Crop yield and water productivity modeling using nonlinear growth functions
Growth curve modeling plays a crucial role in precision agriculture by enabling rapid analysis of plant growth dynamics. Understanding the complex mechanisms of crop growth is essential for optimizing agricultural productivity. In this study, nonlinear Logistic and Gompertz models were employed to p...
Uložené v:
| Vydané v: | Scientific reports Ročník 15; číslo 1; s. 30087 - 19 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
17.08.2025
Nature Publishing Group Nature Portfolio |
| Predmet: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Growth curve modeling plays a crucial role in precision agriculture by enabling rapid analysis of plant growth dynamics. Understanding the complex mechanisms of crop growth is essential for optimizing agricultural productivity. In this study, nonlinear Logistic and Gompertz models were employed to predict biological yield and water productivity of silage maize in arid and semi-arid regions, using growing degree days (GDD) as a key predictor. The experiment included two primary irrigation regimes: deficit irrigation (W
2
and W
3
, providing 60% and 80% of crop water requirements, respectively) and full irrigation (W
1
, providing 100%). A sigmoid model was also introduced for its ease of biological interpretation. To evaluate model performance, coefficient of determination (R²), normalized root mean square error (NRMSE), and mean absolute percentage error (MAPE) were used. Results indicated that Logistic and Gompertz models achieved high accuracy, with R² exceeding 99% under pulse irrigation and 80% under continuous irrigation. These models revealed that the maximum biological yield rate occurred at GDD equal 1014 °C (50 days after planting). Furthermore, the absolute growth rate followed a bell-shaped pattern in the Logistic model and a right-skewed distribution in the Gompertz model. The findings confirm that Logistic and Gompertz models effectively simulate the dynamic growth of silage maize under varying irrigation and temperature conditions. These models not only facilitate quantitative crop growth predictions but also provide a decision-support tool for irrigation planning and precision crop management in arid and semi-arid regions. The integration of such models into smart agricultural systems can significantly enhance resource optimization and sustainable farming practices. |
|---|---|
| AbstractList | Growth curve modeling plays a crucial role in precision agriculture by enabling rapid analysis of plant growth dynamics. Understanding the complex mechanisms of crop growth is essential for optimizing agricultural productivity. In this study, nonlinear Logistic and Gompertz models were employed to predict biological yield and water productivity of silage maize in arid and semi-arid regions, using growing degree days (GDD) as a key predictor. The experiment included two primary irrigation regimes: deficit irrigation (W2 and W3, providing 60% and 80% of crop water requirements, respectively) and full irrigation (W1, providing 100%). A sigmoid model was also introduced for its ease of biological interpretation. To evaluate model performance, coefficient of determination (R²), normalized root mean square error (NRMSE), and mean absolute percentage error (MAPE) were used. Results indicated that Logistic and Gompertz models achieved high accuracy, with R² exceeding 99% under pulse irrigation and 80% under continuous irrigation. These models revealed that the maximum biological yield rate occurred at GDD equal 1014 °C (50 days after planting). Furthermore, the absolute growth rate followed a bell-shaped pattern in the Logistic model and a right-skewed distribution in the Gompertz model. The findings confirm that Logistic and Gompertz models effectively simulate the dynamic growth of silage maize under varying irrigation and temperature conditions. These models not only facilitate quantitative crop growth predictions but also provide a decision-support tool for irrigation planning and precision crop management in arid and semi-arid regions. The integration of such models into smart agricultural systems can significantly enhance resource optimization and sustainable farming practices.Growth curve modeling plays a crucial role in precision agriculture by enabling rapid analysis of plant growth dynamics. Understanding the complex