Improved cancer detection through feature selection using the binary Al Biruni Earth radius algorithm
With the advancement of medical technology, a large amount of complex data on cancers is produced for diagnosing and treating cancers. However, not all this data is useful, as many features are redundant or irrelevant, which can reduce the accuracy of machine learning models. Metaheuristic algorithm...
Saved in:
| Published in: | Scientific reports Vol. 15; no. 1; pp. 9483 - 19 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
19.03.2025
Nature Publishing Group Nature Portfolio |
| Subjects: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | With the advancement of medical technology, a large amount of complex data on cancers is produced for diagnosing and treating cancers. However, not all this data is useful, as many features are redundant or irrelevant, which can reduce the accuracy of machine learning models. Metaheuristic algorithms have been employed to select features to address this issue. Although the efficacy of these algorithms has been demonstrated, challenges related to scalability and efficiency persist when handling large medical datasets. In this study, a binary version of the Advanced Al-Biruni Earth Radius (bABER) algorithm is proposed for the intelligent removal of unnecessary data and identifying the most essential features for cancer detection. Unlike traditional methods that rely on a single approach, bABER is evaluated using seven medical datasets and compared with eight widely used binary metaheuristic algorithms, including bSC, bPSO, bWAO, bGWO, bMVO, bSBO, bFA, and bGA. Statistical tests such as ANOVA and the Wilcoxon signed-rank test are conducted to ensure a thorough performance assessment. The results indicate that the bABER algorithm significantly outperforms other methods, making it a valuable tool for improving cancer diagnosis. By refining feature selection, this approach enhances existing machine learning models, leading to more accurate and reliable medical predictions. This study contributes to improved data-driven decision-making in healthcare, bringing the field closer to faster and more precise cancer detection. |
|---|---|
| AbstractList | With the advancement of medical technology, a large amount of complex data on cancers is produced for diagnosing and treating cancers. However, not all this data is useful, as many features are redundant or irrelevant, which can reduce the accuracy of machine learning models. Metaheuristic algorithms have been employed to select features to address this issue. Although the efficacy of these algorithms has been demonstrated, challenges related to scalability and efficiency persist when handling large medical datasets. In this study, a binary version of the Advanced Al-Biruni Earth Radius (bABER) algorithm is proposed for the intelligent removal of unnecessary data and identifying the most essential features for cancer detection. Unlike traditional methods that rely on a single approach, bABER is evaluated using seven medical datasets and compared with eight widely used binary metaheuristic algorithms, including bSC, bPSO, bWAO, bGWO, bMVO, bSBO, bFA, and