzGfUMq6qZZ282srPCpaTf0oeGK3dShl2cnsjn4_i0tjFUjDJEVc3WEP5NEl5qtxIpZoGIWVRGtXJ3kaB49JkLuK_2lsnz7eP0diZE6wkU_nKynCfIkp1L5AJKcbUjIYowyrrqTLo6pNsMrbU6pHxdxF9dPEAn5FrRye94_i40-8-Jtc9k-ZkuFbDPVJbzlfqCbkqfiwni_nT0j4A-XLZ6-0PldStsw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELaWLkJw4I0oLDBIIE5R0ziJYySEui0VVWkpLCstp5D40VaUpPQB27_G3-APMXbSsjmwtz0g9ZSMotQZz3xjf_6GkGeYBBAG-1ib8Eg4fjMKnUT7zJHS074Ok0CyxDabYMNhdHLCR3vk1_YsjKFVbmOiDdQyF2aNvIHQ16cMs5vX0CUtYtTpvp5_d0wHKbPTum2nUbhIX21-Yvm2fNXr4Ld-7nndN5_ab52yw4AjfO6vHKmYqxkT1KM8FYHgaapolLBmU7Ao1JwnVAotlWauwkyf-pFkWmrtmxW-BLM7PvcS2UdI7ns1sj_qDUafdys8RnEzcnmhFEkpdxuJITCeGl6C6e9eyYS2YUAF5VY5mmeSXvfG_zxcN8n1EmpDq5gbt8ieym6Ta2cEGO-Q3y0YWDapglJodgyt2RhffjX5Bojn4cPaDOfKyqPPNtApmInG7v3pVNrLcGTP28DH6fLrEqYZFEe7NtAy2ibQ2x15W8IhYgYJ-dYEjuaJUDCwXbzt_sZLaMEIixnt4K9dHCkFw_XcgCV3QD9HlJ9B23xS58jy6MyfbOcTrKOgk6ySu-T4Qkb1HqlleabuExBKelx7WIJzjchM4_OEVl5AA-kFqRvUibN1uViUGvCmFcksxlrQuGhcddE6ebGznxfqJ_-0PDQevLMyquX2Qr4Yx2UQjKVgkiPebrKm8mmS8lS5kUo1DULKojSqk4OtM8dlKF3Gfz25Tp7ubmMQNDtbSabytbXhPkX06p5jE1KstRkN0YZV5lblpat3sunESq5HJg9G9MH5L_iEXMFJFr_rDfsPyVXPsJ-MBGt4QGqrxVo9IpfFj9V0uXhchgogXy56uv0B4YC2cw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Machine+Learning+Algorithm+for+Quantitatively+Diagnosing+Oxidative+Stress+Risks+in+Healthy+Adult+Individuals+Based+on+Health+Space+Methodology%3A+A+Proof-of-Concept+Study+Using+Korean+Cross-Sectional+Cohort+Data&rft.jtitle=Antioxidants&rft.au=Youjin+Kim&rft.au=Yunsoo+Kim&rft.au=Jiyoung+Hwang&rft.au=Tim+J.+van+den+Broek&rft.date=2021-07-16&rft.pub=MDPI+AG&rft.eissn=2076-3921&rft.volume=10&rft.issue=7&rft.spage=1132&rft_id=info:doi/10.3390%2Fantiox10071132&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_dc7d9623171e43ab9be08ebf356378b8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3921&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3921&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3921&client=summon