mechanisms of crop growth is essential for optimizing agricultural productivity. In this study, nonlinear Logistic and Gompertz models were employed to predict biological yield and water productivity of silage maize in arid and semi-arid regions, using growing degree days (GDD) as a key predictor. The experiment included two primary irrigation regimes: deficit irrigation (W2 and W3, providing 60% and 80% of crop water requirements, respectively) and full irrigation (W1, providing 100%). A sigmoid model was also introduced for its ease of biological interpretation. To evaluate model performance, coefficient of determination (R²), normalized root mean square error (NRMSE), and mean absolute percentage error (MAPE) were used. Results indicated that Logistic and Gompertz models achieved high accuracy, with R² exceeding 99% under pulse irrigation and 80% under continuous irrigation. These models revealed that the maximum biological yield rate occurred at GDD equal 1014 °C (50 days after planting). Furthermore, the absolute growth rate followed a bell-shaped pattern in the Logistic model and a right-skewed distribution in the Gompertz model. The findings confirm that Logistic and Gompertz models effectively simulate the dynamic growth of silage maize under varying irrigation and temperature conditions. These models not only facilitate quantitative crop growth predictions but also provide a decision-support tool for irrigation planning and precision crop management in arid and semi-arid regions. The integration of such models into smart agricultural systems can significantly enhance resource optimization and sustainable farming practices. Abstract Growth curve modeling plays a crucial role in precision agriculture by enabling rapid analysis of plant growth dynamics. Understanding the complex mechanisms of crop growth is essential for optimizing agricultural productivity. In this study, nonlinear Logistic and Gompertz models were employed to predict biological yield and water productivity of silage maize in arid and semi-arid regions, using growing degree days (GDD) as a key predictor. The experiment included two primary irrigation regimes: deficit irrigation (W2 and W3, providing 60% and 80% of crop water requirements, respectively) and full irrigation (W1, providing 100%). A sigmoid model was also introduced for its ease of biological interpretation. To evaluate model performance, coefficient of determination (R²), normalized root mean square error (NRMSE), and mean absolute percentage error (MAPE) were used. Results indicated that Logistic and Gompertz models achieved high accuracy, with R² exceeding 99% under pulse irrigation and 80% under continuous irrigation. These models revealed that the maximum biological yield rate occurred at GDD equal 1014 °C (50 days after planting). Furthermore, the absolute growth rate followed a bell-shaped pattern in the Logistic model and a right-skewed distribution in the Gompertz model. The findings confirm that Logistic and Gompertz models effectively simulate the dynamic growth of silage maize under varying irrigation and temperature conditions. These models not only facilitate quantitative crop growth predictions but also provide a decision-support tool for irrigation planning and precision crop management in arid and semi-arid regions. The integration of such models into smart agricultural systems can significantly enhance resource optimization and sustainable farming practices. Growth curve modeling plays a crucial role in precision agriculture by enabling rapid analysis of plant growth dynamics. Understanding the complex mechanisms of crop growth is essential for optimizing agricultural productivity. In this study, nonlinear Logistic and Gompertz models were employed to predict biological yield and water productivity of silage maize in arid and semi-arid regions, using growing degree days (GDD) as a key predictor. The experiment included two primary irrigation regimes: deficit irrigation (W 2 and W 3 , providing 60% and 80% of crop water requirements, respectively) and full irrigation (W 1 , providing 100%). A sigmoid model was also introduced for its ease of biological interpretation. To evaluate model performance, coefficient of determination (R²), normalized root mean square error (NRMSE), and mean absolute percentage error (MAPE) were used. Results indicated that Logistic and Gompertz models achieved