bGA. Statistical tests such as ANOVA and the Wilcoxon signed-rank test are conducted to ensure a thorough performance assessment. The results indicate that the bABER algorithm significantly outperforms other methods, making it a valuable tool for improving cancer diagnosis. By refining feature selection, this approach enhances existing machine learning models, leading to more accurate and reliable medical predictions. This study contributes to improved data-driven decision-making in healthcare, bringing the field closer to faster and more precise cancer detection. Abstract With the advancement of medical technology, a large amount of complex data on cancers is produced for diagnosing and treating cancers. However, not all this data is useful, as many features are redundant or irrelevant, which can reduce the accuracy of machine learning models. Metaheuristic algorithms have been employed to select features to address this issue. Although the efficacy of these algorithms has been demonstrated, challenges related to scalability and efficiency persist when handling large medical datasets. In this study, a binary version of the Advanced Al-Biruni Earth Radius (bABER) algorithm is proposed for the intelligent removal of unnecessary data and identifying the most essential features for cancer detection. Unlike traditional methods that rely on a single approach, bABER is evaluated using seven medical datasets and compared with eight widely used binary metaheuristic algorithms, including bSC, bPSO, bWAO, bGWO, bMVO, bSBO, bFA, and bGA. Statistical tests such as ANOVA and the Wilcoxon signed-rank test are conducted to ensure a thorough performance assessment. The results indicate that the bABER algorithm significantly outperforms other methods, making it a valuable tool for improving cancer diagnosis. By refining feature selection, this approach enhances existing machine learning models, leading to more accurate and reliable medical predictions. This study contributes to improved data-driven decision-making in healthcare, bringing the field closer to faster and more precise cancer detection. With the advancement of medical technology, a large amount of complex data on cancers is produced for diagnosing and treating cancers. However, not all this data is useful, as many features are redundant or irrelevant, which can reduce the accuracy of machine learning models. Metaheuristic algorithms have been employed to select features to address this issue. Although the efficacy of these algorithms has been demonstrated, challenges related to scalability and efficiency persist when handling large medical datasets. In this study, a binary version of the Advanced Al-Biruni Earth Radius (bABER) algorithm is proposed for the intelligent removal of unnecessary data and identifying the most essential features for cancer detection. Unlike traditional methods that rely on a single approach, bABER is evaluated using seven medical datasets and compared with eight widely used binary metaheuristic algorithms, including bSC, bPSO, bWAO, bGWO, bMVO, bSBO, bFA, and bGA. Statistical tests such as ANOVA and the Wilcoxon signed-rank test are conducted to ensure a thorough performance assessment. The results indicate that the bABER algorithm significantly outperforms other methods, making it a valuable tool for improving cancer diagnosis. By refining feature selection, this approach enhances existing machine learning models, leading to more accurate and reliable medical predictions. This study contributes to improved data-driven decision-making in healthcare, bringing the field closer to faster and more precise cancer detection.With the advancement of medical technology, a large amount of complex data on cancers is produced for diagnosing and treating cancers. However, not all this data is useful, as many features are redundant or irrelevant, which can reduce the accuracy of machine learning models. Metaheuristic algorithms have been employed to select features to address this issue. Although the efficacy of these algorithms has been demonstrated, challenges related to scalability and efficiency persist when handling large medical datasets. In this study, a binary version of the Advanced Al-Biruni Earth Radius (bABER) algorithm is proposed for the intelligent removal of unnecessary data and identifying the most essential features for cancer detection. Unlike traditional methods that rely on a single approach, bABER is evaluated using seven medical datasets and compared with eight widely used binary metaheuristic algorithms, including bSC, bPSO, bWAO, bGWO, bMVO, bSBO, bFA, and bGA. Statistical tests such as ANOVA and the Wilcoxon signed-rank test are conducted to ensure a thorough performance assessment. The results indicate that the bABER algorithm significantly outperforms other methods, making it a valuable tool for improving cancer diagnosis. By refining feature selection, this approach enhances existing machine learning models, leading to more accurate and reliable medical predictions. This study contributes to improved data-driven decision-making in healthcare, bringing the field closer to faster and more precise cancer detection. |
| ArticleNumber | 9483 |
| Author | Alhussan, Amel Ali Ibrahim, Abdelhameed Eid, Marwa M. M. El-Kenawy, El-Sayed Khafaga, Doaa Sami Khodadadi, Nima Khodadadi, Ehsaneh Khodadadi, Ehsan Saber, Mohamed |
| Author_xml | – sequence: 1 givenname: El-Sayed surname: M. El-Kenawy fullname: M. El-Kenawy, El-Sayed organization: School of ICT, Faculty of Engineering, Design and Information & Communications Technology (EDICT), Bahrain Polytechnic – sequence: 2 givenname: Nima surname: Khodadadi fullname: Khodadadi, Nima email: Nima.Khodadadi@miami.edu organization: Department of Civil and Architectural Engineering, University of Miami – sequence: 3 givenname: Marwa M. surname: Eid fullname: Eid, Marwa M. organization: Faculty of Artificial Intelligence, Delta University for Science and Technology – sequence: 4 givenname: Ehsaneh surname: Khodadadi fullname: Khodadadi, Ehsaneh organization: Department of Chemistry and Biochemistry, University of Arkansas – sequence: 5 givenname: Ehsan surname: Khodadadi fullname: Khodadadi, Ehsan organization: Department of Chemistry and Biochemistry, University of Arkansas – sequence: 6 givenname: Doaa Sami surname: Khafaga fullname: Khafaga, Doaa Sami email: dskhafga@pnu.edu.sa organization: Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University – sequence: 7 givenname: Amel Ali surname: Alhussan fullname: Alhussan, Amel Ali organization: Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University – sequence: 8 givenname: Abdelhameed surname: Ibrahim fullname: Ibrahim, Abdelhameed organization: School of ICT, Faculty of Engineering, Design and Information & Communications Technology (EDICT), Bahrain Polytechnic – sequence: 9 givenname: Mohamed surname: Saber fullname: Saber, Mohamed organization: Electronics and Communications Engineering Department, Faculty of Engineering, Delta University for Science and Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40108181$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktv1DAUhS1URB_0D7BAltiwCfiVxFmhUrUwUiU2sLb8uEk8ytiDnVTi3-NphtKywBtbvt8998g-5-gkxAAIvaHkAyVcfsyC1p2sCKurjlHZVuwFOmNE1BXjjJ08OZ-iy5y3pKyadYJ2r9CpIJRIKukZgs1un-I9OGx1sJCwgxns7GPA85jiMoy4Bz0vCXCG6VhZsg9DqQM2Puj0C19N-LNPS_D4Rqd5xEk7v2SspyEmP4-71-hlr6cMl8f9Av24vfl-_bW6-_Zlc311V1nRiblyRMuWm04Lqa3UTjtojeG6l440YNqaWcFa10pDjOmJht4K0RDe98w2pBH8Am1WXRf1Vu2T3xV3KmqvHi5iGlTx5-0ECqxsLBjLasmFkUT3QlNGLFjDSNO6ovVp1dovZgfOQpiTnp6JPq8EP6oh3itKO8ZJS4rC-6NCij8XyLPa-WxhmnSAuGTFadsxIalgBX33D7qNSwrlrQ6U7CSnTVOot08tPXr5850FYCtgU8w5Qf-IUKIOsVFrbFSJjXqIjTrM5mtTLnAYIP2d_Z-u3zLyxsU |
| Cites_doi | 10.1007/s00500-018-3545-7 10.1002/dac.3700 10.32604/csse.2023.032497 10.3389/fonc.2024.1432869 10.54216/JAIM.070102 10.1007/s10462-020-09882-x 10.3389/fenrg.2022.995236 10.1016/j.eswa.2019.113122 10.1080/10095020.2019.1612600 10.3390/math10234421 10.3390/e23091189 10.1016/j.asoc.2015.07.005 10.1016/j.cie.2021.107250 10.1016/j.knosys.2018.04.025 10.1016/j.knosys.2020.106553 10.1007/s00521-019-04368-6 10.3390/math10122081 10.1097/MD.0000000000040248 10.1016/j.eswa.2016.02.042 10.1007/s00521-016-2473-7 10.1016/j.asoc.2016.01.019 10.1007/s00366-021-01342-6 10.1109/ACCESS.2024.3521002 10.1016/j.asoc.2019.105509 10.1016/j.cor.2005.11.017 10.32604/cmc.2022.030447 10.1007/s42979-021-00687-5 10.32604/cmc.2022.032229 10.54216/JSDGT.030205 10.3390/pr11051502 10.1021/acs.jmedchem.3c02232 10.1111/exsy.13088 10.1016/j.compeleceng.2017.09.001 10.3390/diagnostics14232632 10.1016/j.ejor.2017.08.040 10.32604/csse.2023.034697 10.1145/2791405.2791549 10.1109/INTELCIS.2017.8260031 10.1016/j.energy.2022.124363 10.1109/IBCAST.2019.8667106 10.1016/j.knosys.2012.11.005 10.1016/j.jocs.2017.07.018 10.1016/j.knosys.2020.105746 10.1016/j.matcom.2021.08.013 10.3390/en16031185 10.1016/j.apm.2021.04.018 10.1007/s00500-016-2106-1 10.1007/s10462-020-09860-3 10.1155/2019/2537689 10.32604/cmc.2022.023884 10.1248/bpb.b17-00882 10.1016/j.asoc.2015.07.023 10.1007/s12652-018-1031-9 10.1109/ACCESS.2019.2906757 10.34133/cbsystems.0013 10.1007/s00521-017-2988-6 10.1016/j.swevo.2012.09.002 10.1007/BF01608556 10.1016/j.asoc.2015.10.005 10.1109/TPAMI.2004.105 10.1109/IC3IoT.2018.8668174 10.1109/TNNLS.2022.3165627 10.1016/j.bioorg.2023.106674 10.1007/s42835-021-00961-9 10.54216/FinTech-I.020203 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-025-92187-2 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Database Suite (ProQuest) ProQuest Natural Science Collection ProQuest One Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database ProQuest Science Database (ProQuest) Biological Science Database (ProQuest) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 19 |
| ExternalDocumentID | oai_doaj_org_article_ec86cebc25834b80af4a120cecb2067d PMC11923070 40108181 10_1038_s41598_025_92187_2 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM UKHRP AAYXX AFFHD CITATION PHGZM PJZUB PPXIY PQGLB SNYQT CGR CUY CVF ECM EIF NPM 3V. 7XB 88A 8FK COVID K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c494t-d0a873b9a48ac8adade7bb3af8d06eb752c427d78b0bbf0aefc44603ff2c60643 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001447740400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:51:35 EDT 2025 Tue Nov 04 02:03:36 EST 2025 Sun Nov 09 11:27:19 EST 2025 Tue Oct 07 09:02:39 EDT 2025 Fri May 16 02:45:15 EDT 2025 Mon Nov 17 06:10:31 EST 2025 Thu Mar 20 02:10:31 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Feature selection Al-Biruni Earth radius optimization algorithm Medical dataset Cancer treatment |
| Language | English |
| License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c494t-d0a873b9a48ac8adade7bb3af8d06eb752c427d78b0bbf0aefc44603ff2c60643 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/3178983166?pq-origsite=%requestingapplication% |
| PMID | 40108181 |
| PQID | 3178983166 |
| PQPubID | 2041939 |
| PageCount | 19 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ec86cebc25834b80af4a120cecb2067d pubmedcentral_primary_oai_pubmedcentral_nih_gov_11923070 proquest_miscellaneous_3179248142 proquest_journals_3178983166 pubmed_primary_40108181 crossref_primary_10_1038_s41598_025_92187_2 springer_journals_10_1038_s41598_025_92187_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-19 |
| PublicationDateYYYYMMDD | 2025-03-19 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | X Duan (92187_CR61) 2023; 4 92187_CR2 M El-Sayed (92187_CR40) 2023; 46 FH Rizk (92187_CR48) 2024; 7 92187_CR1 92187_CR6 92187_CR22 92187_CR21 92187_CR65 92187_CR4 92187_CR20 92187_CR64 92187_CR3 92187_CR26 92187_CR25 92187_CR69 92187_CR24 92187_CR68 92187_CR23 92187_CR29 92187_CR28 D Khafaga (92187_CR47) 2022; 73 92187_CR27 T Srikanth (92187_CR56) 2019; 14 92187_CR9 92187_CR8 92187_CR7 92187_CR51 92187_CR50 H Yin (92187_CR66) 2023; 138 92187_CR11 92187_CR55 92187_CR10 92187_CR54 92187_CR53 SJA Kadir (92187_CR5) 2019; 7 S Mirjalili (92187_CR39) 2020 92187_CR52 92187_CR15 92187_CR59 92187_CR14 92187_CR58 92187_CR13 92187_CR57 92187_CR12 92187_CR19 92187_CR18 XY Fu (92187_CR62) 2024; 67 92187_CR17 92187_CR16 H AlEisa (92187_CR44) 2022; 73 M El-Sayed (92187_CR41) 2023; 45 ES El-kenawy (92187_CR45) 2022; 71 92187_CR43 92187_CR42 92187_CR46 Z Yi-wen (92187_CR67) 2018; 41 92187_CR49 S Chen (92187_CR60) 2024; 14 H Huang (92187_CR63) 2024; 103 92187_CR33 92187_CR32 92187_CR31 92187_CR30 92187_CR37 92187_CR36 92187_CR35 92187_CR34 92187_CR38 |
| References_xml | – ident: 92187_CR22 doi: 10.1007/s00500-018-3545-7 – ident: 92187_CR33 doi: 10.1002/dac.3700 – volume: 45 start-page: 1917 issue: 2 year: 2023 ident: 92187_CR41 publication-title: Comput. Syst. Sci. Eng. doi: 10.32604/csse.2023.032497 – volume: 14 start-page: 1432869 year: 2024 ident: 92187_CR60 publication-title: Front. Oncol. doi: 10.3389/fonc.2024.1432869 – volume: 7 start-page: 19 issue: Issue 1 year: 2024 ident: 92187_CR48 publication-title: J. Artif. Intell. Metaheuristics doi: 10.54216/JAIM.070102 – ident: 92187_CR13 doi: 10.1007/s10462-020-09882-x – ident: 92187_CR18 doi: 10.3389/fenrg.2022.995236 – ident: 92187_CR68 doi: 10.1016/j.eswa.2019.113122 – ident: 92187_CR4 doi: 10.1080/10095020.2019.1612600 – ident: 92187_CR46 doi: 10.3390/math10234421 – ident: 92187_CR30 doi: 10.3390/e23091189 – ident: 92187_CR37 doi: 10.1016/j.asoc.2015.07.005 – ident: 92187_CR3 doi: 10.1016/j.cie.2021.107250 – ident: 92187_CR6 doi: 10.1016/j.knosys.2018.04.025 – ident: 92187_CR57 doi: 10.1016/j.knosys.2020.106553 – ident: 92187_CR11 doi: 10.1007/s00521-019-04368-6 – ident: 92187_CR16 doi: 10.3390/math10122081 – volume: 103 start-page: e40248 issue: 43 year: 2024 ident: 92187_CR63 publication-title: Medicine doi: 10.1097/MD.0000000000040248 – ident: 92187_CR20 doi: 10.1016/j.eswa.2016.02.042 – ident: 92187_CR69 – ident: 92187_CR7 doi: 10.1007/s00521-016-2473-7 – ident: 92187_CR10 doi: 10.1016/j.asoc.2016.01.019 – ident: 92187_CR17 doi: 10.1007/s00366-021-01342-6 – ident: 92187_CR59 doi: 10.1109/ACCESS.2024.3521002 – ident: 92187_CR15 doi: 10.1016/j.asoc.2019.105509 – ident: 92187_CR35 doi: 10.1016/j.cor.2005.11.017 – volume: 73 start-page: 2371 issue: 2 year: 2022 ident: 92187_CR44 publication-title: Computers Mater. Continua doi: 10.32604/cmc.2022.030447 – ident: 92187_CR12 doi: 10.1007/s42979-021-00687-5 – volume: 73 start-page: 5771 issue: 3 year: 2022 ident: 92187_CR47 publication-title: Computers Mater. Continua doi: 10.32604/cmc.2022.032229 – start-page: 241 volume-title: Kusum Deep, Jagdish Chand Bansal, and Kedar Nath Das, Editors, Soft Computing for Problem Solving 2019, Advances in Intelligent Systems and Computing year: 2020 ident: 92187_CR39 – ident: 92187_CR49 doi: 10.54216/JSDGT.030205 – ident: 92187_CR43 doi: 10.3390/pr11051502 – volume: 67 start-page: 3885 issue: 5 year: 2024 ident: 92187_CR62 publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.3c02232 – ident: 92187_CR8 doi: 10.1111/exsy.13088 – ident: 92187_CR34 doi: 10.1016/j.compeleceng.2017.09.001 – ident: 92187_CR65 doi: 10.3390/diagnostics14232632 – ident: 92187_CR19 doi: 10.1016/j.ejor.2017.08.040 – volume: 46 start-page: 883 issue: 1 year: 2023 ident: 92187_CR40 publication-title: Comput. Syst. Sci. Eng. doi: 10.32604/csse.2023.034697 – ident: 92187_CR55 doi: 10.1145/2791405.2791549 – ident: 92187_CR26 doi: 10.1109/INTELCIS.2017.8260031 – ident: 92187_CR42 doi: 10.1016/j.energy.2022.124363 – ident: 92187_CR9 doi: 10.1109/IBCAST.2019.8667106 – ident: 92187_CR58 doi: 10.1016/j.knosys.2012.11.005 – ident: 92187_CR2 doi: 10.1016/j.jocs.2017.07.018 – ident: 92187_CR27 doi: 10.1016/j.knosys.2020.105746 – ident: 92187_CR24 doi: 10.1016/j.matcom.2021.08.013 – ident: 92187_CR28 doi: 10.3390/en16031185 – ident: 92187_CR29 doi: 10.1016/j.apm.2021.04.018 – ident: 92187_CR36 doi: 10.1007/s00500-016-2106-1 – ident: 92187_CR1 doi: 10.1007/s10462-020-09860-3 – ident: 92187_CR14 doi: 10.1155/2019/2537689 – volume: 71 start-page: 4989 issue: 3 year: 2022 ident: 92187_CR45 publication-title: Computers Mater. Continua doi: 10.32604/cmc.2022.023884 – volume: 14 start-page: 489 issue: 4 year: 2019 ident: 92187_CR56 publication-title: Int. J. Bus. Intell. Data Min. – volume: 41 start-page: 707 issue: 5 year: 2018 ident: 92187_CR67 publication-title: Biol. Pharm. Bull. doi: 10.1248/bpb.b17-00882 – ident: 92187_CR21 doi: 10.1016/j.asoc.2015.07.023 – ident: 92187_CR31 doi: 10.1007/s12652-018-1031-9 – volume: 7 start-page: 39496 year: 2019 ident: 92187_CR5 publication-title: IEEE Access. doi: 10.1109/ACCESS.2019.2906757 – volume: 4 start-page: 0013 year: 2023 ident: 92187_CR61 publication-title: Cyborg Bionic Syst. doi: 10.34133/cbsystems.0013 – ident: 92187_CR53 doi: 10.1007/s00521-017-2988-6 – ident: 92187_CR38 doi: 10.1016/j.swevo.2012.09.002 – ident: 92187_CR23 doi: 10.1007/BF01608556 – ident: 92187_CR54 doi: 10.1016/j.asoc.2015.10.005 – ident: 92187_CR50 doi: 10.54216/JSDGT.030205 – ident: 92187_CR32 doi: 10.1109/TPAMI.2004.105 – ident: 92187_CR52 doi: 10.1109/IC3IoT.2018.8668174 – ident: 92187_CR64 doi: 10.1109/TNNLS.2022.3165627 – volume: 138 start-page: 106674 year: 2023 ident: 92187_CR66 publication-title: Bioorg. Chem. doi: 10.1016/j.bioorg.2023.106674 – ident: 92187_CR25 doi: 10.1007/s42835-021-00961-9 – ident: 92187_CR51 doi: 10.54216/FinTech-I.020203 |
| SSID | ssj0000529419 |
| Score | 2.4508643 |
| Snippet | With the advancement of medical technology, a large amount of complex data on cancers is produced for diagnosing and treating cancers. However, not all this... Abstract With the advancement of medical technology, a large amount of complex data on cancers is produced for diagnosing and treating cancers. However, not... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 9483 |
| SubjectTerms | 631/67/1347 639/705/117 Al-Biruni Earth radius optimization algorithm Algorithms Cancer Cancer treatment Decision making Feature selection Humanities and Social Sciences Humans Learning algorithms Machine Learning Medical dataset Medical technology multidisciplinary Neoplasms - diagnosis Performance assessment Science Science (multidisciplinary) Statistical analysis Variance analysis |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9UwDI_QBBIXNL47BgoSN6iWJmmTHDe0idPEAaTdosRJ9iqNPtT2IfHfk4--xx4f4sKxdSpZthPbtfMzQm-UABpcK-pOOKg5k66WwcRHZiF0wIBxm4dNiMtLeXWlPt4a9ZV6wgo8cBHciQfZgbdAWxk_k8QEbhpKwINNyOMunb5EqFvJVEH1poo3arklQ5g8maKnSrfJaFur6NZETfc8UQbs_1OU-Xuz5C8V0-yILg7RgyWCxKeF84fojh8eoXtlpuT3x8iX3wTeYUgKHbHzc263GvAykwcHn9E88ZRn4CRK6n6_jnSPbb6fi09v8Fk_boYen0cRrfBoXL-ZsLm5Xo_9vPryBH2-OP_0_kO9zFKogSs-144YKZhVhksD0jjjvLCWmSAd6bwVLQVOhRPSEmsDMT5ATBQJC4FCl8KWp-hgWA_-OcJxvbMxETKcOs5BGAOC8mBbHxKmga_Q261c9dcCmaFzqZtJXbSgoxZ01oKmFTpLot-tTHDX-UU0Ar0Ygf6XEVToeKs4vezBScfISCrJmq6r0OsdOe6eVBIxg19v8pqYgMqGRz6eFT3vOImZZ8L7ayok9yxgj9V9ytCvMkJ3k-LmeJhW6N3WWH7y9XdZHP0PWbxA92my8tRzqI7RwTxu_Et0F77N_TS-ytvkB3W8Gc8 priority: 102 providerName: Directory of Open Access Journals |
| Title | Improved cancer detection through feature selection using the binary Al Biruni Earth radius algorithm |
| URI | https://link.springer.com/article/10.1038/s41598-025-92187-2 https://www.ncbi.nlm.nih.gov/pubmed/40108181 https://www.proquest.com/docview/3178983166 https://www.proquest.com/docview/3179248142 https://pubmed.ncbi.nlm.nih.gov/PMC11923070 https://doaj.org/article/ec86cebc25834b80af4a120cecb2067d |
| Volume | 15 |
| WOSCitedRecordID | wos001447740400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database (ProQuest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LjtMwcMRuQeLC-xFYKiNxg2gTx4mdE9qiruCwVYRAKifLzzbSki5JisTfYztpV-V14WIpGR8mmRnP0zMAr0qqsNU5jQuqVUwypmNmhXvMpLKFylRGZBg2QRcLtlyW1Rhw68ayyt2ZGA5qvVE-Rn7q9BwrWZYWxdurb7GfGuWzq-MIjSOYOMsm9SVdF7jax1h8Fouk5XhXJsnYaef0lb9ThvO4dMqNxvhAH4W2_X-yNX8vmfwlbxrU0fnd__2Qe3BnNETR2cA59-GGaR7ArWE05Y-HYIZog9FIeb5okTZ9qNpq0DjaB1kTmoKiLozS8RBfRL9ycINkuOaLzi7RrG63TY3mjkXXqBW63nZIXK4cRv366yP4fD7_9O59PI5kiBUpSR_rRDCayVIQJhQTWmhDpcyEZTopjKQ5VgRTTZlMpLSJMFY5fzPJrMWq8NbPYzhuNo15Csjt19L5U4JgTYiiQiiKiZW5sb41gong9Y4w_GrovMFDxjxjfCAjd2TkgYwcRzDztNvv9F2zw4tNu-KjEHKjWKGMVDhnjgVZIiwRKU6UUdJ3sdcRnOxIxkdR7vg1vSJ4uQc7IfSZFdGYzTbscX4sS4nD48nAKHtMnAPr2wamEbADFjpA9RDS1OvQ6Dv15rc7kyN4s-O2a7z-_i-e_fsznsNt7AXAFyWWJ3Dct1vzAm6q733dtVM4oksaVjaFyWy-qD5OQ6BiGmTLr9Stk-rDRfXlJ4MTLeU |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoILb0qggJHgBFETx4mdA0IttGrVsuqhSL25fu5GarMl2QX1T_EbsZ1kq-V164FjYisaO9_MeDwvgNclVdjqnMYF1SomGdMxs8I9ZlLZQmUqIzI0m6CjETs-Lg9X4MeQC-PDKgeZGAS1nip_R77h9BwrWZYWxYfzr7HvGuW9q0MLjQ4W--biuzPZ2vd7n9z_fYPxzvbRx9247yoQK1KSWawTwWgmS0GYUExooQ2VMhOW6aQwkuZYEUw1ZTKR0ibCWOVMpiSzFqvCK3D33WtwnfjKYj5UEB8u7nS814ykZZ-bk2Rso3X60eew4TwunTKlMV7Sf6FNwJ_Otr-HaP7ipw3qb-fu_7Zx9-BOf9BGmx1n3IcVUz-Am13rzYuHYLrbFKOR8rhvkDazEJVWo751EbImFD1FbWgV5Ed8ksDYjRskQxoz2jxFW1Uzryu07Vhwghqhq3mLxOnY7cBscvYIvlzJGh_Daj2tzRNAbr6Wzl4UBGtCFBVCUUyszI31pR9MBG8HIPDzrrIIDxEBGeMdbLiDDQ-w4TiCLY-VxUxfFTy8mDZj3gsZbhQrlJEK58yxGEuEJSLFiTJK-ir9OoL1ASK8F1Utv8RHBK8Ww07IeM-RqM10HuY4O52lxNGx1gFzQYkz0H1ZxDQCtgTZJVKXR-pqEgqZp968cDongncDui_p-vtePP33Ml7Crd2jzwf8YG-0_wxuY898PgCzXIfVWTM3z-GG-jar2uZF4F4EJ1eN-p8Vr4dM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXUBceD8CCxgJThA1cdzYOSC0y25FtVD1ANJy8vrZVlrSJWlB-9f4ddhO0lV53fbAMbEVjZ1vZjyeF8Dzgips9YDGOdUqJhnTMbPCPWZS2VxlKiMyNJug4zE7OiomW_Cjy4XxYZWdTAyCWi-UvyPvOz3HCpaled63bVjEZH_45vRr7DtIeU9r106jgcihOfvuzLf69Wjf_esXGA8PPr59F7cdBmJFCrKMdSIYzWQhCBOKCS20oVJmwjKd5EbSAVYEU02ZTKS0iTBWOfMpyazFKvfK3H33Emy7IznBPdiejD5MPq9veLwPjaRFm6mTZKxfO23pM9rwIC6caqUx3tCGoWnAn066vwds_uK1DcpweON_3sabcL09gqPdhmduwZYpb8OVpinn2R0wzT2L0Uh5jqiQNssQr1aitqkRsiaUQ0V1aCLkR3z6wNSNGyRDgjPaPUF782pVztGBY84ZqoSer2okTqZuB5azL3fh04Ws8R70ykVpHgBy87V0lqQgWBOiqBCKYmLlwFhfFMJE8LIDBT9tao7wECuQMd5AiDsI8QAhjiPY87hZz_T1wsOLRTXlrfjhRrFcGanwgDnmY4mwRKQ4UUZJX79fR7DTwYW3Qqzm51iJ4Nl62Ikf71MSpVmswhxnwbOUODruNyBdU-JMd18wMY2AbcB3g9TNkXI-CyXOU294OG0UwasO6ed0_X0vHv57GU_hqgM7fz8aHz6Ca9jzoY_MLHagt6xW5jFcVt-W87p60rIyguOLhv1P-FCRlQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+cancer+detection+through+feature+selection+using+the+binary+Al+Biruni+Earth+radius+algorithm&rft.jtitle=Scientific+reports&rft.date=2025-03-19&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=9483&rft_id=info:doi/10.1038%2Fs41598-025-92187-2&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |