Improved cancer detection through feature selection using the binary Al Biruni Earth radius algorithm

With the advancement of medical technology, a large amount of complex data on cancers is produced for diagnosing and treating cancers. However, not all this data is useful, as many features are redundant or irrelevant, which can reduce the accuracy of machine learning models. Metaheuristic algorithm...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 15; no. 1; pp. 9483 - 19
Main Authors: M. El-Kenawy, El-Sayed, Khodadadi, Nima, Eid, Marwa M., Khodadadi, Ehsaneh, Khodadadi, Ehsan, Khafaga, Doaa Sami, Alhussan, Amel Ali, Ibrahim, Abdelhameed, Saber, Mohamed
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 19.03.2025
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract With the advancement of medical technology, a large amount of complex data on cancers is produced for diagnosing and treating cancers. However, not all this data is useful, as many features are redundant or irrelevant, which can reduce the accuracy of machine learning models. Metaheuristic algorithms have been employed to select features to address this issue. Although the efficacy of these algorithms has been demonstrated, challenges related to scalability and efficiency persist when handling large medical datasets. In this study, a binary version of the Advanced Al-Biruni Earth Radius (bABER) algorithm is proposed for the intelligent removal of unnecessary data and identifying the most essential features for cancer detection. Unlike traditional methods that rely on a single approach, bABER is evaluated using seven medical datasets and compared with eight widely used binary metaheuristic algorithms, including bSC, bPSO, bWAO, bGWO, bMVO, bSBO, bFA, and bGA. Statistical tests such as ANOVA and the Wilcoxon signed-rank test are conducted to ensure a thorough performance assessment. The results indicate that the bABER algorithm significantly outperforms other methods, making it a valuable tool for improving cancer diagnosis. By refining feature selection, this approach enhances existing machine learning models, leading to more accurate and reliable medical predictions. This study contributes to improved data-driven decision-making in healthcare, bringing the field closer to faster and more precise cancer detection.
AbstractList With the advancement of medical technology, a large amount of complex data on cancers is produced for diagnosing and treating cancers. However, not all this data is useful, as many features are redundant or irrelevant, which can reduce the accuracy of machine learning models. Metaheuristic algorithms have been employed to select features to address this issue. Although the efficacy of these algorithms has been demonstrated, challenges related to scalability and efficiency persist when handling large medical datasets. In this study, a binary version of the Advanced Al-Biruni Earth Radius (bABER) algorithm is proposed for the intelligent removal of unnecessary data and identifying the most essential features for cancer detection. Unlike traditional methods that rely on a single approach, bABER is evaluated using seven medical datasets and compared with eight widely used binary metaheuristic algorithms, including bSC, bPSO, bWAO, bGWO, bMVO, bSBO, bFA, and bGA. Statistical tests such as ANOVA and the Wilcoxon signed-rank test are conducted to ensure a thorough performance assessment. The results indicate that the bABER algorithm significantly outperforms other methods, making it a valuable tool for improving cancer diagnosis. By refining feature selection, this approach enhances existing machine learning models, leading to more accurate and reliable medical predictions. This study contributes to improved data-driven decision-making in healthcare, bringing the field closer to faster and more precise cancer detection.
Abstract With the advancement of medical technology, a large amount of complex data on cancers is produced for diagnosing and treating cancers. However, not all this data is useful, as many features are redundant or irrelevant, which can reduce the accuracy of machine learning models. Metaheuristic algorithms have been employed to select features to address this issue. Although the efficacy of these algorithms has been demonstrated, challenges related to scalability and efficiency persist when handling large medical datasets. In this study, a binary version of the Advanced Al-Biruni Earth Radius (bABER) algorithm is proposed for the intelligent removal of unnecessary data and identifying the most essential features for cancer detection. Unlike traditional methods that rely on a single approach, bABER is evaluated using seven medical datasets and compared with eight widely used binary metaheuristic algorithms, including bSC, bPSO, bWAO, bGWO, bMVO, bSBO, bFA, and bGA. Statistical tests such as ANOVA and the Wilcoxon signed-rank test are conducted to ensure a thorough performance assessment. The results indicate that the bABER algorithm significantly outperforms other methods, making it a valuable tool for improving cancer diagnosis. By refining feature selection, this approach enhances existing machine learning models, leading to more accurate and reliable medical predictions. This study contributes to improved data-driven decision-making in healthcare, bringing the field closer to faster and more precise cancer detection.