high accuracy, with R² exceeding 99% under pulse irrigation and 80% under continuous irrigation. These models revealed that the maximum biological yield rate occurred at GDD equal 1014 °C (50 days after planting). Furthermore, the absolute growth rate followed a bell-shaped pattern in the Logistic model and a right-skewed distribution in the Gompertz model. The findings confirm that Logistic and Gompertz models effectively simulate the dynamic growth of silage maize under varying irrigation and temperature conditions. These models not only facilitate quantitative crop growth predictions but also provide a decision-support tool for irrigation planning and precision crop management in arid and semi-arid regions. The integration of such models into smart agricultural systems can significantly enhance resource optimization and sustainable farming practices. Growth curve modeling plays a crucial role in precision agriculture by enabling rapid analysis of plant growth dynamics. Understanding the complex mechanisms of crop growth is essential for optimizing agricultural productivity. In this study, nonlinear Logistic and Gompertz models were employed to predict biological yield and water productivity of silage maize in arid and semi-arid regions, using growing degree days (GDD) as a key predictor. The experiment included two primary irrigation regimes: deficit irrigation (W and W , providing 60% and 80% of crop water requirements, respectively) and full irrigation (W , providing 100%). A sigmoid model was also introduced for its ease of biological interpretation. To evaluate model performance, coefficient of determination (R²), normalized root mean square error (NRMSE), and mean absolute percentage error (MAPE) were used. Results indicated that Logistic and Gompertz models achieved high accuracy, with R² exceeding 99% under pulse irrigation and 80% under continuous irrigation. These models revealed that the maximum biological yield rate occurred at GDD equal 1014 °C (50 days after planting). Furthermore, the absolute growth rate followed a bell-shaped pattern in the Logistic model and a right-skewed distribution in the Gompertz model. The findings confirm that Logistic and Gompertz models effectively simulate the dynamic growth of silage maize under varying irrigation and temperature conditions. These models not only facilitate quantitative crop growth predictions but also provide a decision-support tool for irrigation planning and precision crop management in arid and semi-arid regions. The integration of such models into smart agricultural systems can significantly enhance resource optimization and sustainable farming practices. Growth curve modeling plays a crucial role in precision agriculture by enabling rapid analysis of plant growth dynamics. Understanding the complex mechanisms of crop growth is essential for optimizing agricultural productivity. In this study, nonlinear Logistic and Gompertz models were employed to predict biological yield and water productivity of silage maize in arid and semi-arid regions, using growing degree days (GDD) as a key predictor. The experiment included two primary irrigation regimes: deficit irrigation (W2 and W3, providing 60% and 80% of crop water requirements, respectively) and full irrigation (W1, providing 100%). A sigmoid model was also introduced for its ease of biological interpretation. To evaluate model performance, coefficient of determination (R²), normalized root mean square error (NRMSE), and mean absolute percentage error (MAPE) were used. Results indicated that Logistic and Gompertz models achieved high accuracy, with R² exceeding 99% under pulse irrigation and 80% under continuous irrigation. These models revealed that the maximum biological yield rate occurred at GDD equal 1014 °C (50 days after planting). Furthermore, the absolute growth rate followed a bell-shaped pattern in the Logistic model and a right-skewed distribution in the Gompertz model. The findings confirm that Logistic and Gompertz models effectively simulate the dynamic growth of silage maize under varying irrigation and temperature conditions. These models not only facilitate quantitative crop growth predictions but also provide a decision-support tool for irrigation planning and precision crop management in arid and semi-arid regions. The integration of such models into smart agricultural systems can significantly enhance resource optimization and sustainable farming practices. Growth curve modeling plays a crucial role in precision agriculture by enabling rapid analysis of plant growth dynamics. Understanding the complex mechanisms of crop growth is essential for optimizing agricultural productivity. In this study, nonlinear Logistic and Gompertz models were employed to predict biological yield and water productivity of silage maize in arid and semi-arid regions, using growing degree days (GDD) as a key predictor. The experiment included two primary irrigation regimes: deficit irrigation (W2 and W3, providing 60% and 80% of crop water requirements, respectively) and full irrigation (W1, providing 100%). A sigmoid model was also introduced for its ease of biological interpretation. To evaluate model performance, coefficient of determination (R²), normalized root mean square error (NRMSE), and mean absolute percentage error (MAPE) were used. Results indicated that Logistic and Gompertz models achieved high accuracy, with R² exceeding 99% under pulse irrigation and 80% under continuous irrigation. These models revealed that the maximum biological yield rate occurred at GDD equal 1014 °C (50 days after planting). Furthermore, the absolute growth rate followed a bell-shaped pattern in the Logistic model and a right-skewed distribution in the Gompertz model. The findings confirm that Logistic and Gompertz models effectively simulate the dynamic growth of silage maize under varying irrigation and temperature conditions. These models not only facilitate quantitative crop growth predictions but also provide a decision-support tool for irrigation planning and precision crop management in arid and semi-arid regions. The integration of such models into smart agricultural systems can significantly enhance resource optimization and sustainable farming practices. |
| ArticleNumber | 30087 |
| Author | Liaghat, Abdolmajid Hajirad, Iman Ahmadaali, Khaled |
| Author_xml | – sequence: 1 givenname: Iman surname: Hajirad fullname: Hajirad, Iman organization: Department of Irrigation and Reclamation Engineering, College of Agriculture and Natural Resources, University of Tehran – sequence: 2 givenname: Khaled surname: Ahmadaali fullname: Ahmadaali, Khaled email: khahmadauli@ut.ac.ir organization: Department of Irrigation and Reclamation Engineering, College of Agriculture and Natural Resources, University of Tehran – sequence: 3 givenname: Abdolmajid surname: Liaghat fullname: Liaghat, Abdolmajid organization: Department of Irrigation and Reclamation Engineering, College of Agriculture and Natural Resources, University of Tehran |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40820035$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktP3DAQx60KVCjlC_RQReqll7R-JvapqlZ9oCJxoWfLscchq6y9tRPQfnu8G6DQQ30Yv37z93hm3qCjEAMg9I7gTwQz-TlzIpSsMRU1abBqavwKnVLMRU0ZpUfP1ifoPOc1LkNQxYl6jU44lhRjJk7Rr1WK22o3wOgqE1x1ZyZI1TZFN9tpuB2mXbWJDsYh9NWc97bEUXZgUtWneDfdVH4OBY0hv0XH3owZzh_mM_T7-7fr1c_68urHxerrZW254tPeEq8okWBE13LCWiwaJb2SthgmGsu9Ja3CDfXctpgoT4Vroesc6bxj7AxdLLoumrXepmFj0k5HM-jDQUy9Nmka7Aha-sa3DaMtM8BBNLJTvgMqqRGto6orWl8Wre3cbcBZCFMy4wvRlzdhuNF9vNWEMiGF4kXh44NCin9myJPeDNnCOJoAcc6aUY65xKVYBf3wD7qOcwolVweKiZKK_ffePw_pKZbHohWALoBNMecE_gkhWO-bQy_NoUtz6ENzaFyc2OKUCxx6SH_f_o_XPXMiu6I |
| Cites_doi | 10.1002/fes3.40 10.1016/j.fcr.2017.01.019 10.3390/w10040405 10.1016/j.agwat.2004.04.007 10.1016/j.agrformet.2019.03.013 10.1016/j.agwat.2013.05.018 10.1016/0378-4290(91)90040-3 10.1007/s00271-017-0540-1 10.1016/j.agrformet.2021.108736 10.1080/00103624.2021.1892720 10.1016/S0378-4290(00)00095-2 10.1371/journal.pone.0146385 10.3390/plants11111411 10.1016/j.agwat.2018.10.022 10.1016/j.agwat.2014.11.017 10.1111/j.1574-0862.2010.00516.x 10.2134/agronj2001.932281x 10.1002/ird.453 10.1016/j.agsy.2020.103016 10.1016/j.agwat.2018.10.020 10.1016/S1161-0301(02)00108-9 10.1016/j.agwat.2019.105878 10.17221/141/2018-PSE 10.1080/00103624.2022.2142236 10.9734/cjast/2023/v42i154122 10.1006/anbo.1999.0877 10.3390/agronomy8100208 10.1016/j.agwat.2009.04.022 10.1080/03650340.2014.917169 10.1007/s00271-023-00880-9 10.1016/j.scienta.2018.02.068 10.1016/j.envsoft.2014.09.006 10.1016/bs.agron.2018.11.002 10.13031/2013.31032 10.1016/S0168-1923(97)00027-0 10.1016/j.fcr.2013.07.014 10.15666/aeer/2101_189206 10.1146/annurev.environ.030308.090351 10.1016/j.agwat.2021.106938 10.2134/agronj2019.03.0214 10.1016/j.agrformet.2020.107928 10.1016/j.fcr.2021.108398 10.2134/agronj2012.0506 10.1016/S0168-1923(00)00108-8 10.1016/j.agwat.2020.106066 10.1016/j.agwat.2009.04.009 10.1071/AR05359 10.1016/j.agwat.2003.12.001 10.1016/bs.agron.2019.07.007 10.1002/joc.3370050602 10.3390/rs5020949 10.1177/0030727016664464 10.1016/j.agwat.2011.07.019 10.1016/j.agwat.2005.05.006 10.1093/aob/mcg029 10.1016/j.agee.2009.08.016 10.1016/j.agsy.2019.102646 10.1016/S1161-0301(02)00107-7 10.1017/S0016672302005633 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-025-16096-0 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest One Academic ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Agriculture |
| EISSN | 2045-2322 |
| EndPage | 19 |
| ExternalDocumentID | oai_doaj_org_article_8f6f763273ae4e568b9fbe282a57d29b PMC12358594 40820035 10_1038_s41598_025_16096_0 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX AFFHD CITATION CGR CUY CVF ECM EIF NPM PUEGO 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c494t-c491f9218ea5b7413705698f98c8f9356c4fc179062f4c7019f25d7ebbd1bfd33 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001551982200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Tue Oct 14 19:04:49 EDT 2025 Tue Nov 04 02:04:10 EST 2025 Sat Nov 01 15:03:34 EDT 2025 Tue Oct 07 07:47:02 EDT 2025 Thu Sep 04 05:04:07 EDT 2025 Sat Nov 29 07:33:08 EST 2025 Mon Aug 18 01:10:43 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Irrigation management Deficit irrigation Crop modelling Logistic Gompertz |
| Language | English |
| License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c494t-c491f9218ea5b7413705698f98c8f9356c4fc179062f4c7019f25d7ebbd1bfd33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/3240353703?pq-origsite=%requestingapplication% |
| PMID | 40820035 |
| PQID | 3240353703 |
| PQPubID | 2041939 |
| PageCount | 19 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8f6f763273ae4e568b9fbe282a57d29b pubmedcentral_primary_oai_pubmedcentral_nih_gov_12358594 proquest_miscellaneous_3240480598 proquest_journals_3240353703 pubmed_primary_40820035 crossref_primary_10_1038_s41598_025_16096_0 springer_journals_10_1038_s41598_025_16096_0 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-17 |
| PublicationDateYYYYMMDD | 2025-08-17 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | A Bonfante (16096_CR6) 2019; 176 R Ding (16096_CR16) 2013; 127 JR Williams (16096_CR64) 1989; 32 S Geerts (16096_CR21) 2009; 96 RK Panda (16096_CR48) 2004; 66 BXXIV Gompertz (16096_CR22) 1825; 115 L Kung (16096_CR36) 2001; 3 16096_CR38 Z Zhu (16096_CR72) 2022; 11 X Yin (16096_CR70) 2003; 91 CJ Willmott (16096_CR65) 1985; 5 PD Jamieson (16096_CR30) 1991; 27 C Atzberger (16096_CR2) 2013; 5 16096_CR32 M Mubeen (16096_CR46) 2016; 45 N Dağdelen (16096_CR14) 2006; 82 MW Rosegrant (16096_CR53) 2009; 34 KA Meade (16096_CR43) 2013; 151 CO Stöckle (16096_CR58) 2014; 62 A Calzadilla (16096_CR8) 2011; 42 G Hoogenboom (16096_CR27) 2000; 103 GS McMaster (16096_CR42) 1997; 87 R Wu (16096_CR66) 2002; 79 TJ Trout (16096_CR60) 2017; 35 16096_CR24 16096_CR68 H Zhang (16096_CR71) 2019; 111 DC Camargo (16096_CR9) 2015; 150 W Wu (16096_CR67) 2010; 135 K Djaman (16096_CR18) 2018; 10 BA Keating (16096_CR35) 2003; 18 16096_CR62 MR Rafiee (16096_CR50) 2020; 46 F Wang (16096_CR63) 2021; 254 16096_CR3 H Steppuhn (16096_CR57) 2005; 45 D Buttaro (16096_CR7) 2015; 4 Y Chen (16096_CR11) 2022; 276 S Kang (16096_CR34) 2000; 67 T Jiang (16096_CR31) 2020; 232 D Paudel (16096_CR49) 2021; 187 SV Archontoulis (16096_CR1) 2015; 107 D Ding (16096_CR17) 2019; 271 CP Birch (16096_CR5) 1999; 83 E Coyago-Cruz (16096_CR13) 2019; 213 16096_CR15 P Rawat (16096_CR52) 2023; 42 16096_CR59 O Hocaoğlu (16096_CR26) 2023; 54 H Yang (16096_CR69) 2017; 204 JW Jones (16096_CR33) 2003; 18 16096_CR56 T Du (16096_CR19) 2014; 3 Y Guo (16096_CR23) 2022; 15 AG Garcia (16096_CR20) 2009; 96 A Ünlükara (16096_CR61) 2010; 59 R Iqbal (16096_CR29) 2021; 52 S Mohammadi (16096_CR45) 2024; 42 I Hajirad (16096_CR25) 2023; 25 W Malik (16096_CR40) 2019; 213 MG Ziliani (16096_CR73) 2022; 313 VO Sadras (16096_CR54) 2006; 57 TA Howell (16096_CR28) 2001; 93 AR Sepaskhah (16096_CR55) 2011; 99 B Basso (16096_CR4) 2019; 154 N Mbava (16096_CR41) 2020; 228 Y Liu (16096_CR37) 2020; 159 S Chen (16096_CR12) 2020; 285 P Casadebaig (16096_CR10) 2016; 11 SJ Zwart (16096_CR74) 2004; 69 M Mahbod (16096_CR39) 2014; 60 A Nilahyane (16096_CR47) 2018; 8 16096_CR44 LJ Ramírez-Pérez (16096_CR51) 2018; 234 |
| References_xml | – volume: 3 start-page: 7 year: 2014 ident: 16096_CR19 publication-title: Food Energy Secur. doi: 10.1002/fes3.40 – volume: 204 start-page: 180 year: 2017 ident: 16096_CR69 publication-title: Field Crops Res. doi: 10.1016/j.fcr.2017.01.019 – volume: 10 start-page: 405 year: 2018 ident: 16096_CR18 publication-title: Water doi: 10.3390/w10040405 – volume: 45 start-page: 209 year: 2005 ident: 16096_CR57 publication-title: Crop Sci. – volume: 25 start-page: 86 year: 2023 ident: 16096_CR25 publication-title: Environ. Sci. Proc. – volume: 69 start-page: 115 year: 2004 ident: 16096_CR74 publication-title: Agric. Water Manag doi: 10.1016/j.agwat.2004.04.007 – volume: 271 start-page: 385 year: 2019 ident: 16096_CR17 publication-title: Agric. Meteorol. doi: 10.1016/j.agrformet.2019.03.013 – volume: 127 start-page: 85 year: 2013 ident: 16096_CR16 publication-title: Agric. Water Manag doi: 10.1016/j.agwat.2013.05.018 – volume: 27 start-page: 337 year: 1991 ident: 16096_CR30 publication-title: Field Crops Res. doi: 10.1016/0378-4290(91)90040-3 – volume: 35 start-page: 251 year: 2017 ident: 16096_CR60 publication-title: Irrig. Sci. doi: 10.1007/s00271-017-0540-1 – volume: 313 start-page: 108736 year: 2022 ident: 16096_CR73 publication-title: Agric. Meteorol. doi: 10.1016/j.agrformet.2021.108736 – volume: 52 start-page: 1558 year: 2021 ident: 16096_CR29 publication-title: Commun. Soil. Sci. Plant. Anal. doi: 10.1080/00103624.2021.1892720 – volume: 67 start-page: 207 year: 2000 ident: 16096_CR34 publication-title: Field Crops Res. doi: 10.1016/S0378-4290(00)00095-2 – volume: 11 start-page: e0146385 year: 2016 ident: 16096_CR10 publication-title: PLoS One doi: 10.1371/journal.pone.0146385 – ident: 16096_CR62 – volume: 11 start-page: 1411 year: 2022 ident: 16096_CR72 publication-title: Plants doi: 10.3390/plants11111411 – volume: 213 start-page: 298 year: 2019 ident: 16096_CR40 publication-title: Agric. Water Manag doi: 10.1016/j.agwat.2018.10.022 – volume: 46 start-page: 419 year: 2020 ident: 16096_CR50 publication-title: Water SA – volume: 150 start-page: 119 year: 2015 ident: 16096_CR9 publication-title: Agric. Water Manag doi: 10.1016/j.agwat.2014.11.017 – volume: 42 start-page: 305 year: 2011 ident: 16096_CR8 publication-title: Agric. Econ. doi: 10.1111/j.1574-0862.2010.00516.x – volume: 93 start-page: 281 year: 2001 ident: 16096_CR28 publication-title: Agron. J. doi: 10.2134/agronj2001.932281x – volume: 59 start-page: 203 year: 2010 ident: 16096_CR61 publication-title: Irrig. Drain. doi: 10.1002/ird.453 – ident: 16096_CR15 – volume: 187 start-page: 103016 year: 2021 ident: 16096_CR49 publication-title: Agric. Syst. doi: 10.1016/j.agsy.2020.103016 – volume: 213 start-page: 212 year: 2019 ident: 16096_CR13 publication-title: Agric. Water Manag doi: 10.1016/j.agwat.2018.10.020 – volume: 18 start-page: 267 year: 2003 ident: 16096_CR35 publication-title: Eur. J. Agron. doi: 10.1016/S1161-0301(02)00108-9 – ident: 16096_CR38 – volume: 228 start-page: 105878 year: 2020 ident: 16096_CR41 publication-title: Agric. Water Manag doi: 10.1016/j.agwat.2019.105878 – ident: 16096_CR44 doi: 10.17221/141/2018-PSE – volume: 15 start-page: 41 year: 2022 ident: 16096_CR23 publication-title: Int. J. Agric. Biol. Eng. – volume: 54 start-page: 1293 year: 2023 ident: 16096_CR26 publication-title: Commun. Soil. Sci. Plant. Anal. doi: 10.1080/00103624.2022.2142236 – volume: 42 start-page: 12 year: 2023 ident: 16096_CR52 publication-title: Curr. J. Appl. Sci. Technol. doi: 10.9734/cjast/2023/v42i154122 – volume: 83 start-page: 713 year: 1999 ident: 16096_CR5 publication-title: Ann. Bot. doi: 10.1006/anbo.1999.0877 – volume: 8 start-page: 208 year: 2018 ident: 16096_CR47 publication-title: Agronomy doi: 10.3390/agronomy8100208 – volume: 96 start-page: 1369 year: 2009 ident: 16096_CR20 publication-title: Agric. Water Manag doi: 10.1016/j.agwat.2009.04.022 – volume: 60 start-page: 1661 year: 2014 ident: 16096_CR39 publication-title: Arch. Agron. Soil. Sci. doi: 10.1080/03650340.2014.917169 – volume: 42 start-page: 269 year: 2024 ident: 16096_CR45 publication-title: Irrig. Sci. doi: 10.1007/s00271-023-00880-9 – volume: 234 start-page: 250 year: 2018 ident: 16096_CR51 publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2018.02.068 – volume: 62 start-page: 361 year: 2014 ident: 16096_CR58 publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2014.09.006 – volume: 115 start-page: 513 year: 1825 ident: 16096_CR22 publication-title: Philos. Trans. R Soc. Lond. – ident: 16096_CR56 – volume: 154 start-page: 201 year: 2019 ident: 16096_CR4 publication-title: Adv. Agron. doi: 10.1016/bs.agron.2018.11.002 – ident: 16096_CR68 – volume: 32 start-page: 497 year: 1989 ident: 16096_CR64 publication-title: Trans. ASAE doi: 10.13031/2013.31032 – volume: 87 start-page: 291 year: 1997 ident: 16096_CR42 publication-title: Agric. Meteorol. doi: 10.1016/S0168-1923(97)00027-0 – volume: 151 start-page: 92 year: 2013 ident: 16096_CR43 publication-title: Field Crops Res. doi: 10.1016/j.fcr.2013.07.014 – ident: 16096_CR24 doi: 10.15666/aeer/2101_189206 – ident: 16096_CR3 – volume: 34 start-page: 205 year: 2009 ident: 16096_CR53 publication-title: Annu. Rev. Environ. Resour. doi: 10.1146/annurev.environ.030308.090351 – volume: 254 start-page: 106938 year: 2021 ident: 16096_CR63 publication-title: Agric. Water Manag doi: 10.1016/j.agwat.2021.106938 – volume: 111 start-page: 3244 year: 2019 ident: 16096_CR71 publication-title: Agron. J. doi: 10.2134/agronj2019.03.0214 – volume: 285 start-page: 107928 year: 2020 ident: 16096_CR12 publication-title: Agric. Meteorol. doi: 10.1016/j.agrformet.2020.107928 – ident: 16096_CR32 – volume: 276 start-page: 108398 year: 2022 ident: 16096_CR11 publication-title: Field Crops Res. doi: 10.1016/j.fcr.2021.108398 – volume: 107 start-page: 786 year: 2015 ident: 16096_CR1 publication-title: Agron. J. doi: 10.2134/agronj2012.0506 – volume: 103 start-page: 137 year: 2000 ident: 16096_CR27 publication-title: Agric. Meteorol. doi: 10.1016/S0168-1923(00)00108-8 – volume: 4 start-page: 440 year: 2015 ident: 16096_CR7 publication-title: Agric. Agric. Sci. Procedia – ident: 16096_CR59 – volume: 232 start-page: 106066 year: 2020 ident: 16096_CR31 publication-title: Agric. Water Manag doi: 10.1016/j.agwat.2020.106066 – volume: 96 start-page: 1275 year: 2009 ident: 16096_CR21 publication-title: Agric. Water Manag doi: 10.1016/j.agwat.2009.04.009 – volume: 57 start-page: 847 year: 2006 ident: 16096_CR54 publication-title: Aust J. Agric. Res. doi: 10.1071/AR05359 – volume: 66 start-page: 181 year: 2004 ident: 16096_CR48 publication-title: Agric. Water Manag doi: 10.1016/j.agwat.2003.12.001 – volume: 159 start-page: 237 year: 2020 ident: 16096_CR37 publication-title: Adv. Agron. doi: 10.1016/bs.agron.2019.07.007 – volume: 5 start-page: 589 year: 1985 ident: 16096_CR65 publication-title: J. Climatol doi: 10.1002/joc.3370050602 – volume: 5 start-page: 949 year: 2013 ident: 16096_CR2 publication-title: Remote Sens. doi: 10.3390/rs5020949 – volume: 45 start-page: 173 year: 2016 ident: 16096_CR46 publication-title: Outlook Agric. doi: 10.1177/0030727016664464 – volume: 99 start-page: 51 year: 2011 ident: 16096_CR55 publication-title: Agric. Water Manag doi: 10.1016/j.agwat.2011.07.019 – volume: 82 start-page: 63 year: 2006 ident: 16096_CR14 publication-title: Agric. Water Manag doi: 10.1016/j.agwat.2005.05.006 – volume: 91 start-page: 361 year: 2003 ident: 16096_CR70 publication-title: Ann. Bot. doi: 10.1093/aob/mcg029 – volume: 3 start-page: 1 year: 2001 ident: 16096_CR36 publication-title: Focus Forage – volume: 135 start-page: 111 year: 2010 ident: 16096_CR67 publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2009.08.016 – volume: 176 start-page: 102646 year: 2019 ident: 16096_CR6 publication-title: Agric. Syst. doi: 10.1016/j.agsy.2019.102646 – volume: 18 start-page: 235 year: 2003 ident: 16096_CR33 publication-title: Eur. J. Agron. doi: 10.1016/S1161-0301(02)00107-7 – volume: 79 start-page: 235 year: 2002 ident: 16096_CR66 publication-title: Genet. Res. doi: 10.1017/S0016672302005633 |
| SSID | ssj0000529419 |
| Score | 2.4682326 |
| Snippet | Growth curve modeling plays a crucial role in precision agriculture by enabling rapid analysis of plant growth dynamics. Understanding the complex mechanisms... Abstract Growth curve modeling plays a crucial role in precision agriculture by enabling rapid analysis of plant growth dynamics. Understanding the complex... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 30087 |
| SubjectTerms | 631/449/2653 639/705 Agricultural Irrigation Agricultural practices Agricultural production Agriculture Arid zones Calibration Corn Crop management Crop modelling Crop yield Crops, Agricultural - growth & development Deficit irrigation Efficiency Environmental conditions Farming systems Gompertz Growth models Humanities and Social Sciences Irrigation Irrigation management Logistic Models, Biological multidisciplinary Nonlinear Dynamics Plant growth Precision agriculture Productivity Science Science (multidisciplinary) Semiarid zones Silage Sustainable agriculture Sustainable practices Water Water - metabolism Water requirements Zea mays - growth & development |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hCiQuCMor0FZG4gZRk_gR-wgVFRJSxQGk3izHj7aXdJXdFvXfM2Nnly4FceHiQ2wlk288nrE8_gbgbe8DDyL5OnKDGxTnVa1V4-oW1z4VvXIylWIT_cmJPj01X2-V-qKcsEIPXIA71EkltAH0si6KKJUeTBoibhSc7ENnBlp9Meq5tZkqrN6dEa2Zb8k0XB8u0VPRbbJO1q1qKPN2yxNlwv4_RZl3kyV_OzHNjuj4MTyaI0j2oUj-BO7FcRcelJqSN0_hy9F0uWA3lJjG3BjYDwwmJ7YoxK65UgTL1W_w3YyS3s_YWNgy3MTOcE--Omfk6_J0fAbfjz99O_pczxUTai-MWFHbJoNeOzo5YKzAe4xvjE5Ge2y4VB7VQpxcqkvCExN76mTo4zCEdkiB8-ewgx-NL4El0WIHou2DF9x3LnguU5MwvJN-iE0F79bo2UUhxrD5QJtrW7C2iLXNWFsc_ZEA3owkUuv8AFVtZ1Xbf6m6gr21euxsaUubCQUl_iiv4M2mG22EDj7cGC-vyhihMZDUFbwo2txIQgW36Ti1Ar2l5y1Rt3vGi_PMw52vGUsjKni_nhK_5Po7Fq_-Bxav4WFHc5nIefs92FlNV3Ef7vvr1cVyOsjG8BOJGg3t priority: 102 providerName: Directory of Open Access Journals |
| Title | Crop yield and water productivity modeling using nonlinear growth functions |
| URI | https://link.springer.com/article/10.1038/s41598-025-16096-0 https://www.ncbi.nlm.nih.gov/pubmed/40820035 https://www.proquest.com/docview/3240353703 https://www.proquest.com/docview/3240480598 https://pubmed.ncbi.nlm.nih.gov/PMC12358594 https://doaj.org/article/8f6f763273ae4e568b9fbe282a57d29b |
| Volume | 15 |
| WOSCitedRecordID | wos001551982200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQuvKGBsjISN4iaxI_YJ0SrViDUVYRAWk6W48e2l90luy3qv2fsZLdaXhcuPsSWPPGMPeOZ8TcAr2vrqGPB5p4qvKAYK3IpCpOXePYJb4XhoS82UY_HcjJRzeBwWw5pleszMR3Ubm6jj_wwAcdxigL6bvE9j1WjYnR1KKGxA3sRJYGm1L1m42OJUSxWquGtTEHl4RL1VXxTVvG8FEXMv93SRwm2_0-25u8pk7_ETZM6Or3_vz_yAO4Nhih530vOQ7jlZ4_gTl-a8voxfDru5gtyHfPbiJk58gNt0o4senzYVHCCpCI6SByJufNTMutBN0xHpni1X52TqDKTVD-Br6cnX44_5EPhhdwyxVaxLYNC5e8Nb9HkQGK5UDIoabGhXFjkboT2ElVgNgK6h4q72retK9vgKH0Kuzip3wcSWIkdslXWWUZtZZylPBQBrURuW19k8Ga9_HrR42voFBenUvfM0sgsnZilcfRR5NBmZMTGTh_m3VQPW03LIAKemmiXGc88Fzh5aD1eLQ2vXaXaDA7WjNHDhl3qG65k8GrTjVstxk_MzM8v-zFMoj0qM3jWi8OGkli3O0ZlM5BbgrJF6nbP7OI8wXmn18pcsQzermXqhq6_r8Xzf__GC7hbRTGP6L31Aeyuukv_Em7bq9XFshvBTj2pUytHsHd0Mm4-j5I7AtuzqhmlfYQ9zcez5ttPr9cimg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VWxBceD8CBYwEJ4iah504B4SgUHW17WoPRSonN3HsbS_Jkt2y2j_Fb2TGSbZaXrceuOQQW4kfn2fGHs98AK9SXcYlt9o3cYYblFwnvkyC3A9R9iVGJ7mwLdlEOh7Lk5NssgU_-lgYulbZy0QnqMta0xn5rkscJ2IE6PvZN59Yo8i72lNotLAYmdUSt2zzd8NPOL-vo2j_8_Hegd-xCviaZ3xBz9BmqNlMLgrUp_hJkWTSZlLjIxaJxqZT3qokslxTtnIbiTI1RVGGhS3pABRF_jZHsMsBbE-GR5Ov61Md8pvxMOuic4JY7s5RQ1IUWyT8MAnoxu-GBnREAX-ybn-_pPmLp9YpwP3b_9vQ3YFbnanNPrRr4y5smeoeXG_JN1f3YbTX1DO2oht8LK9KtkSru2GzNgOuo9RgjiYIB4NRdMCUVW1akbxh06ZeLs4YGQVu3T6AL1fSk4cwwJ-ax8AsD7FAFpkuNY91lJc6FjawaAcLXZjAgzf9dKtZm0FEOc9_LFULDoXgUA4cCmt_JESsa1L2b_eibqaqEyZK2sSiXkDLMzfciAR_bguDm-dcpGWUFR7s9EBQnUiaq0sUePByXYzChDxEeWXqi7YOl2hxSw8etfBbt4SYycnv7IHcAOZGUzdLqvMzl7DcxWOLjHvwtsfwZbv-PhZP_t2NF3Dj4PjoUB0Ox6OncDOiJUa5itMdGCyaC_MMrunvi_N587xbpQxOrxrdPwE9uHkH |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VLSAu5VkwFFgkOIEVv9bePSAELRFVUJQDSL0t9j7SXuLgpET5a_w6ZtZ2qvC69cDFh-wq3l1_OzO7M_MNwItCm9RkToc2lXhAKXUeijwqwxhlX251XnLXFpsoxmNxeionO_Cjz4WhsMpeJnpBbWpNd-QDTxzHUwTowHVhEZPj4dv5t5AqSJGntS-n0UJkZNcrPL4t3pwc47d-mSTDD5-PPoZdhYFQZzJb0jN2ErWcLXmFuhX_nudSOCk0PlKea5wGcVjlics0MZe7hJvCVpWJK2foMhTF_15BpOU-bHCyud8hD1oWyy5PJ0rFYIG6kvLZEh7GeUSxv1u60JcM-JOd-3u45i8-W68Kh7f-50W8DfudAc7etTvmDuzY2V243pbkXN-D0VFTz9ma4vpYOTNshbZ4w-YtL64vtMF88SBcGEY5A1M2a8lGyoZNm3q1PGNkKvjdfB--XMlMDmAXX2ofAnNZjA2iktroLNVJaXTKXeTQOua6slEAr_pPr-Ytr4jy8QCpUC1QFAJFeaAo7P2e0LHpSZzg_oe6mapOxCjhcofaAu3R0maW5_hyV1k8Upe8MImsAjjsQaE6QbVQl4gI4PmmGUUM-Y3Kma0v2j6ZQDtcBPCgheJmJFSvnLzRAYgtkG4Ndbtldn7macx9ljaXWQCvezxfjuvva_Ho39N4BjcQ0urTyXj0GG4mtNuIwLg4hN1lc2GfwDX9fXm-aJ767crg61VD-ydvhIBG |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crop+yield+and+water+productivity+modeling+using+nonlinear+growth+functions&rft.jtitle=Scientific+reports&rft.au=Hajirad%2C+Iman&rft.au=Ahmadaali%2C+Khaled&rft.au=Liaghat%2C+Abdolmajid&rft.date=2025-08-17&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=30087&rft_id=info:doi/10.1038%2Fs41598-025-16096-0&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |