Inverse molecular design and parameter optimization with Hückel theory using automatic differentiation

Semiempirical quantum chemistry has recently seen a renaissance with applications in high-throughput virtual screening and machine learning. The simplest semiempirical model still in widespread use in chemistry is Hückel's π-electron molecular orbital theory. In this work, we implemented a Hück...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Journal of chemical physics Ročník 158; číslo 10; s. 104801
Hlavní autoři: Vargas-Hernández, Rodrigo A, Jorner, Kjell, Pollice, Robert, Aspuru-Guzik, Alán
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 14.03.2023
ISSN:1089-7690, 1089-7690
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Semiempirical quantum chemistry has recently seen a renaissance with applications in high-throughput virtual screening and machine learning. The simplest semiempirical model still in widespread use in chemistry is Hückel's π-electron molecular orbital theory. In this work, we implemented a Hückel program using differentiable programming with the JAX framework based on limited modifications of a pre-existing NumPy version. The auto-differentiable Hückel code enabled efficient gradient-based optimization of model parameters tuned for excitation energies and molecular polarizabilities, respectively, based on as few as 100 data points from density functional theory simulations. In particular, the facile computation of the polarizability, a second-order derivative, via auto-differentiation shows the potential of differentiable programming to bypass the need for numeric differentiation or derivation of analytical expressions. Finally, we employ gradient-based optimization of atom identity for inverse design of organic electronic materials with targeted orbital energy gaps and polarizabilities. Optimized structures are obtained after as little as 15 iterations using standard gradient-based optimization algorithms.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1089-7690
1089-7690
DOI:10.1063/5.0137103