With the advancement of medical technology, a large amount of complex data on cancers is produced for diagnosing and treating cancers. However, not all this data is useful, as many features are redundant or irrelevant, which can reduce the accuracy of machine learning models. Metaheuristic algorithms have been employed to select features to address this issue. Although the efficacy of these algorithms has been demonstrated, challenges related to scalability and efficiency persist when handling large medical datasets. In this study, a binary version of the Advanced Al-Biruni Earth Radius (bABER) algorithm is proposed for the intelligent removal of unnecessary data and identifying the most essential features for cancer detection. Unlike traditional methods that rely on a single approach, bABER is evaluated using seven medical datasets and compared with eight widely used binary metaheuristic algorithms, including bSC, bPSO, bWAO, bGWO, bMVO, bSBO, bFA, and bGA. Statistical tests such as ANOVA and the Wilcoxon signed-rank test are conducted to ensure a thorough performance assessment. The results indicate that the bABER algorithm significantly outperforms other methods, making it a valuable tool for improving cancer diagnosis. By refining feature selection, this approach enhances existing machine learning models, leading to more accurate and reliable medical predictions. This study contributes to improved data-driven decision-making in healthcare, bringing the field closer to faster and more precise cancer detection.With the advancement of medical technology, a large amount of complex data on cancers is produced for diagnosing and treating cancers. However, not all this data is useful, as many features are redundant or irrelevant, which can reduce the accuracy of machine learning models. Metaheuristic algorithms have been employed to select features to address this issue. Although the efficacy of these algorithms has been demonstrated, challenges related to scalability and efficiency persist when handling large medical datasets. In this study, a binary version of the Advanced Al-Biruni Earth Radius (bABER) algorithm is proposed for the intelligent removal of unnecessary data and identifying the most essential features for cancer detection. Unlike traditional methods that rely on a single approach, bABER is evaluated using seven medical datasets and compared with eight widely used binary metaheuristic algorithms, including bSC, bPSO, bWAO, bGWO, bMVO, bSBO, bFA, and bGA. Statistical tests such as ANOVA and the Wilcoxon signed-rank test are conducted to ensure a thorough performance assessment. The results indicate that the bABER algorithm significantly outperforms other methods, making it a valuable tool for improving cancer diagnosis. By refining feature selection, this approach enhances existing machine learning models, leading to more accurate and reliable medical predictions. This study contributes to improved data-driven decision-making in healthcare, bringing the field closer to faster and more precise cancer detection.
ArticleNumber 9483
Author Alhussan, Amel Ali
Ibrahim, Abdelhameed
Eid, Marwa M.
M. El-Kenawy, El-Sayed
Khafaga, Doaa Sami
Khodadadi, Nima
Khodadadi, Ehsaneh
Khodadadi, Ehsan
Saber, Mohamed
Author_xml – sequence: 1
  givenname: El-Sayed
  surname: M. El-Kenawy
  fullname: M. El-Kenawy, El-Sayed
  organization: School of ICT, Faculty of Engineering, Design and Information & Communications Technology (EDICT), Bahrain Polytechnic
– sequence: 2
  givenname: Nima
  surname: Khodadadi
  fullname: Khodadadi, Nima
  email: Nima.Khodadadi@miami.edu
  organization: Department of Civil and Architectural Engineering, University of Miami
– sequence: 3
  givenname: Marwa M.
  surname: Eid
  fullname: Eid, Marwa M.
