A Machine Learning Algorithm for Quantitatively Diagnosing Oxidative Stress Risks in Healthy Adult Individuals Based on Health Space Methodology: A Proof-of-Concept Study Using Korean Cross-Sectional Cohort Data
Oxidative stress aggravates the progression of lifestyle-related chronic diseases. However, knowledge and practices that enable quantifying oxidative stress are still lacking. Here, we performed a proof-of-concept study to predict the oxidative stress status in a healthy population using retrospecti...
Uloženo v:
| Vydáno v: | Antioxidants Ročník 10; číslo 7; s. 1132 |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
16.07.2021
MDPI |
| Témata: | |
| ISSN: | 2076-3921, 2076-3921 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Oxidative stress aggravates the progression of lifestyle-related chronic diseases. However, knowledge and practices that enable quantifying oxidative stress are still lacking. Here, we performed a proof-of-concept study to predict the oxidative stress status in a healthy population using retrospective cohort data from Boramae medical center in Korea (n = 1328). To obtain binary performance measures, we selected healthy controls versus oxidative disease cases based on the “health space” statistical methodology. We then developed a machine learning algorithm for discrimination of oxidative stress status using least absolute shrinkage and selection operator (LASSO)/elastic net regression with 10-fold cross-validation. A proposed fine-tune model included 16 features out of the full spectrum of diverse and complex data. The predictive performance was externally evaluated by generating receiver operating characteristic curves with area under the curve of 0.949 (CI 0.925 to 0.974), sensitivity of 0.923 (CI 0.879 to 0.967), and specificity of 0.855 (CI 0.795 to 0.915). Moreover, the discrimination power was confirmed by applying the proposed diagnostic model to the full dataset consisting of subjects with various degrees of oxidative stress. The results provide a feasible approach for stratifying the oxidative stress risks in the healthy population and selecting appropriate strategies for individual subjects toward implementing data-driven precision nutrition. |
|---|---|
| AbstractList | Oxidative stress aggravates the progression of lifestyle-related chronic diseases. However, knowledge and practices that enable quantifying oxidative stress are still lacking. Here, we performed a proof-of-concept study to predict the oxidative stress status in a healthy population using retrospective cohort data from Boramae medical center in Korea (n = 1328). To obtain binary performance measures, we selected healthy controls versus oxidative disease cases based on the “health space” statistical methodology. We then developed a machine learning algorithm for discrimination of oxidative stress status using least absolute shrinkage and selection operator (LASSO)/elastic net regression with 10-fold cross-validation. A proposed fine-tune model included 16 features out of the full spectrum of diverse and complex data. The predictive performance was externally evaluated by generating receiver operating characteristic curves with area under the curve of 0.949 (CI 0.925 to 0.974), sensitivity of 0.923 (CI 0.879 to 0.967), and specificity of 0.855 (CI 0.795 to 0.915). Moreover, the discrimination power was confirmed by applying the proposed diagnostic model to the full dataset consisting of subjects with various degrees of oxidative stress. The results provide a feasible approach for stratifying the oxidative stress risks in the healthy population and selecting appropriate strategies for individual subjects toward implementing data-driven precision nutrition. Oxidative stress aggravates the progression of lifestyle-related chronic diseases. However, knowledge and practices that enable quantifying oxidative stress are still lacking. Here, we performed a proof-of-concept study to predict the oxidative stress status in a healthy population using retrospective cohort data from Boramae medical center in Korea (n = 1328). To obtain binary performance measures, we selected healthy controls versus oxidative disease cases based on the "health space" statistical methodology. We then developed a machine learning algorithm for discrimination of oxidative stress status using least absolute shrinkage and selection operator (LASSO)/elastic net regression with 10-fold cross-validation. A proposed fine-tune model included 16 features out of the full spectrum of diverse and complex data. The predictive performance was externally evaluated by generating receiver operating characteristic curves with area under the curve of 0.949 (CI 0.925 to 0.974), sensitivity of 0.923 (CI 0.879 to 0.967), and specificity of 0.855 (CI 0.795 to 0.915). Moreover, the discrimination power was confirmed by applying the proposed diagnostic model to the full dataset consisting of subjects with various degrees of oxidative stress. The results provide a feasible approach for stratifying the oxidative stress risks in the healthy population and selecting appropriate strategies for individual subjects toward implementing data-driven precision nutrition.Oxidative stress aggravates the progression of lifestyle-related chronic diseases. However, knowledge and practices that enable quantifying oxidative stress are still lacking. Here, we performed a proof-of-concept study to predict the oxidative stress status in a healthy population using retrospective cohort data from Boramae medical center in Korea (n = 1328). To obtain binary performance measures, we selected healthy controls versus oxidative disease cases based on the "health space" statistical methodology. We then developed a machine learning algorithm for discrimination of oxidative stress status using least absolute shrinkage and selection operator (LASSO)/elastic net regression with 10-fold cross-validation. A proposed fine-tune model included 16 features out of the full spectrum of diverse and complex data. The predictive performance was externally evaluated by generating receiver operating characteristic curves with area under the curve of 0.949 (CI 0.925 to 0.974), sensitivity of 0.923 (CI 0.879 to 0.967), and specificity of 0.855 (CI 0.795 to 0.915). Moreover, the discrimination power was confirmed by applying the proposed diagnostic model to the full dataset consisting of subjects with various degrees of oxidative stress. The results provide a feasible approach for stratifying the oxidative stress risks in the healthy population and selecting appropriate strategies for individual subjects toward implementing data-driven precision nutrition. |
| Author | Kim, Youjin Hwang, Jiyoung Wopereis, Suzan Bouwman, Jildau Kim, Ji Yeon Kim, Yunsoo Oh, Bumjo Kwon, Oran van den Broek, Tim J. |
| AuthorAffiliation | 3 Netherlands Organization for Applied Scientific Research (TNO), Department of Microbiology and Systems Biology, Utrechtseweg 48, 3704 HE Zeist, The Netherlands; tim.vandenbroek@tno.nl (T.J.v.d.B.); suzan.wopereis@tno.nl (S.W.) 2 Department of Nutritional Science and Food Management, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodeamun-gu, Seoul 03760, Korea; cindy.jyhwang@gmail.com 5 Department of Food Science and Technology, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea; jiyeonk@seoultech.ac.kr 1 Department of Nutritional Science and Food Management, Ewha Womans University, 52 Ewhayeodae-gil, Seodeamun-gu, Seoul 03760, Korea; Youjin.Kim631782@tufts.edu (Y.K.); sookim726@gmail.com (Y.K.) 4 Boramae Medical Center, Department of Family Medicine, Seoul Metropolitan Government-Seoul National University, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul 07061, Korea; bo39@snu.ac.kr |
| AuthorAffiliation_xml | – name: 4 Boramae Medical Center, Department of Family Medicine, Seoul Metropolitan Government-Seoul National University, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul 07061, Korea; bo39@snu.ac.kr – name: 3 Netherlands Organization for Applied Scientific Research (TNO), Department of Microbiology and Systems Biology, Utrechtseweg 48, 3704 HE Zeist, The Netherlands; tim.vandenbroek@tno.nl (T.J.v.d.B.); suzan.wopereis@tno.nl (S.W.) – name: 2 Department of Nutritional Science and Food Management, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodeamun-gu, Seoul 03760, Korea; cindy.jyhwang@gmail.com – name: 1 Department of Nutritional Science and Food Management, Ewha Womans University, 52 Ewhayeodae-gil, Seodeamun-gu, Seoul 03760, Korea; Youjin.Kim631782@tufts.edu (Y.K.); sookim726@gmail.com (Y.K.) – name: 5 Department of Food Science and Technology, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea; jiyeonk@seoultech.ac.kr |
| Author_xml | – sequence: 1 givenname: Youjin surname: Kim fullname: Kim, Youjin – sequence: 2 givenname: Yunsoo orcidid: 0000-0001-9376-6141 surname: Kim fullname: Kim, Yunsoo – sequence: 3 givenname: Jiyoung surname: Hwang fullname: Hwang, Jiyoung – sequence: 4 givenname: Tim J. surname: van den Broek fullname: van den Broek, Tim J. – sequence: 5 givenname: Bumjo orcidid: 0000-0002-2468-0755 surname: Oh fullname: Oh, Bumjo – sequence: 6 givenname: Ji Yeon orcidid: 0000-0002-4316-2726 surname: Kim fullname: Kim, Ji Yeon – sequence: 7 givenname: Suzan orcidid: 0000-0001-9612-657X surname: Wopereis fullname: Wopereis, Suzan – sequence: 8 givenname: Jildau surname: Bouwman fullname: Bouwman, Jildau – sequence: 9 givenname: Oran orcidid: 0000-0002-2031-7238 surname: Kwon fullname: Kwon, Oran |
| BookMark | eNqFkkFv0zAUxyM0xMbYlbMlLlwy7DiJEw5IXQesotOAsrPl2C-NR2oX26nWz8kXwmk3iU5CWJZs2b_3f_Z7_5fJkbEGkuQ1weeU1vidMEHbe4IxI4Rmz5KTDLMypXVGjv7aHydn3t_hOGpCK1y_SI5pTouSlsVJ8nuCroXstAE0B-GMNks06ZfW6dCtUGsd-jaMaYIIegP9Fl1qsTTWj9zNvVa7Y7QIDrxH37X_6ZE26ApEH7otmqihD2hmlN5oNYjeowvhQSH7iKDFWkhA1xA6q2xvl9v3aIK-OmvbNM6pNRLWIeoPaotud1m_WAfCoKmz3qcLkLEERvRoajvrAroUQbxKnrcxF5w9rKfJ7aePP6ZX6fzm82w6macyr_OQKmC4ZUzSjNaNLGTdNEArEWspWVW2dS2okq2ClmEgLGvySrFWtW2exYILXNLTZLbXVVbc8bXTK-G23ArNdwfWLblwQcseuJJM1WVGCSOQU9HUDeAKmnZsA6uaKmp92Guth2YFSoIJTvQHooc3Rnd8aTe8opiQikaBtw8Czv4awAe-0l5C3wsDdvA8i_3OM0ZL_H-0KOqcZqQY0TdP0Ds7uFjvHZVTFj2VRSrfU3JsioOWy51h7PhU3XOC-ehXfujXGHb-JOzxu_8I-AMLgPKi |
| CitedBy_id | crossref_primary_10_1016_j_advnut_2025_100398 crossref_primary_10_3390_ijms26136415 crossref_primary_10_3390_nu15143267 crossref_primary_10_1016_j_cbi_2022_109888 crossref_primary_10_1186_s12911_025_03026_3 |
| Cites_doi | 10.1016/j.freeradbiomed.2005.06.025 10.1007/s11886-013-0441-8 10.1016/j.orcp.2013.05.004 10.1002/bjs.9736 10.14336/AD.2014.0305 10.1111/j.1440-1746.2006.04231.x 10.1016/S0895-4356(03)00047-7 10.1002/dmrr.3230 10.1007/978-3-319-33486-8_6 10.1503/cmaj.110977 10.1016/j.surg.2015.12.029 10.1093/nar/gkaa1043 10.1007/BF02490453 10.1016/j.proeng.2017.09.615 10.1002/jbt.10058 10.1186/1755-8794-5-1 10.1109/TBME.2016.2573285 10.1016/j.mrfmmm.2009.02.007 10.1080/10408398.2010.543495 10.1038/ejcn.2011.120 10.1080/10826070701465720 10.1016/j.jnutbio.2013.02.009 10.1172/JCI21625 10.1001/jama.2013.393 10.1136/svn-2017-000101 10.1214/aos/1016218223 10.1016/j.clinbiochem.2008.07.005 10.1016/j.atherosclerosis.2005.11.036 10.1186/1475-2891-6-39 10.4297/najms.2011.3344 10.1089/ars.2009.2826 10.1186/1471-2105-11-394 10.1177/1535370217750088 10.1016/j.bpobgyn.2014.06.007 10.1093/aje/kwf029 10.1186/1471-2105-12-77 10.1016/j.foodres.2017.08.005 10.18637/jss.v039.i05 10.18637/jss.v033.i01 10.1016/S0169-7161(03)23001-7 10.1371/journal.pone.0232103 10.1093/jamia/ocv180 10.1093/clinchem/43.7.1209 10.1016/S0895-4356(01)00341-9 10.1136/bmj.b606 10.1016/S1570-0232(02)00273-8 10.1080/10503307.2018.1563312 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
| DBID | AAYXX CITATION 7QR 7T5 7TO 8FD 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 GNUQQ H94 HCIFZ LK8 M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM DOA |
| DOI | 10.3390/antiox10071132 |
| DatabaseName | CrossRef Chemoreception Abstracts Immunology Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student AIDS and Cancer Research Abstracts ProQuest SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection AIDS and Cancer Research Abstracts Chemoreception Abstracts ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Immunology Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE - Academic CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ : Directory of Open Access Journals [open access] url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2076-3921 |
| ExternalDocumentID | oai_doaj_org_article_dc7d9623171e43ab9be08ebf356378b8 PMC8301183 10_3390_antiox10071132 |
| GeographicLocations | Korean Peninsula |
| GeographicLocations_xml | – name: Korean Peninsula |
| GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAHBH AAYXX ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO IHR KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RPM 7QR 7T5 7TO 8FD ABUWG AZQEC DWQXO FR3 GNUQQ H94 P64 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 ITC 7S9 L.6 5PM |
| ID | FETCH-LOGICAL-c494t-de70f77c3239bc5c9bbe38a711c786f99a3dcfdef70e172b48d7fdff42007a063 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000675913400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3921 |
| IngestDate | Fri Oct 03 12:50:37 EDT 2025 Tue Nov 04 02:01:59 EST 2025 Sun Nov 09 14:09:04 EST 2025 Sun Nov 09 09:37:11 EST 2025 Fri Jul 25 12:09:22 EDT 2025 Sat Nov 29 07:12:26 EST 2025 Tue Nov 18 20:50:29 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c494t-de70f77c3239bc5c9bbe38a711c786f99a3dcfdef70e172b48d7fdff42007a063 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
| ORCID | 0000-0001-9612-657X 0000-0002-4316-2726 0000-0002-2031-7238 0000-0001-9376-6141 0000-0002-2468-0755 |
| OpenAccessLink | https://doaj.org/article/dc7d9623171e43ab9be08ebf356378b8 |
| PMID | 34356365 |
| PQID | 2554370912 |
| PQPubID | 2032435 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_dc7d9623171e43ab9be08ebf356378b8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8301183 proquest_miscellaneous_2636427360 proquest_miscellaneous_2559432150 proquest_journals_2554370912 crossref_citationtrail_10_3390_antiox10071132 crossref_primary_10_3390_antiox10071132 |
| PublicationCentury | 2000 |
| PublicationDate | 20210716 |
| PublicationDateYYYYMMDD | 2021-07-16 |
| PublicationDate_xml | – month: 7 year: 2021 text: 20210716 day: 16 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Antioxidants |
| PublicationYear | 2021 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_50 Murdoch (ref_15) 2013; 309 Block (ref_37) 2002; 156 Oh (ref_18) 2007; 28 ref_13 Aydin (ref_21) 2007; 30 Kim (ref_17) 2011; 65 Cherubini (ref_7) 2005; 39 Waggiallah (ref_39) 2011; 3 (ref_33) 2019; 2019 Natarajan (ref_24) 2006; 21 Wu (ref_44) 2017; 64 Cipierre (ref_22) 2013; 2013 Cohen (ref_27) 2020; 30 Simon (ref_26) 2011; 39 Collins (ref_10) 2015; 102 Bonomini (ref_1) 2015; 6 Nielsen (ref_6) 1997; 43 Friedman (ref_28) 2010; 33 Dhillon (ref_46) 2009; 665 Agarwal (ref_19) 2002; 775 Moons (ref_36) 2009; 338 Dilsizian (ref_16) 2014; 16 Widmer (ref_40) 2010; 12 Groenwold (ref_52) 2012; 184 Yamada (ref_38) 2006; 189 Kohler (ref_25) 2021; 49 Elmasry (ref_12) 2012; 52 Furukawa (ref_8) 2004; 114 Khoschsorur (ref_20) 2000; 52 Steyerberg (ref_48) 2001; 54 ref_35 ref_34 ref_32 ref_31 Ford (ref_43) 2016; 23 Pruimboom (ref_3) 2013; 24 Maritim (ref_23) 2003; 17 Vassalle (ref_51) 2008; 41 Bloomer (ref_5) 2007; 6 Melkumova (ref_30) 2017; 201 Roehrs (ref_41) 2017; 100 Matsuda (ref_9) 2013; 7 ref_47 ref_42 Hanson (ref_4) 2015; 29 Steyerberg (ref_29) 2003; 56 Friedman (ref_45) 2000; 28 ref_2 Jiang (ref_14) 2017; 2 Zhang (ref_53) 2016; 4 Califf (ref_11) 2018; 243 Carter (ref_49) 2016; 159 |
| References_xml | – volume: 39 start-page: 841 year: 2005 ident: ref_7 article-title: Potential markers of oxidative stress in stroke publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2005.06.025 – volume: 16 start-page: 441 year: 2014 ident: ref_16 article-title: Artificial intelligence in medicine and cardiac imaging: Harnessing big data and advanced computing to provide personalized medical diagnosis and treatment publication-title: Curr. Cardiol. Rep. doi: 10.1007/s11886-013-0441-8 – volume: 7 start-page: e330 year: 2013 ident: ref_9 article-title: Increased oxidative stress in obesity: Implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer publication-title: Obes. Res. Clin. Pract. doi: 10.1016/j.orcp.2013.05.004 – volume: 102 start-page: 148 year: 2015 ident: ref_10 article-title: Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): The TRIPOD Statement publication-title: Br. J. Surg. doi: 10.1002/bjs.9736 – ident: ref_35 – volume: 6 start-page: 109 year: 2015 ident: ref_1 article-title: Metabolic syndrome, aging and involvement of oxidative stress publication-title: Aging Dis. doi: 10.14336/AD.2014.0305 – volume: 21 start-page: 947 year: 2006 ident: ref_24 article-title: Oxidative stress in the development of liver cirrhosis: A comparison of two different experimental models publication-title: J. Gastroenterol. Hepatol. doi: 10.1111/j.1440-1746.2006.04231.x – volume: 56 start-page: 441 year: 2003 ident: ref_29 article-title: Internal and external validation of predictive models: A simulation study of bias and precision in small samples publication-title: J. Clin. Epidemiol. doi: 10.1016/S0895-4356(03)00047-7 – ident: ref_50 doi: 10.1002/dmrr.3230 – ident: ref_31 – ident: ref_2 doi: 10.1007/978-3-319-33486-8_6 – volume: 184 start-page: 1265 year: 2012 ident: ref_52 article-title: Missing covariate data in clinical research: When and when not to use the missing-indicator method for analysis publication-title: CMAJ doi: 10.1503/cmaj.110977 – volume: 159 start-page: 1638 year: 2016 ident: ref_49 article-title: ROC-ing along: Evaluation and interpretation of receiver operating characteristic curves publication-title: Surgery doi: 10.1016/j.surg.2015.12.029 – volume: 2019 start-page: 1 year: 2019 ident: ref_33 article-title: Medical diagnostic tests: A review of test anatomy, phases, and statistical treatment of data publication-title: Comput. Math. Methods Med. – volume: 49 start-page: D1207 year: 2021 ident: ref_25 article-title: The Human Phenotype Ontology in 2021 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa1043 – volume: 52 start-page: 181 year: 2000 ident: ref_20 article-title: Evaluation of a sensitive HPLC method for the determination of malondialdehyde, and application of the method to different biological materials publication-title: Chromatographia doi: 10.1007/BF02490453 – volume: 201 start-page: 746 year: 2017 ident: ref_30 article-title: Comparing Ridge and LASSO estimators for data analysis publication-title: Procedia Eng. doi: 10.1016/j.proeng.2017.09.615 – volume: 17 start-page: 24 year: 2003 ident: ref_23 article-title: Diabetes, oxidative stress, and antioxidants: A review publication-title: J. Biochem. Mol. Toxicol. doi: 10.1002/jbt.10058 – ident: ref_13 doi: 10.1186/1755-8794-5-1 – volume: 64 start-page: 263 year: 2017 ident: ref_44 article-title: -Omic and Electronic Health Record Big Data Analytics for Precision Medicine publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2016.2573285 – volume: 665 start-page: 1 year: 2009 ident: ref_46 article-title: Effect of common polymorphisms in folate uptake and metabolism genes on frequency of micronucleated lymphocytes in a South Australian cohort publication-title: Mutat. Res. doi: 10.1016/j.mrfmmm.2009.02.007 – volume: 52 start-page: 999 year: 2012 ident: ref_12 article-title: Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: A review publication-title: Crit. Rev. Food Sci. Nutr. doi: 10.1080/10408398.2010.543495 – volume: 2013 start-page: 1 year: 2013 ident: ref_22 article-title: Malondialdehyde adduct to hemoglobin: A new marker of oxidative stress suitable for full-term and preterm neonates publication-title: Oxidative Med. Cell. Longev. – volume: 65 start-page: 1271 year: 2011 ident: ref_17 article-title: Diet quality scores and oxidative stress in Korean adults publication-title: Eur. J. Clin. Nutr. doi: 10.1038/ejcn.2011.120 – volume: 30 start-page: 2435 year: 2007 ident: ref_21 article-title: Rapid and simple determination of plasma and erythrocyte MDA levels in prostate cancer patients by a validated HPLC method publication-title: J. Liq. Chromatogr. Relat. Technol. doi: 10.1080/10826070701465720 – volume: 24 start-page: 1183 year: 2013 ident: ref_3 article-title: Lifestyle and nutritional imbalances associated with Western diseases: Causes and consequences of chronic systemic low-grade inflammation in an evolutionary context publication-title: J. Nutr. Biochem. doi: 10.1016/j.jnutbio.2013.02.009 – volume: 114 start-page: 1752 year: 2004 ident: ref_8 article-title: Increased oxidative stress in obesity and its impact on metabolic syndrome publication-title: J. Clin. Investig. doi: 10.1172/JCI21625 – volume: 309 start-page: 1351 year: 2013 ident: ref_15 article-title: The inevitable application of big data to health care publication-title: JAMA doi: 10.1001/jama.2013.393 – volume: 2 start-page: 230 year: 2017 ident: ref_14 article-title: Artificial intelligence in healthcare: Past, present and future publication-title: Stroke Vasc. Neurol. doi: 10.1136/svn-2017-000101 – volume: 28 start-page: 337 year: 2000 ident: ref_45 article-title: Additive logistic regression: A statistical view of boosting (with discussion and a rejoinder by the authors) publication-title: Ann. Statist. doi: 10.1214/aos/1016218223 – volume: 41 start-page: 1162 year: 2008 ident: ref_51 article-title: An oxidative stress score as a combined measure of the pro-oxidant and anti-oxidant counterparts in patients with coronary artery disease publication-title: Clin. Biochem. doi: 10.1016/j.clinbiochem.2008.07.005 – volume: 189 start-page: 198 year: 2006 ident: ref_38 article-title: Elevated serum levels of alanine aminotransferase and gamma glutamyltransferase are markers of inflammation and oxidative stress independent of the metabolic syndrome publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2005.11.036 – volume: 6 start-page: 39 year: 2007 ident: ref_5 article-title: Decreased blood antioxidant capacity and increased lipid peroxidation in young cigarette smokers compared to nonsmokers: Impact of dietary intake publication-title: Nutr. J. doi: 10.1186/1475-2891-6-39 – volume: 3 start-page: 344 year: 2011 ident: ref_39 article-title: The effect of oxidative stress on human red cells glutathione peroxidase, glutathione reductase level, and prevalence of anemia among diabetics publication-title: N. Am. J. Med. Sci. doi: 10.4297/najms.2011.3344 – volume: 12 start-page: 185 year: 2010 ident: ref_40 article-title: Hemoglobin can attenuate hydrogen peroxide-induced oxidative stress by acting as an antioxidative peroxidase publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2009.2826 – ident: ref_47 doi: 10.1186/1471-2105-11-394 – volume: 243 start-page: 213 year: 2018 ident: ref_11 article-title: Biomarker definitions and their applications publication-title: Exp. Biol. Med. doi: 10.1177/1535370217750088 – volume: 4 start-page: 30 year: 2016 ident: ref_53 article-title: Multiple imputation with multivariate imputation by chained equation (MICE) package publication-title: Ann. Transl. Med. – volume: 29 start-page: 24 year: 2015 ident: ref_4 article-title: Developmental origins of health and disease--global public health implications publication-title: Best Pract. Res. Clin. Obstet. Gynaecol. doi: 10.1016/j.bpobgyn.2014.06.007 – volume: 156 start-page: 274 year: 2002 ident: ref_37 article-title: Factors associated with oxidative stress in human populations publication-title: Am. J. Epidemiol. doi: 10.1093/aje/kwf029 – ident: ref_32 doi: 10.1186/1471-2105-12-77 – volume: 100 start-page: 771 year: 2017 ident: ref_41 article-title: Annatto carotenoids attenuate oxidative stress and inflammatory response after high-calorie meal in healthy subjects publication-title: Food Res. Int. doi: 10.1016/j.foodres.2017.08.005 – volume: 39 start-page: 1 year: 2011 ident: ref_26 article-title: Regularization Paths for Cox’s Proportional Hazards Model via Coordinate Descent publication-title: J. Stat. Softw. doi: 10.18637/jss.v039.i05 – volume: 33 start-page: 1 year: 2010 ident: ref_28 article-title: Regularization paths for generalized linear models via coordinate descent publication-title: J. Stat. Softw. doi: 10.18637/jss.v033.i01 – ident: ref_34 doi: 10.1016/S0169-7161(03)23001-7 – ident: ref_42 doi: 10.1371/journal.pone.0232103 – volume: 23 start-page: 1007 year: 2016 ident: ref_43 article-title: Extracting information from the text of electronic medical records to improve case detection: A systematic review publication-title: J. Am. Med. Inform. Assoc. doi: 10.1093/jamia/ocv180 – volume: 43 start-page: 1209 year: 1997 ident: ref_6 article-title: Plasma malondialdehyde as biomarker for oxidative stress: Reference interval and effects of life-style factors publication-title: Clin. Chem. doi: 10.1093/clinchem/43.7.1209 – volume: 54 start-page: 774 year: 2001 ident: ref_48 article-title: Internal validation of predictive models: Efficiency of some procedures for logistic regression analysis publication-title: J. Clin. Epidemiol. doi: 10.1016/S0895-4356(01)00341-9 – volume: 338 start-page: b606 year: 2009 ident: ref_36 article-title: Prognosis and prognostic research: Application and impact of prognostic models in clinical practice publication-title: BMJ doi: 10.1136/bmj.b606 – volume: 775 start-page: 121 year: 2002 ident: ref_19 article-title: Rapid, fluorimetric-liquid chromatographic determination of malondialdehyde in biological samples publication-title: J. Chromatogr. B Anal. Technol. Biomed. Life Sci. doi: 10.1016/S1570-0232(02)00273-8 – volume: 30 start-page: 137 year: 2020 ident: ref_27 article-title: A demonstration of a multi-method variable selection approach for treatment selection: Recommending cognitive-behavioral versus psychodynamic therapy for mild to moderate adult depression publication-title: Psychother. Res. doi: 10.1080/10503307.2018.1563312 – volume: 28 start-page: 532 year: 2007 ident: ref_18 article-title: Validity and reliability of Korean version of International Physical Activity Questionnaire (IPAQ) short form publication-title: J. Korean Acad. Fam. Med. |
| SSID | ssj0000913809 |
| Score | 2.200731 |
| Snippet | Oxidative stress aggravates the progression of lifestyle-related chronic diseases. However, knowledge and practices that enable quantifying oxidative stress... |
| SourceID | doaj pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 1132 |
| SubjectTerms | adults Algorithms Artificial intelligence Blood Chronic illnesses composite biomarker data collection Datasets diagnostic model Disease elastic net regularized generalized linear model Fines & penalties Generalized linear models Hemoglobin Korean Peninsula Learning algorithms Machine learning medical facilities Metabolic syndrome nutrition Nutrition research Oxidative stress Principal components analysis Statistical analysis Variables |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9NAEF1B4QAHvhGBggYJiZNVx2t7d7mgNKUCoZZAQOrNsvcjiQh2iR3U_E7-EDNrJ9QHekHKyR5Z63g882b89g1jrzAJIAyOsTZRUgfxUKZB7mIRGBO52KV5YkTuh02I01N5dqYmXcOt7miV25joA7WpNPXIDxD6xlxgdovenv8MaGoUfV3tRmhcZzdIJSHy1L3JrsdCmpcyVK1WI8fq_iAnCuEFMQNownovF3nJ_h7O7LMkL6Wd47v_u-B77E4HOGHUesh9ds2WD9jtSzKED9nvEZx4TqWFTm51BqPlDC_WzH8Aolr4vKZbarxI-HIDRy0_j-w-XSyMPwxTv-sEvizq7zUsSmg3OG1gRAof8GG38auGQ8ycBqqtCUyxbrdw4mdZ-y7_GxjBBCG9C_A3bjdWAjEeN-ApDvCxQqxbwpj-1mDq2WR0k-NqjtUEHOVN_oh9O373dfw-6IY9BDpWcRMYK0InhOYRV4VOtCoKy2WOz0kLmTqlcm60M9aJ0CLoKmJphDPOxdRszRFoPWZ7ZVXaJwy0NZFyERaiyiE-cXg97WyU8MRESREmAxZsH3umOyV0GsixzLAiIjfJ-m4yYK939uetBsg_LQ_Ji3ZWpN3tD1SrWdaFgsxoYRSizqEY2pjnhSpsKG3heJJyIQs5YPtbh8q6gFJnf71pwF7uTmMooO87eWmrtbdRMcf3ILzCJuVYcQqeoo3o-Xdv0f0z5WLuhcclZQPJn169wGfsVkTEH1IfTffZXrNa2-fspv7VLOrVC_-G_gFnhE0W priority: 102 providerName: ProQuest |
| Title | A Machine Learning Algorithm for Quantitatively Diagnosing Oxidative Stress Risks in Healthy Adult Individuals Based on Health Space Methodology: A Proof-of-Concept Study Using Korean Cross-Sectional Cohort Data |
| URI | https://www.proquest.com/docview/2554370912 https://www.proquest.com/docview/2559432150 https://www.proquest.com/docview/2636427360 https://pubmed.ncbi.nlm.nih.gov/PMC8301183 https://doaj.org/article/dc7d9623171e43ab9be08ebf356378b8 |
| Volume | 10 |
| WOSCitedRecordID | wos000675913400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ : Directory of Open Access Journals [open access] customDbUrl: eissn: 2076-3921 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913809 issn: 2076-3921 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3921 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913809 issn: 2076-3921 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2076-3921 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913809 issn: 2076-3921 databaseCode: M7P dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3921 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913809 issn: 2076-3921 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2076-3921 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913809 issn: 2076-3921 databaseCode: PIMPY dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELVg4QAHxKe2sFSDhMQp2jR2Yptb2-2KFWoJW5DKKUr8sa0oCdq2aHvhT_KHGDtp1RyAC1KVQzxKHXtiz0vevCHkNW4CGAYzxCZSqID1RBLklvFA68gym-Sx5rkvNsEnEzGbyfSg1JfjhNXywPXAnWrFtcQ9usd7htG8kIUJhSksjRPKReHTfEMuD8CUX4Nlj4pQ1iqNFHH9ae7IgzeOE-Bqq7d2IS_W34ow2_zIgw3n_CF50ESK0K97-IjcMuVjcv9AP_AJ-dWHsSdDGmh0Uq-gv7yqEPDPvwGGo_Bx43q09ureyy2c1cQ6Z_fhZqH9aZj6dBG4XKy-rmBRQp2ZtIW-k-aAi33G1goGuOVpqHYmMEXAbWDsi1D71_NvoQ8pxuI2wN-wzogER1XcgucmwPsKg9QShm5UgqmngbmbHFZzhAFwlq_zp-Tz-ejT8F3QVGkIFJNsHWjDQ8u5ohGVhYqVLApDRY7DrLhIrJQ51cpqY3loMFoqmNDcamuZe0uaY4T0jByVVWmOCSijI2kjRJDSYmBh8XrKmiimsY7iIow7JNjNWqYaCXNXSWOZIZRxs5y1Z7lD3uztv9fiHX-0HDgn2Fs50W1_Al0xa1wx-5crdsjJzoWyZiVYZQjZGOXoj_gfr_bN-Ay7DzN5aaqNt5GMYvAV_sUmoQgVOU3Qhrfcs9Xpdku5mHvFcOGWcUGf_4-7fEHuRY7X48RFkxNytL7emJfkrvqxXqyuu-Q2n4kuuTMYTdLLrn8ou45Pm7rjzxG2pBfj9Mtvn_FFmg |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VFAk48EYECgwSiJNVx2t7vUgIpQlVozQhkCKVk7H3kUQEO-QBzZ_iz_CHmF07oT7QWw9IPtkja72enflmd-YbQl6gE0AY7GNswiPh-I0odBLtM0dKT_s6TALJEttsgvX70ekpH-yQX5taGJNWubGJ1lDLXJg98n2Evj5l6N28t7PvjukaZU5XNy00CrXoqvVPDNkWbzpt_L8vPe_w3UnryCm7CjjC5_7SkYq5mjFBPcpTEQiepopGCWs0BItCzXlCpdBSaeYq9O6pH0mmpda-2dVL0KPje6-QXd8oe43sDjq9weftro5h2YxcXrBDUsrd_cQkLZ6ZXATT073i_WyTgAqyreZlnnN0h7f-tym6TW6WkBqaxRq4Q3ZUdpfcOEe0eI_8bkLPZo0qKAllR9CcjnDwy_E3QNwOH1ZmCpeWBn26hnaRgWjk3p9NpL0NQ1tXAx8ni68LmGRQlHCtoWk4TKCzLW1bwAFiAwn5RgSGs0Qo6Nlu3fYc4zU0YYBBi3bwahWlo2ByOtdgkzigmyOaz6BlfqMztPly5iNb-RjjJWgny-Q--XQps_qA1LI8Uw8JCCU9rj0MtblGBKbxfUIrL6CB9ILUDerE2ahZLEqud9NyZBpjzGfUMq6qZZ282srPCpaTf0oeGK3dShl2cnsjn4_i0tjFUjDJEVc3WEP5NEl5qtxIpZoGIWVRGtXJ3kaB49JkLuK_2lsnz7eP0diZE6wkU_nKynCfIkp1L5AJKcbUjIYowyrrqTLo6pNsMrbU6pHxdxF9dPEAn5FrRye94_i40-8-Jtc9k-ZkuFbDPVJbzlfqCbkqfiwni_nT0j4A-XLZ6-0PldStsw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELaWLkJw4I0oLDBIIE5R0ziJYySEui0VVWkpLCstp5D40VaUpPQB27_G3-APMXbSsjmwtz0g9ZSMotQZz3xjf_6GkGeYBBAG-1ib8Eg4fjMKnUT7zJHS074Ok0CyxDabYMNhdHLCR3vk1_YsjKFVbmOiDdQyF2aNvIHQ16cMs5vX0CUtYtTpvp5_d0wHKbPTum2nUbhIX21-Yvm2fNXr4Ld-7nndN5_ab52yw4AjfO6vHKmYqxkT1KM8FYHgaapolLBmU7Ao1JwnVAotlWauwkyf-pFkWmrtmxW-BLM7PvcS2UdI7ns1sj_qDUafdys8RnEzcnmhFEkpdxuJITCeGl6C6e9eyYS2YUAF5VY5mmeSXvfG_zxcN8n1EmpDq5gbt8ieym6Ta2cEGO-Q3y0YWDapglJodgyt2RhffjX5Bojn4cPaDOfKyqPPNtApmInG7v3pVNrLcGTP28DH6fLrEqYZFEe7NtAy2ibQ2x15W8IhYgYJ-dYEjuaJUDCwXbzt_sZLaMEIixnt4K9dHCkFw_XcgCV3QD9HlJ9B23xS58jy6MyfbOcTrKOgk6ySu-T4Qkb1HqlleabuExBKelx7WIJzjchM4_OEVl5AA-kFqRvUibN1uViUGvCmFcksxlrQuGhcddE6ebGznxfqJ_-0PDQevLMyquX2Qr4Yx2UQjKVgkiPebrKm8mmS8lS5kUo1DULKojSqk4OtM8dlKF3Gfz25Tp7ubmMQNDtbSabytbXhPkX06p5jE1KstRkN0YZV5lblpat3sunESq5HJg9G9MH5L_iEXMFJFr_rDfsPyVXPsJ-MBGt4QGqrxVo9IpfFj9V0uXhchgogXy56uv0B4YC2cw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Machine+Learning+Algorithm+for+Quantitatively+Diagnosing+Oxidative+Stress+Risks+in+Healthy+Adult+Individuals+Based+on+Health+Space+Methodology%3A+A+Proof-of-Concept+Study+Using+Korean+Cross-Sectional+Cohort+Data&rft.jtitle=Antioxidants&rft.au=Youjin+Kim&rft.au=Yunsoo+Kim&rft.au=Jiyoung+Hwang&rft.au=Tim+J.+van+den+Broek&rft.date=2021-07-16&rft.pub=MDPI+AG&rft.eissn=2076-3921&rft.volume=10&rft.issue=7&rft.spage=1132&rft_id=info:doi/10.3390%2Fantiox10071132&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_dc7d9623171e43ab9be08ebf356378b8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3921&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3921&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3921&client=summon |