  organization: Faculty of Artificial Intelligence, Delta University for Science and Technology
– sequence: 4
  givenname: Ehsaneh
  surname: Khodadadi
  fullname: Khodadadi, Ehsaneh
  organization: Department of Chemistry and Biochemistry, University of Arkansas
– sequence: 5
  givenname: Ehsan
  surname: Khodadadi
  fullname: Khodadadi, Ehsan
  organization: Department of Chemistry and Biochemistry, University of Arkansas
– sequence: 6
  givenname: Doaa Sami
  surname: Khafaga
  fullname: Khafaga, Doaa Sami
  email: dskhafga@pnu.edu.sa
  organization: Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University
– sequence: 7
  givenname: Amel Ali
  surname: Alhussan
  fullname: Alhussan, Amel Ali
  organization: Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University
– sequence: 8
  givenname: Abdelhameed
  surname: Ibrahim
  fullname: Ibrahim, Abdelhameed
  organization: School of ICT, Faculty of Engineering, Design and Information & Communications Technology (EDICT), Bahrain Polytechnic
– sequence: 9
  givenname: Mohamed
  surname: Saber
  fullname: Saber, Mohamed
  organization: Electronics and Communications Engineering Department, Faculty of Engineering, Delta University for Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40108181$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhS1URB_0D7BAltiwCfiVxFmhUrUwUiU2sLb8uEk8ytiDnVTi3-NphtKywBtbvt8998g-5-gkxAAIvaHkAyVcfsyC1p2sCKurjlHZVuwFOmNE1BXjjJ08OZ-iy5y3pKyadYJ2r9CpIJRIKukZgs1un-I9OGx1sJCwgxns7GPA85jiMoy4Bz0vCXCG6VhZsg9DqQM2Puj0C19N-LNPS_D4Rqd5xEk7v2SspyEmP4-71-hlr6cMl8f9Av24vfl-_bW6-_Zlc311V1nRiblyRMuWm04Lqa3UTjtojeG6l440YNqaWcFa10pDjOmJht4K0RDe98w2pBH8Am1WXRf1Vu2T3xV3KmqvHi5iGlTx5-0ECqxsLBjLasmFkUT3QlNGLFjDSNO6ovVp1dovZgfOQpiTnp6JPq8EP6oh3itKO8ZJS4rC-6NCij8XyLPa-WxhmnSAuGTFadsxIalgBX33D7qNSwrlrQ6U7CSnTVOot08tPXr5850FYCtgU8w5Qf-IUKIOsVFrbFSJjXqIjTrM5mtTLnAYIP2d_Z-u3zLyxsU
Cites_doi 10.1007/s00500-018-3545-7
10.1002/dac.3700
10.32604/csse.2023.032497
10.3389/fonc.2024.1432869
10.54216/JAIM.070102
10.1007/s10462-020-09882-x
10.3389/fenrg.2022.995236
10.1016/j.eswa.2019.113122
10.1080/10095020.2019.1612600
10.3390/math10234421
10.3390/e23091189
10.1016/j.asoc.2015.07.005
10.1016/j.cie.2021.107250
10.1016/j.knosys.2018.04.025
10.1016/j.knosys.2020.106553
10.1007/s00521-019-04368-6
10.3390/math10122081
10.1097/MD.0000000000040248
10.1016/j.eswa.2016.02.042
10.1007/s00521-016-2473-7
10.1016/j.asoc.2016.01.019
10.1007/s00366-021-01342-6
10.1109/ACCESS.2024.3521002
10.1016/j.asoc.2019.105509
10.1016/j.cor.2005.11.017
10.32604/cmc.2022.030447
10.1007/s42979-021-00687-5
10.32604/cmc.2022.032229
10.54216/JSDGT.030205
10.3390/pr11051502
10.1021/acs.jmedchem.3c02232
10.1111/exsy.13088
10.1016/j.compeleceng.2017.09.001
10.3390/diagnostics14232632
10.1016/j.ejor.2017.08.040
10.32604/csse.2023.034697
10.1145/2791405.2791549
10.1109/INTELCIS.2017.8260031
10.1016/j.energy.2022.124363
10.1109/IBCAST.2019.8667106
10.1016/j.knosys.2012.11.005
10.1016/j.jocs.2017.07.018
10.1016/j.knosys.2020.105746
10.1016/j.matcom.2021.08.013
10.3390/en16031185
10.1016/j.apm.2021.04.018
10.1007/s00500-016-2106-1
10.1007/s10462-020-09860-3
10.1155/2019/2537689
10.32604/cmc.2022.023884
10.1248/bpb.b17-00882
10.1016/j.asoc.2015.07.023
10.1007/s12652-018-1031-9
10.1109/ACCESS.2019.2906757
10.34133/cbsystems.0013
10.1007/s00521-017-2988-6
10.1016/j.swevo.2012.09.002
10.1007/BF01608556
10.1016/j.asoc.2015.10.005
10.1109/TPAMI.2004.105
10.1109/IC3IoT.2018.8668174
10.1109/TNNLS.2022.3165627
10.1016/j.bioorg.2023.106674
10.1007/s42835-021-00961-9
10.54216/FinTech-I.020203
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-92187-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central Database Suite (ProQuest)
ProQuest Natural Science Collection
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database ProQuest
Science Database (ProQuest)
Biological Science Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
Publicly Available Content Database


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 19
ExternalDocumentID oai_doaj_org_article_ec86cebc25834b80af4a120cecb2067d
PMC11923070
40108181
10_1038_s41598_025_92187_2
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
UKHRP
AAYXX
AFFHD
CITATION
PHGZM
PJZUB
PPXIY
PQGLB
SNYQT
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88A
8FK
COVID
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c494t-d0a873b9a48ac8adade7bb3af8d06eb752c427d78b0bbf0aefc44603ff2c60643
IEDL.DBID M2P
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001447740400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:51:35 EDT 2025
Tue Nov 04 02:03:36 EST 2025
Sun Nov 09 11:27:19 EST 2025
Tue Oct 07 09:02:39 EDT 2025
Fri May 16 02:45:15 EDT 2025
Mon Nov 17 06:10:31 EST 2025
Thu Mar 20 02:10:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Feature selection
Al-Biruni Earth radius optimization algorithm
Medical dataset
Cancer treatment
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-d0a873b9a48ac8adade7bb3af8d06eb752c427d78b0bbf0aefc44603ff2c60643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3178983166?pq-origsite=%requestingapplication%
PMID 40108181
PQID 3178983166
PQPubID 2041939
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_ec86cebc25834b80af4a120cecb2067d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11923070
proquest_miscellaneous_3179248142
proquest_journals_3178983166
pubmed_primary_40108181
crossref_primary_10_1038_s41598_025_92187_2
springer_journals_10_1038_s41598_025_92187_2
PublicationCentury 2000
PublicationDate 2025-03-19
PublicationDateYYYYMMDD 2025-03-19
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-19
  day: 19
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References X Duan (92187_CR61) 2023; 4
92187_CR2
M El-Sayed (92187_CR40) 2023; 46
FH Rizk (92187_CR48) 2024; 7
92187_CR1
92187_CR6
92187_CR22
92187_CR21
92187_CR65
92187_CR4
92187_CR20
92187_CR64
92187_CR3
92187_CR26
92187_CR25
92187_CR69
92187_CR24
92187_CR68
92187_CR23
92187_CR29
92187_CR28
D Khafaga (92187_CR47) 2022; 73
92187_CR27
T Srikanth (92187_CR56) 2019; 14
92187_CR9
92187_CR8
92187_CR7
92187_CR51
92187_CR50
H Yin (92187_CR66) 2023; 138
92187_CR11
92187_CR55
92187_CR10
92187_CR54
92187_CR53
SJA Kadir (92187_CR5) 2019; 7
S Mirjalili (92187_CR39) 2020
92187_CR52
92187_CR15
92187_CR59
92187_CR14
92187_CR58
92187_CR13
92187_CR57
92187_CR12
92187_CR19
92187_CR18
XY Fu (92187_CR62) 2024; 67
92187_CR17
92187_CR16
H AlEisa (92187_CR44) 2022; 73
M El-Sayed (92187_CR41) 2023; 45
ES El-kenawy (92187_CR45) 2022; 71
92187_CR43
92187_CR42
92187_CR46
Z Yi-wen (92187_CR67) 2018; 41
92187_CR49
S Chen (92187_CR60) 2024; 14
H Huang (92187_CR63) 2024; 103
92187_CR33
92187_CR32
92187_CR31
92187_CR30
92187_CR37
92187_CR36
92187_CR35
92187_CR34
92187_CR38
References_xml – ident: 92187_CR22
  doi: 10.1007/s00500-018-3545-7
– ident: 92187_CR33
  doi: 10.1002/dac.3700
– volume: 45
  start-page: 1917
  issue: 2
  year: 2023
  ident: 92187_CR41
  publication-title: Comput. Syst. Sci. Eng.
  doi: 10.32604/csse.2023.032497
– volume: 14
  start-page: 1432869
  year: 2024
  ident: 92187_CR60
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2024.1432869
– volume: 7
  start-page: 19
  issue: Issue 1
  year: 2024
  ident: 92187_CR48
  publication-title: J. Artif. Intell. Metaheuristics
  doi: 10.54216/JAIM.070102
– ident: 92187_CR13
  doi: 10.1007/s10462-020-09882-x
– ident: 92187_CR18
  doi: 10.3389/fenrg.2022.995236
– ident: 92187_CR68
  doi: 10.1016/j.eswa.2019.113122
– ident: 92187_CR4
  doi: 10.1080/10095020.2019.1612600
– ident: 92187_CR46
  doi: 10.3390/math10234421
– ident: 92187_CR30
  doi: 10.3390/e23091189
– ident: 92187_CR37
  doi: 10.1016/j.asoc.2015.07.005
– ident: 92187_CR3
  doi: 10.1016/j.cie.2021.107250
– ident: 92187_CR6
  doi: 10.1016/j.knosys.2018.04.025
– ident: 92187_CR57
  doi: 10.1016/j.knosys.2020.106553
– ident: 92187_CR11
  doi: 10.1007/s00521-019-04368-6
– ident: 92187_CR16
  doi: 10.3390/math10122081
– volume: 103
  start-page: e40248
  issue: 43
  year: 2024
  ident: 92187_CR63
  publication-title: Medicine
  doi: 10.1097/MD.0000000000040248
– ident: 92187_CR20
  doi: 10.1016/j.eswa.2016.02.042
– ident: 92187_CR69
– ident: 92187_CR7
  doi: 10.1007/s00521-016-2473-7
– ident: 92187_CR10
  doi: 10.1016/j.asoc.2016.01.019
– ident: 92187_CR17
  doi: 10.1007/s00366-021-01342-6
– ident: 92187_CR59
  doi: 10.1109/ACCESS.2024.3521002
– ident: 92187_CR15
  doi: 10.1016/j.asoc.2019.105509
– ident: 92187_CR35
  doi: 10.1016/j.cor.2005.11.017
– volume: 73
  start-page: 2371
  issue: 2
  year: 2022
  ident: 92187_CR44
  publication-title: Computers Mater. Continua
  doi: 10.32604/cmc.2022.030447
– ident: 92187_CR12
  doi: 10.1007/s42979-021-00687-5
– volume: 73
  start-page: 5771
  issue: 3
  year: 2022
  ident: 92187_CR47
  publication-title: Computers Mater. Continua
  doi: 10.32604/cmc.2022.032229
– start-page: 241
  volume-title: Kusum Deep, Jagdish Chand Bansal, and Kedar Nath Das, Editors, Soft Computing for Problem Solving 2019, Advances in Intelligent Systems and Computing
  year: 2020
  ident: 92187_CR39
– ident: 92187_CR49
  doi: 10.54216/JSDGT.030205
– ident: 92187_CR43
  doi: 10.3390/pr11051502
– volume: 67
  start-page: 3885
  issue: 5
  year: 2024
  ident: 92187_CR62
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.3c02232
– ident: 92187_CR8
  doi: 10.1111/exsy.13088
– ident: 92187_CR34
  doi: 10.1016/j.compeleceng.2017.09.001
– ident: 92187_CR65
  doi: 10.3390/diagnostics14232632
– ident: 92187_CR19
  doi: 10.1016/j.ejor.2017.08.040
– volume: 46
  start-page: 883
  issue: 1
  year: 2023
  ident: 92187_CR40
  publication-title: Comput. Syst. Sci. Eng.
  doi: 10.32604/csse.2023.034697
– ident: 92187_CR55
  doi: 10.1145/2791405.2791549
– ident: 92187_CR26
  doi: 10.1109/INTELCIS.2017.8260031
– ident: 92187_CR42
  doi: 10.1016/j.energy.2022.124363
– ident: 92187_CR9
  doi: 10.1109/IBCAST.2019.8667106
– ident: 92187_CR58
  doi: 10.1016/j.knosys.2012.11.005
– ident: 92187_CR2
  doi: 10.1016/j.jocs.2017.07.018
– ident: 92187_CR27
  doi: 10.1016/j.knosys.2020.105746
– ident: 92187_CR24
  doi: 10.1016/j.matcom.2021.08.013
– ident: 92187_CR28
  doi: 10.3390/en16031185
– ident: 92187_CR29
  doi: 10.1016/j.apm.2021.04.018
– ident: 92187_CR36
  doi: 10.1007/s00500-016-2106-1
– ident: 92187_CR1
  doi: 10.1007/s10462-020-09860-3
– ident: 92187_CR14
  doi: 10.1155/2019/2537689
– volume: 71
  start-page: 4989
  issue: 3
  year: 2022
  ident: 92187_CR45
  publication-title: Computers Mater. Continua
  doi: 10.32604/cmc.2022.023884
– volume: 14
  start-page: 489
  issue: 4
  year: 2019
  ident: 92187_CR56
  publication-title: Int. J. Bus. Intell. Data Min.
– volume: 41
  start-page: 707
  issue: 5
  year: 2018
  ident: 92187_CR67
  publication-title: Biol. Pharm. Bull.
  doi: 10.1248/bpb.b17-00882
– ident: 92187_CR21
  doi: 10.1016/j.asoc.2015.07.023
– ident: 92187_CR31
  doi: 10.1007/s12652-018-1031-9
– volume: 7
  start-page: 39496
  year: 2019
  ident: 92187_CR5
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2906757
– volume: 4
  start-page: 0013
  year: 2023
  ident: 92187_CR61
  publication-title: Cyborg Bionic Syst.
  doi: 10.34133/cbsystems.0013
– ident: 92187_CR53
  doi: 10.1007/s00521-017-2988-6
– ident: 92187_CR38
  doi: 10.1016/j.swevo.2012.09.002
– ident: 92187_CR23
  doi: 10.1007/BF01608556
– ident: 92187_CR54
  doi: 10.1016/j.asoc.2015.10.005
– ident: 92187_CR50
  doi: 10.54216/JSDGT.030205
– ident: 92187_CR32
  doi: 10.1109/TPAMI.2004.105
– ident: 92187_CR52
  doi: 10.1109/IC3IoT.2018.8668174
– ident: 92187_CR64
  doi: 10.1109/TNNLS.2022.3165627
– volume: 138
  start-page: 106674
  year: 2023
  ident: 92187_CR66
  publication-title: Bioorg. Chem.
  doi: 10.1016/j.bioorg.2023.106674
– ident: 92187_CR25
  doi: 10.1007/s42835-021-00961-9
– ident: 92187_CR51
  doi: 10.54216/FinTech-I.020203
SSID ssj0000529419
Score 2.4508643
Snippet With the advancement of medical technology, a large amount of complex data on cancers is produced for diagnosing and treating cancers. However, not all this...
Abstract With the advancement of medical technology, a large amount of complex data on cancers is produced for diagnosing and treating cancers. However, not...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 9483
SubjectTerms 631/67/1347
639/705/117
Al-Biruni Earth radius optimization algorithm
Algorithms
Cancer
Cancer treatment
Decision making
Feature selection
Humanities and Social Sciences
Humans
Learning algorithms
Machine Learning
Medical dataset
Medical technology
multidisciplinary
Neoplasms - diagnosis
Performance assessment
Science
Science (multidisciplinary)
Statistical analysis
Variance analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9UwDI_QBBIXNL47BgoSN6iWJmmTHDe0idPEAaTdosRJ9iqNPtT2IfHfk4--xx4f4sKxdSpZthPbtfMzQm-UABpcK-pOOKg5k66WwcRHZiF0wIBxm4dNiMtLeXWlPt4a9ZV6wgo8cBHciQfZgbdAWxk_k8QEbhpKwINNyOMunb5EqFvJVEH1poo3arklQ5g8maKnSrfJaFur6NZETfc8UQbs_1OU-Xuz5C8V0-yILg7RgyWCxKeF84fojh8eoXtlpuT3x8iX3wTeYUgKHbHzc263GvAykwcHn9E88ZRn4CRK6n6_jnSPbb6fi09v8Fk_boYen0cRrfBoXL-ZsLm5Xo_9vPryBH2-OP_0_kO9zFKogSs-144YKZhVhksD0jjjvLCWmSAd6bwVLQVOhRPSEmsDMT5ATBQJC4FCl8KWp-hgWA_-OcJxvbMxETKcOs5BGAOC8mBbHxKmga_Q261c9dcCmaFzqZtJXbSgoxZ01oKmFTpLot-tTHDX-UU0Ar0Ygf6XEVToeKs4vezBScfISCrJmq6r0OsdOe6eVBIxg19v8pqYgMqGRz6eFT3vOImZZ8L7ayok9yxgj9V9ytCvMkJ3k-LmeJhW6N3WWH7y9XdZHP0PWbxA92my8tRzqI7RwTxu_Et0F77N_TS-ytvkB3W8Gc8
  priority: 102
  providerName: Directory of Open Access Journals
Title Improved cancer detection through feature selection using the binary Al Biruni Earth radius algorithm
URI https://link.springer.com/article/10.1038/s41598-025-92187-2
https://www.ncbi.nlm.nih.gov/pubmed/40108181
https://www.proquest.com/docview/3178983166
https://www.proquest.com/docview/3179248142
https://pubmed.ncbi.nlm.nih.gov/PMC11923070
https://doaj.org/article/ec86cebc25834b80af4a120cecb2067d
Volume 15
WOSCitedRecordID wos001447740400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LjtMwcMRuQeLC-xFYKiNxg2gTx4mdE9qiruCwVYRAKifLzzbSki5JisTfYztpV-V14WIpGR8mmRnP0zMAr0qqsNU5jQuqVUwypmNmhXvMpLKFylRGZBg2QRcLtlyW1Rhw68ayyt2ZGA5qvVE-Rn7q9BwrWZYWxdurb7GfGuWzq-MIjSOYOMsm9SVdF7jax1h8Fouk5XhXJsnYaef0lb9ThvO4dMqNxvhAH4W2_X-yNX8vmfwlbxrU0fnd__2Qe3BnNETR2cA59-GGaR7ArWE05Y-HYIZog9FIeb5okTZ9qNpq0DjaB1kTmoKiLozS8RBfRL9ycINkuOaLzi7RrG63TY3mjkXXqBW63nZIXK4cRv366yP4fD7_9O59PI5kiBUpSR_rRDCayVIQJhQTWmhDpcyEZTopjKQ5VgRTTZlMpLSJMFY5fzPJrMWq8NbPYzhuNo15Csjt19L5U4JgTYiiQiiKiZW5sb41gong9Y4w_GrovMFDxjxjfCAjd2TkgYwcRzDztNvv9F2zw4tNu-KjEHKjWKGMVDhnjgVZIiwRKU6UUdJ3sdcRnOxIxkdR7vg1vSJ4uQc7IfSZFdGYzTbscX4sS4nD48nAKHtMnAPr2wamEbADFjpA9RDS1OvQ6Dv15rc7kyN4s-O2a7z-_i-e_fsznsNt7AXAFyWWJ3Dct1vzAm6q733dtVM4oksaVjaFyWy-qD5OQ6BiGmTLr9Stk-rDRfXlJ4MTLeU
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoILb0qggJHgBFETx4mdA0IttGrVsuqhSL25fu5GarMl2QX1T_EbsZ1kq-V164FjYisaO9_MeDwvgNclVdjqnMYF1SomGdMxs8I9ZlLZQmUqIzI0m6CjETs-Lg9X4MeQC-PDKgeZGAS1nip_R77h9BwrWZYWxYfzr7HvGuW9q0MLjQ4W--biuzPZ2vd7n9z_fYPxzvbRx9247yoQK1KSWawTwWgmS0GYUExooQ2VMhOW6aQwkuZYEUw1ZTKR0ibCWOVMpiSzFqvCK3D33WtwnfjKYj5UEB8u7nS814ykZZ-bk2Rso3X60eew4TwunTKlMV7Sf6FNwJ_Otr-HaP7ipw3qb-fu_7Zx9-BOf9BGmx1n3IcVUz-Am13rzYuHYLrbFKOR8rhvkDazEJVWo751EbImFD1FbWgV5Ed8ksDYjRskQxoz2jxFW1Uzryu07Vhwghqhq3mLxOnY7cBscvYIvlzJGh_Daj2tzRNAbr6Wzl4UBGtCFBVCUUyszI31pR9MBG8HIPDzrrIIDxEBGeMdbLiDDQ-w4TiCLY-VxUxfFTy8mDZj3gsZbhQrlJEK58yxGEuEJSLFiTJK-ir9OoL1ASK8F1Utv8RHBK8Ww07IeM-RqM10HuY4O52lxNGx1gFzQYkz0H1ZxDQCtgTZJVKXR-pqEgqZp968cDongncDui_p-vtePP33Ml7Crd2jzwf8YG-0_wxuY898PgCzXIfVWTM3z-GG-jar2uZF4F4EJ1eN-p8Vr4dM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXUBceD8CCxgJThA1cdzYOSC0y25FtVD1ANJy8vrZVlrSJWlB-9f4ddhO0lV53fbAMbEVjZ1vZjyeF8Dzgips9YDGOdUqJhnTMbPCPWZS2VxlKiMyNJug4zE7OiomW_Cjy4XxYZWdTAyCWi-UvyPvOz3HCpaled63bVjEZH_45vRr7DtIeU9r106jgcihOfvuzLf69Wjf_esXGA8PPr59F7cdBmJFCrKMdSIYzWQhCBOKCS20oVJmwjKd5EbSAVYEU02ZTKS0iTBWOfMpyazFKvfK3H33Emy7IznBPdiejD5MPq9veLwPjaRFm6mTZKxfO23pM9rwIC6caqUx3tCGoWnAn066vwds_uK1DcpweON_3sabcL09gqPdhmduwZYpb8OVpinn2R0wzT2L0Uh5jqiQNssQr1aitqkRsiaUQ0V1aCLkR3z6wNSNGyRDgjPaPUF782pVztGBY84ZqoSer2okTqZuB5azL3fh04Ws8R70ykVpHgBy87V0lqQgWBOiqBCKYmLlwFhfFMJE8LIDBT9tao7wECuQMd5AiDsI8QAhjiPY87hZz_T1wsOLRTXlrfjhRrFcGanwgDnmY4mwRKQ4UUZJX79fR7DTwYW3Qqzm51iJ4Nl62Ikf71MSpVmswhxnwbOUODruNyBdU-JMd18wMY2AbcB3g9TNkXI-CyXOU294OG0UwasO6ed0_X0vHv57GU_hqgM7fz8aHz6Ca9jzoY_MLHagt6xW5jFcVt-W87p60rIyguOLhv1P-FCRlQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+cancer+detection+through+feature+selection+using+the+binary+Al+Biruni+Earth+radius+algorithm&rft.jtitle=Scientific+reports&rft.date=2025-03-19&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=9483&rft_id=info:doi/10.1038%2Fs41598-025-92187-2&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon