Crop yield and water productivity modeling using nonlinear growth functions

Growth curve modeling plays a crucial role in precision agriculture by enabling rapid analysis of plant growth dynamics. Understanding the complex mechanisms of crop growth is essential for optimizing agricultural productivity. In this study, nonlinear Logistic and Gompertz models were employed to p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 15; H. 1; S. 30087 - 19
Hauptverfasser: Hajirad, Iman, Ahmadaali, Khaled, Liaghat, Abdolmajid
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 17.08.2025
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Growth curve modeling plays a crucial role in precision agriculture by enabling rapid analysis of plant growth dynamics. Understanding the complex mechanisms of crop growth is essential for optimizing agricultural productivity. In this study, nonlinear Logistic and Gompertz models were employed to predict biological yield and water productivity of silage maize in arid and semi-arid regions, using growing degree days (GDD) as a key predictor. The experiment included two primary irrigation regimes: deficit irrigation (W 2 and W 3 , providing 60% and 80% of crop water requirements, respectively) and full irrigation (W 1 , providing 100%). A sigmoid model was also introduced for its ease of biological interpretation. To evaluate model performance, coefficient of determination (R²), normalized root mean square error (NRMSE), and mean absolute percentage error (MAPE) were used. Results indicated that Logistic and Gompertz models achieved high accuracy, with R² exceeding 99% under pulse irrigation and 80% under continuous irrigation. These models revealed that the maximum biological yield rate occurred at GDD equal 1014 °C (50 days after planting). Furthermore, the absolute growth rate followed a bell-shaped pattern in the Logistic model and a right-skewed distribution in the Gompertz model. The findings confirm that Logistic and Gompertz models effectively simulate the dynamic growth of silage maize under varying irrigation and temperature conditions. These models not only facilitate quantitative crop growth predictions but also provide a decision-support tool for irrigation planning and precision crop management in arid and semi-arid regions. The integration of such models into smart agricultural systems can significantly enhance resource optimization and sustainable farming practices.
AbstractList Growth curve modeling plays a crucial role in precision agriculture by enabling rapid analysis of plant growth dynamics. Understanding the complex mechanisms of crop growth is essential for optimizing agricultural productivity. In this study, nonlinear Logistic and Gompertz models were employed to predict biological yield and water productivity of silage maize in arid and semi-arid regions, using growing degree days (GDD) as a key predictor. The experiment included two primary irrigation regimes: deficit irrigation (W2 and W3, providing 60% and 80% of crop water requirements, respectively) and full irrigation (W1, providing 100%). A sigmoid model was also introduced for its ease of biological interpretation. To evaluate model performance, coefficient of determination (R²), normalized root mean square error (NRMSE), and mean absolute percentage error (MAPE) were used. Results indicated that Logistic and Gompertz models achieved high accuracy, with R² exceeding 99% under pulse irrigation and 80% under continuous irrigation. These models revealed that the maximum biological yield rate occurred at GDD equal 1014 °C (50 days after planting). Furthermore, the absolute growth rate followed a bell-shaped pattern in the Logistic model and a right-skewed distribution in the Gompertz model. The findings confirm that Logistic and Gompertz models effectively simulate the dynamic growth of silage maize under varying irrigation and temperature conditions. These models not only facilitate quantitative crop growth predictions but also provide a decision-support tool for irrigation planning and precision crop management in arid and semi-arid regions. The integration of such models into smart agricultural systems can significantly enhance resource optimization and sustainable farming practices.Growth curve modeling plays a crucial role in precision agriculture by enabling rapid analysis of plant growth dynamics. Understanding the complex mechanisms of crop growth is essential for optimizing agricultural productivity. In this study, nonlinear Logistic and Gompertz models were employed to predict biological yield and water productivity of silage maize in arid and semi-arid regions, using growing degree days (GDD) as a key predictor. The experiment included two primary irrigation regimes: deficit irrigation (W2 and W3, providing 60% and 80% of crop water requirements, respectively) and full irrigation (W1, providing 100%). A sigmoid model was also introduced for its ease of biological interpretation. To evaluate model performance, coefficient of determination (R²), normalized root mean square error (NRMSE), and mean absolute percentage error (MAPE) were used. Results indicated that Logistic and Gompertz models achieved high accuracy, with R² exceeding 99% under pulse irrigation and 80% under continuous irrigation. These models revealed that the maximum biological yield rate occurred at GDD equal 1014 °C (50 days after planting). Furthermore, the absolute growth rate followed a bell-shaped pattern in the Logistic model and a right-skewed distribution in the Gompertz model. The findings confirm that Logistic and Gompertz models effectively simulate the dynamic growth of silage maize under varying irrigation and temperature conditions. These models not only facilitate quantitative crop growth predictions but also provide a decision-support tool for irrigation planning and precision crop management in arid and semi-arid regions. The integration of such models into smart agricultural systems can significantly enhance resource optimization and sustainable farming practices.
Abstract Growth curve modeling plays a crucial role in precision agriculture by enabling rapid analysis of plant growth dynamics. Understanding the complex mechanisms of crop growth is essential for optimizing agricultural productivity. In this study, nonlinear Logistic and Gompertz models were employed to predict biological yield and water productivity of silage maize in arid and semi-arid regions, using growing degree days (GDD) as a key predictor. The experiment included two primary irrigation regimes: deficit irrigation (W2 and W3, providing 60% and 80% of crop water requirements, respectively) and full irrigation (W1, providing 100%). A sigmoid model was also introduced for its ease of biological interpretation. To evaluate model performance, coefficient of determination (R²), normalized root mean square error (NRMSE), and mean absolute percentage error (MAPE) were used. Results indicated that Logistic and Gompertz models achieved high accuracy, with R² exceeding 99% under pulse irrigation and 80% under continuous irrigation. These models revealed that the maximum biological yield rate occurred at GDD equal 1014 °C (50 days after planting). Furthermore, the absolute growth rate followed a bell-shaped pattern in the Logistic model and a right-skewed distribution in the Gompertz model. The findings confirm that Logistic and Gompertz models effectively simulate the dynamic growth of silage maize under varying irrigation and temperature conditions. These models not only facilitate quantitative crop growth predictions but also provide a decision-support tool for irrigation planning and precision crop management in arid and semi-arid regions. The integration of such models into smart agricultural systems can significantly enhance resource optimization and sustainable farming practices.
Growth curve modeling plays a crucial role in precision agriculture by enabling rapid analysis of plant growth dynamics. Understanding the complex mechanisms of crop growth is essential for optimizing agricultural productivity. In this study, nonlinear Logistic and Gompertz models were employed to predict biological yield and water productivity of silage maize in arid and semi-arid regions, using growing degree days (GDD) as a key predictor. The experiment included two primary irrigation regimes: deficit irrigation (W 2 and W 3 , providing 60% and 80% of crop water requirements, respectively) and full irrigation (W 1 , providing 100%). A sigmoid model was also introduced for its ease of biological interpretation. To evaluate model performance, coefficient of determination (R²), normalized root mean square error (NRMSE), and mean absolute percentage error (MAPE) were used. Results indicated that Logistic and Gompertz models achieved high accuracy, with R² exceeding 99% under pulse irrigation and 80% under continuous irrigation. These models revealed that the maximum biological yield rate occurred at GDD equal 1014 °C (50 days after planting). Furthermore, the absolute growth rate followed a bell-shaped pattern in the Logistic model and a right-skewed distribution in the Gompertz model. The findings confirm that Logistic and Gompertz models effectively simulate the dynamic growth of silage maize under varying irrigation and temperature conditions. These models not only facilitate quantitative crop growth predictions but also provide a decision-support tool for irrigation planning and precision crop management in arid and semi-arid regions. The integration of such models into smart agricultural systems can significantly enhance resource optimization and sustainable farming practices.
Growth curve modeling plays a crucial role in precision agriculture by enabling rapid analysis of plant growth dynamics. Understanding the complex mechanisms of crop growth is essential for optimizing agricultural productivity. In this study, nonlinear Logistic and Gompertz models were employed to predict biological yield and water productivity of silage maize in arid and semi-arid regions, using growing degree days (GDD) as a key predictor. The experiment included two primary irrigation regimes: deficit irrigation (W and W , providing 60% and 80% of crop water requirements, respectively) and full irrigation (W , providing 100%). A sigmoid model was also introduced for its ease of biological interpretation. To evaluate model performance, coefficient of determination (R²), normalized root mean square error (NRMSE), and mean absolute percentage error (MAPE) were used. Results indicated that Logistic and Gompertz models achieved high accuracy, with R² exceeding 99% under pulse irrigation and 80% under continuous irrigation. These models revealed that the maximum biological yield rate occurred at GDD equal 1014 °C (50 days after planting). Furthermore, the absolute growth rate followed a bell-shaped pattern in the Logistic model and a right-skewed distribution in the Gompertz model. The findings confirm that Logistic and Gompertz models effectively simulate the dynamic growth of silage maize under varying irrigation and temperature conditions. These models not only facilitate quantitative crop growth predictions but also provide a decision-support tool for irrigation planning and precision crop management in arid and semi-arid regions. The integration of such models into smart agricultural systems can significantly enhance resource optimization and sustainable farming practices.
Growth curve modeling plays a crucial role in precision agriculture by enabling rapid analysis of plant growth dynamics. Understanding the complex mechanisms of crop growth is essential for optimizing agricultural productivity. In this study, nonlinear Logistic and Gompertz models were employed to predict biological yield and water productivity of silage maize in arid and semi-arid regions, using growing degree days (GDD) as a key predictor. The experiment included two primary irrigation regimes: deficit irrigation (W2 and W3, providing 60% and 80% of crop water requirements, respectively) and full irrigation (W1, providing 100%). A sigmoid model was also introduced for its ease of biological interpretation. To evaluate model performance, coefficient of determination (R²), normalized root mean square error (NRMSE), and mean absolute percentage error (MAPE) were used. Results indicated that Logistic and Gompertz models achieved high accuracy, with R² exceeding 99% under pulse irrigation and 80% under continuous irrigation. These models revealed that the maximum biological yield rate occurred at GDD equal 1014 °C (50 days after planting). Furthermore, the absolute growth rate followed a bell-shaped pattern in the Logistic model and a right-skewed distribution in the Gompertz model. The findings confirm that Logistic and Gompertz models effectively simulate the dynamic growth of silage maize under varying irrigation and temperature conditions. These models not only facilitate quantitative crop growth predictions but also provide a decision-support tool for irrigation planning and precision crop management in arid and semi-arid regions. The integration of such models into smart agricultural systems can significantly enhance resource optimization and sustainable farming practices.
Growth curve modeling plays a crucial role in precision agriculture by enabling rapid analysis of plant growth dynamics. Understanding the complex mechanisms of crop growth is essential for optimizing agricultural productivity. In this study, nonlinear Logistic and Gompertz models were employed to predict biological yield and water productivity of silage maize in arid and semi-arid regions, using growing degree days (GDD) as a key predictor. The experiment included two primary irrigation regimes: deficit irrigation (W2 and W3, providing 60% and 80% of crop water requirements, respectively) and full irrigation (W1, providing 100%). A sigmoid model was also introduced for its ease of biological interpretation. To evaluate model performance, coefficient of determination (R²), normalized root mean square error (NRMSE), and mean absolute percentage error (MAPE) were used. Results indicated that Logistic and Gompertz models achieved high accuracy, with R² exceeding 99% under pulse irrigation and 80% under continuous irrigation. These models revealed that the maximum biological yield rate occurred at GDD equal 1014 °C (50 days after planting). Furthermore, the absolute growth rate followed a bell-shaped pattern in the Logistic model and a right-skewed distribution in the Gompertz model. The findings confirm that Logistic and Gompertz models effectively simulate the dynamic growth of silage maize under varying irrigation and temperature conditions. These models not only facilitate quantitative crop growth predictions but also provide a decision-support tool for irrigation planning and precision crop management in arid and semi-arid regions. The integration of such models into smart agricultural systems can significantly enhance resource optimization and sustainable farming practices.
ArticleNumber 30087
Author Liaghat, Abdolmajid
Hajirad, Iman
Ahmadaali, Khaled
Author_xml – sequence: 1
  givenname: Iman
  surname: Hajirad
  fullname: Hajirad, Iman
  organization: Department of Irrigation and Reclamation Engineering, College of Agriculture and Natural Resources, University of Tehran
– sequence: 2
  givenname: Khaled
  surname: Ahmadaali
  fullname: Ahmadaali, Khaled
  email: khahmadauli@ut.ac.ir
  organization: Department of Irrigation and Reclamation Engineering, College of Agriculture and Natural Resources, University of Tehran
– sequence: 3
  givenname: Abdolmajid
  surname: Liaghat
  fullname: Liaghat, Abdolmajid
  organization: Department of Irrigation and Reclamation Engineering, College of Agriculture and Natural Resources, University of Tehran
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40820035$$D View this record in MEDLINE/PubMed
BookMark eNp9kktP3DAQx60KVCjlC_RQReqll7R-JvapqlZ9oCJxoWfLscchq6y9tRPQfnu8G6DQQ30Yv37z93hm3qCjEAMg9I7gTwQz-TlzIpSsMRU1abBqavwKnVLMRU0ZpUfP1ifoPOc1LkNQxYl6jU44lhRjJk7Rr1WK22o3wOgqE1x1ZyZI1TZFN9tpuB2mXbWJDsYh9NWc97bEUXZgUtWneDfdVH4OBY0hv0XH3owZzh_mM_T7-7fr1c_68urHxerrZW254tPeEq8okWBE13LCWiwaJb2SthgmGsu9Ja3CDfXctpgoT4Vroesc6bxj7AxdLLoumrXepmFj0k5HM-jDQUy9Nmka7Aha-sa3DaMtM8BBNLJTvgMqqRGto6orWl8Wre3cbcBZCFMy4wvRlzdhuNF9vNWEMiGF4kXh44NCin9myJPeDNnCOJoAcc6aUY65xKVYBf3wD7qOcwolVweKiZKK_ffePw_pKZbHohWALoBNMecE_gkhWO-bQy_NoUtz6ENzaFyc2OKUCxx6SH_f_o_XPXMiu6I
Cites_doi 10.1002/fes3.40
10.1016/j.fcr.2017.01.019
10.3390/w10040405
10.1016/j.agwat.2004.04.007
10.1016/j.agrformet.2019.03.013
10.1016/j.agwat.2013.05.018
10.1016/0378-4290(91)90040-3
10.1007/s00271-017-0540-1
10.1016/j.agrformet.2021.108736
10.1080/00103624.2021.1892720
10.1016/S0378-4290(00)00095-2
10.1371/journal.pone.0146385
10.3390/plants11111411
10.1016/j.agwat.2018.10.022
10.1016/j.agwat.2014.11.017
10.1111/j.1574-0862.2010.00516.x
10.2134/agronj2001.932281x
10.1002/ird.453
10.1016/j.agsy.2020.103016
10.1016/j.agwat.2018.10.020
10.1016/S1161-0301(02)00108-9
10.1016/j.agwat.2019.105878
10.17221/141/2018-PSE
10.1080/00103624.2022.2142236
10.9734/cjast/2023/v42i154122
10.1006/anbo.1999.0877
10.3390/agronomy8100208
10.1016/j.agwat.2009.04.022
10.1080/03650340.2014.917169
10.1007/s00271-023-00880-9
10.1016/j.scienta.2018.02.068
10.1016/j.envsoft.2014.09.006
10.1016/bs.agron.2018.11.002
10.13031/2013.31032
10.1016/S0168-1923(97)00027-0
10.1016/j.fcr.2013.07.014
10.15666/aeer/2101_189206
10.1146/annurev.environ.030308.090351
10.1016/j.agwat.2021.106938
10.2134/agronj2019.03.0214
10.1016/j.agrformet.2020.107928
10.1016/j.fcr.2021.108398
10.2134/agronj2012.0506
10.1016/S0168-1923(00)00108-8
10.1016/j.agwat.2020.106066
10.1016/j.agwat.2009.04.009
10.1071/AR05359
10.1016/j.agwat.2003.12.001
10.1016/bs.agron.2019.07.007
10.1002/joc.3370050602
10.3390/rs5020949
10.1177/0030727016664464
10.1016/j.agwat.2011.07.019
10.1016/j.agwat.2005.05.006
10.1093/aob/mcg029
10.1016/j.agee.2009.08.016
10.1016/j.agsy.2019.102646
10.1016/S1161-0301(02)00107-7
10.1017/S0016672302005633
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-16096-0
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection (UHCL Subscription)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Agriculture
EISSN 2045-2322
EndPage 19
ExternalDocumentID oai_doaj_org_article_8f6f763273ae4e568b9fbe282a57d29b
PMC12358594
40820035
10_1038_s41598_025_16096_0
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PUEGO
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c494t-c491f9218ea5b7413705698f98c8f9356c4fc179062f4c7019f25d7ebbd1bfd33
IEDL.DBID M7P
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001551982200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Oct 14 19:04:49 EDT 2025
Tue Nov 04 02:04:10 EST 2025
Sat Nov 01 15:03:34 EDT 2025
Tue Oct 07 07:47:02 EDT 2025
Thu Sep 04 05:04:07 EDT 2025
Sat Nov 29 07:33:08 EST 2025
Mon Aug 18 01:10:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Irrigation management
Deficit irrigation
Crop modelling
Logistic
Gompertz
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-c491f9218ea5b7413705698f98c8f9356c4fc179062f4c7019f25d7ebbd1bfd33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3240353703?pq-origsite=%requestingapplication%
PMID 40820035
PQID 3240353703
PQPubID 2041939
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_8f6f763273ae4e568b9fbe282a57d29b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12358594
proquest_miscellaneous_3240480598
proquest_journals_3240353703
pubmed_primary_40820035
crossref_primary_10_1038_s41598_025_16096_0
springer_journals_10_1038_s41598_025_16096_0
PublicationCentury 2000
PublicationDate 2025-08-17
PublicationDateYYYYMMDD 2025-08-17
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-17
  day: 17
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References A Bonfante (16096_CR6) 2019; 176
R Ding (16096_CR16) 2013; 127
JR Williams (16096_CR64) 1989; 32
S Geerts (16096_CR21) 2009; 96
RK Panda (16096_CR48) 2004; 66
BXXIV Gompertz (16096_CR22) 1825; 115
L Kung (16096_CR36) 2001; 3
16096_CR38
Z Zhu (16096_CR72) 2022; 11
X Yin (16096_CR70) 2003; 91
CJ Willmott (16096_CR65) 1985; 5
PD Jamieson (16096_CR30) 1991; 27
C Atzberger (16096_CR2) 2013; 5
16096_CR32
M Mubeen (16096_CR46) 2016; 45
N Dağdelen (16096_CR14) 2006; 82
MW Rosegrant (16096_CR53) 2009; 34
KA Meade (16096_CR43) 2013; 151
CO Stöckle (16096_CR58) 2014; 62
A Calzadilla (16096_CR8) 2011; 42
G Hoogenboom (16096_CR27) 2000; 103
GS McMaster (16096_CR42) 1997; 87
R Wu (16096_CR66) 2002; 79
TJ Trout (16096_CR60) 2017; 35
16096_CR24
16096_CR68
H Zhang (16096_CR71) 2019; 111
DC Camargo (16096_CR9) 2015; 150
W Wu (16096_CR67) 2010; 135
K Djaman (16096_CR18) 2018; 10
BA Keating (16096_CR35) 2003; 18
16096_CR62
MR Rafiee (16096_CR50) 2020; 46
F Wang (16096_CR63) 2021; 254
16096_CR3
H Steppuhn (16096_CR57) 2005; 45
D Buttaro (16096_CR7) 2015; 4
Y Chen (16096_CR11) 2022; 276
S Kang (16096_CR34) 2000; 67
T Jiang (16096_CR31) 2020; 232
D Paudel (16096_CR49) 2021; 187
SV Archontoulis (16096_CR1) 2015; 107
D Ding (16096_CR17) 2019; 271
CP Birch (16096_CR5) 1999; 83
E Coyago-Cruz (16096_CR13) 2019; 213
16096_CR15
P Rawat (16096_CR52) 2023; 42
16096_CR59
O Hocaoğlu (16096_CR26) 2023; 54
H Yang (16096_CR69) 2017; 204
JW Jones (16096_CR33) 2003; 18
16096_CR56
T Du (16096_CR19) 2014; 3
Y Guo (16096_CR23) 2022; 15
AG Garcia (16096_CR20) 2009; 96
A Ünlükara (16096_CR61) 2010; 59
R Iqbal (16096_CR29) 2021; 52
S Mohammadi (16096_CR45) 2024; 42
I Hajirad (16096_CR25) 2023; 25
W Malik (16096_CR40) 2019; 213
MG Ziliani (16096_CR73) 2022; 313
VO Sadras (16096_CR54) 2006; 57
TA Howell (16096_CR28) 2001; 93
AR Sepaskhah (16096_CR55) 2011; 99
B Basso (16096_CR4) 2019; 154
N Mbava (16096_CR41) 2020; 228
Y Liu (16096_CR37) 2020; 159
S Chen (16096_CR12) 2020; 285
P Casadebaig (16096_CR10) 2016; 11
SJ Zwart (16096_CR74) 2004; 69
M Mahbod (16096_CR39) 2014; 60
A Nilahyane (16096_CR47) 2018; 8
16096_CR44
LJ Ramírez-Pérez (16096_CR51) 2018; 234
References_xml – volume: 3
  start-page: 7
  year: 2014
  ident: 16096_CR19
  publication-title: Food Energy Secur.
  doi: 10.1002/fes3.40
– volume: 204
  start-page: 180
  year: 2017
  ident: 16096_CR69
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2017.01.019
– volume: 10
  start-page: 405
  year: 2018
  ident: 16096_CR18
  publication-title: Water
  doi: 10.3390/w10040405
– volume: 45
  start-page: 209
  year: 2005
  ident: 16096_CR57
  publication-title: Crop Sci.
– volume: 25
  start-page: 86
  year: 2023
  ident: 16096_CR25
  publication-title: Environ. Sci. Proc.
– volume: 69
  start-page: 115
  year: 2004
  ident: 16096_CR74
  publication-title: Agric. Water Manag
  doi: 10.1016/j.agwat.2004.04.007
– volume: 271
  start-page: 385
  year: 2019
  ident: 16096_CR17
  publication-title: Agric. Meteorol.
  doi: 10.1016/j.agrformet.2019.03.013
– volume: 127
  start-page: 85
  year: 2013
  ident: 16096_CR16
  publication-title: Agric. Water Manag
  doi: 10.1016/j.agwat.2013.05.018
– volume: 27
  start-page: 337
  year: 1991
  ident: 16096_CR30
  publication-title: Field Crops Res.
  doi: 10.1016/0378-4290(91)90040-3
– volume: 35
  start-page: 251
  year: 2017
  ident: 16096_CR60
  publication-title: Irrig. Sci.
  doi: 10.1007/s00271-017-0540-1
– volume: 313
  start-page: 108736
  year: 2022
  ident: 16096_CR73
  publication-title: Agric. Meteorol.
  doi: 10.1016/j.agrformet.2021.108736
– volume: 52
  start-page: 1558
  year: 2021
  ident: 16096_CR29
  publication-title: Commun. Soil. Sci. Plant. Anal.
  doi: 10.1080/00103624.2021.1892720
– volume: 67
  start-page: 207
  year: 2000
  ident: 16096_CR34
  publication-title: Field Crops Res.
  doi: 10.1016/S0378-4290(00)00095-2
– volume: 11
  start-page: e0146385
  year: 2016
  ident: 16096_CR10
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0146385
– ident: 16096_CR62
– volume: 11
  start-page: 1411
  year: 2022
  ident: 16096_CR72
  publication-title: Plants
  doi: 10.3390/plants11111411
– volume: 213
  start-page: 298
  year: 2019
  ident: 16096_CR40
  publication-title: Agric. Water Manag
  doi: 10.1016/j.agwat.2018.10.022
– volume: 46
  start-page: 419
  year: 2020
  ident: 16096_CR50
  publication-title: Water SA
– volume: 150
  start-page: 119
  year: 2015
  ident: 16096_CR9
  publication-title: Agric. Water Manag
  doi: 10.1016/j.agwat.2014.11.017
– volume: 42
  start-page: 305
  year: 2011
  ident: 16096_CR8
  publication-title: Agric. Econ.
  doi: 10.1111/j.1574-0862.2010.00516.x
– volume: 93
  start-page: 281
  year: 2001
  ident: 16096_CR28
  publication-title: Agron. J.
  doi: 10.2134/agronj2001.932281x
– volume: 59
  start-page: 203
  year: 2010
  ident: 16096_CR61
  publication-title: Irrig. Drain.
  doi: 10.1002/ird.453
– ident: 16096_CR15
– volume: 187
  start-page: 103016
  year: 2021
  ident: 16096_CR49
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2020.103016
– volume: 213
  start-page: 212
  year: 2019
  ident: 16096_CR13
  publication-title: Agric. Water Manag
  doi: 10.1016/j.agwat.2018.10.020
– volume: 18
  start-page: 267
  year: 2003
  ident: 16096_CR35
  publication-title: Eur. J. Agron.
  doi: 10.1016/S1161-0301(02)00108-9
– ident: 16096_CR38
– volume: 228
  start-page: 105878
  year: 2020
  ident: 16096_CR41
  publication-title: Agric. Water Manag
  doi: 10.1016/j.agwat.2019.105878
– ident: 16096_CR44
  doi: 10.17221/141/2018-PSE
– volume: 15
  start-page: 41
  year: 2022
  ident: 16096_CR23
  publication-title: Int. J. Agric. Biol. Eng.
– volume: 54
  start-page: 1293
  year: 2023
  ident: 16096_CR26
  publication-title: Commun. Soil. Sci. Plant. Anal.
  doi: 10.1080/00103624.2022.2142236
– volume: 42
  start-page: 12
  year: 2023
  ident: 16096_CR52
  publication-title: Curr. J. Appl. Sci. Technol.
  doi: 10.9734/cjast/2023/v42i154122
– volume: 83
  start-page: 713
  year: 1999
  ident: 16096_CR5
  publication-title: Ann. Bot.
  doi: 10.1006/anbo.1999.0877
– volume: 8
  start-page: 208
  year: 2018
  ident: 16096_CR47
  publication-title: Agronomy
  doi: 10.3390/agronomy8100208
– volume: 96
  start-page: 1369
  year: 2009
  ident: 16096_CR20
  publication-title: Agric. Water Manag
  doi: 10.1016/j.agwat.2009.04.022
– volume: 60
  start-page: 1661
  year: 2014
  ident: 16096_CR39
  publication-title: Arch. Agron. Soil. Sci.
  doi: 10.1080/03650340.2014.917169
– volume: 42
  start-page: 269
  year: 2024
  ident: 16096_CR45
  publication-title: Irrig. Sci.
  doi: 10.1007/s00271-023-00880-9
– volume: 234
  start-page: 250
  year: 2018
  ident: 16096_CR51
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2018.02.068
– volume: 62
  start-page: 361
  year: 2014
  ident: 16096_CR58
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2014.09.006
– volume: 115
  start-page: 513
  year: 1825
  ident: 16096_CR22
  publication-title: Philos. Trans. R Soc. Lond.
– ident: 16096_CR56
– volume: 154
  start-page: 201
  year: 2019
  ident: 16096_CR4
  publication-title: Adv. Agron.
  doi: 10.1016/bs.agron.2018.11.002
– ident: 16096_CR68
– volume: 32
  start-page: 497
  year: 1989
  ident: 16096_CR64
  publication-title: Trans. ASAE
  doi: 10.13031/2013.31032
– volume: 87
  start-page: 291
  year: 1997
  ident: 16096_CR42
  publication-title: Agric. Meteorol.
  doi: 10.1016/S0168-1923(97)00027-0
– volume: 151
  start-page: 92
  year: 2013
  ident: 16096_CR43
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2013.07.014
– ident: 16096_CR24
  doi: 10.15666/aeer/2101_189206
– ident: 16096_CR3
– volume: 34
  start-page: 205
  year: 2009
  ident: 16096_CR53
  publication-title: Annu. Rev. Environ. Resour.
  doi: 10.1146/annurev.environ.030308.090351
– volume: 254
  start-page: 106938
  year: 2021
  ident: 16096_CR63
  publication-title: Agric. Water Manag
  doi: 10.1016/j.agwat.2021.106938
– volume: 111
  start-page: 3244
  year: 2019
  ident: 16096_CR71
  publication-title: Agron. J.
  doi: 10.2134/agronj2019.03.0214
– volume: 285
  start-page: 107928
  year: 2020
  ident: 16096_CR12
  publication-title: Agric. Meteorol.
  doi: 10.1016/j.agrformet.2020.107928
– ident: 16096_CR32
– volume: 276
  start-page: 108398
  year: 2022
  ident: 16096_CR11
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2021.108398
– volume: 107
  start-page: 786
  year: 2015
  ident: 16096_CR1
  publication-title: Agron. J.
  doi: 10.2134/agronj2012.0506
– volume: 103
  start-page: 137
  year: 2000
  ident: 16096_CR27
  publication-title: Agric. Meteorol.
  doi: 10.1016/S0168-1923(00)00108-8
– volume: 4
  start-page: 440
  year: 2015
  ident: 16096_CR7
  publication-title: Agric. Agric. Sci. Procedia
– ident: 16096_CR59
– volume: 232
  start-page: 106066
  year: 2020
  ident: 16096_CR31
  publication-title: Agric. Water Manag
  doi: 10.1016/j.agwat.2020.106066
– volume: 96
  start-page: 1275
  year: 2009
  ident: 16096_CR21
  publication-title: Agric. Water Manag
  doi: 10.1016/j.agwat.2009.04.009
– volume: 57
  start-page: 847
  year: 2006
  ident: 16096_CR54
  publication-title: Aust J. Agric. Res.
  doi: 10.1071/AR05359
– volume: 66
  start-page: 181
  year: 2004
  ident: 16096_CR48
  publication-title: Agric. Water Manag
  doi: 10.1016/j.agwat.2003.12.001
– volume: 159
  start-page: 237
  year: 2020
  ident: 16096_CR37
  publication-title: Adv. Agron.
  doi: 10.1016/bs.agron.2019.07.007
– volume: 5
  start-page: 589
  year: 1985
  ident: 16096_CR65
  publication-title: J. Climatol
  doi: 10.1002/joc.3370050602
– volume: 5
  start-page: 949
  year: 2013
  ident: 16096_CR2
  publication-title: Remote Sens.
  doi: 10.3390/rs5020949
– volume: 45
  start-page: 173
  year: 2016
  ident: 16096_CR46
  publication-title: Outlook Agric.
  doi: 10.1177/0030727016664464
– volume: 99
  start-page: 51
  year: 2011
  ident: 16096_CR55
  publication-title: Agric. Water Manag
  doi: 10.1016/j.agwat.2011.07.019
– volume: 82
  start-page: 63
  year: 2006
  ident: 16096_CR14
  publication-title: Agric. Water Manag
  doi: 10.1016/j.agwat.2005.05.006
– volume: 91
  start-page: 361
  year: 2003
  ident: 16096_CR70
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcg029
– volume: 3
  start-page: 1
  year: 2001
  ident: 16096_CR36
  publication-title: Focus Forage
– volume: 135
  start-page: 111
  year: 2010
  ident: 16096_CR67
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2009.08.016
– volume: 176
  start-page: 102646
  year: 2019
  ident: 16096_CR6
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2019.102646
– volume: 18
  start-page: 235
  year: 2003
  ident: 16096_CR33
  publication-title: Eur. J. Agron.
  doi: 10.1016/S1161-0301(02)00107-7
– volume: 79
  start-page: 235
  year: 2002
  ident: 16096_CR66
  publication-title: Genet. Res.
  doi: 10.1017/S0016672302005633
SSID ssj0000529419
Score 2.4682326
Snippet Growth curve modeling plays a crucial role in precision agriculture by enabling rapid analysis of plant growth dynamics. Understanding the complex mechanisms...
Abstract Growth curve modeling plays a crucial role in precision agriculture by enabling rapid analysis of plant growth dynamics. Understanding the complex...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 30087
SubjectTerms 631/449/2653
639/705
Agricultural Irrigation
Agricultural practices
Agricultural production
Agriculture
Arid zones
Calibration
Corn
Crop management
Crop modelling
Crop yield
Crops, Agricultural - growth & development
Deficit irrigation
Efficiency
Environmental conditions
Farming systems
Gompertz
Growth models
Humanities and Social Sciences
Irrigation
Irrigation management
Logistic
Models, Biological
multidisciplinary
Nonlinear Dynamics
Plant growth
Precision agriculture
Productivity
Science
Science (multidisciplinary)
Semiarid zones
Silage
Sustainable agriculture
Sustainable practices
Water
Water - metabolism
Water requirements
Zea mays - growth & development
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4hRKVeqr6bFioj9dZGxLGd2MeCipBAiAOVuFl-Apewyi6t-Pcd29mFpa166SWH2Eom33gyY834G4BPLtq-d57X3jNTcxVZbah3tRJtY5rGoZPPXUtO-tNTeXGhzh60-ko1YYUeuAC3J2MX0QbQy5rAg-ikVdEG3CgY0ftW2fT3xajnwWaqsHq3ilM1nZJpmNybo6dKp8laUdOuSZW3a54oE_b_Kcr8vVjyUcY0O6LD5_BsiiDJ1yL5C9gIw0t4UnpK3r2C44PxZkbuUmEaMYMnPzGYHMmsELvmThEkd7_BZ5NU9H5JhsKWYUZyiXvyxRVJvi4vx9fw_fDb-cFRPXVMqB1XfJGuNCr02sEIi7EC6zG-UTIq6fDCROd4dImTq2sjd4mJPbbC98FaT230jL2BTXxpeAeEd5ZZpqhsLOVUOuMRUmq98R3afR8q-LxET88KMYbOCW0mdcFaI9Y6Y62bCvYTwKuZidQ630BV60nV-l-qrmB7qR49WdpcZ0JBgR_KKthdDaONpMSHGcLNbZnDJQaSsoK3RZsrSVLD7ZROrUCu6XlN1PWR4foq83DnY8ZC8Qq-LJfEvVx_x-L9_8DiAzxt01pO5Lz9NmwuxtuwA1vux-J6Pn7MxvALVmQNEQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Crop yield and water productivity modeling using nonlinear growth functions
URI https://link.springer.com/article/10.1038/s41598-025-16096-0
https://www.ncbi.nlm.nih.gov/pubmed/40820035
https://www.proquest.com/docview/3240353703
https://www.proquest.com/docview/3240480598
https://pubmed.ncbi.nlm.nih.gov/PMC12358594
https://doaj.org/article/8f6f763273ae4e568b9fbe282a57d29b
Volume 15
WOSCitedRecordID wos001551982200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQuvAuBsjISN4iaxHZinxCtWoGgqwiBtJwsP7e97C7ZLaj_nrGT3Wp5Xbj4EFvK2DP2jGfG3wC8tME0jXUsd47qnMlAc106m0teFbooLCr5VLXkYzMei8lEtoPDbTmkVa7PxHRQu7mNPvLDBBzHKQrom8W3PFaNitHVoYTGDuxFlASaUvfajY8lRrFYKYe3MgUVh0vUV_FNWcXzsi5i_u2WPkqw_X-yNX9PmfwlbprU0end_53IPbgzGKLkbS859-GGnz2AW31pyquH8OG4my_IVcxvI3rmyA-0STuy6PFhU8EJkoroIHEk5s5PyawH3dAdmeLVfnVOospMUv0IvpyefD5-lw-FF3LLJFvFtgwSlb_X3KDJgcTyWooghcWG8tqyYCO0V10FZiOge6i4a7wxrjTBUboPu_hT_wQIqw01VJaiMCUrhdUOeVIap12Nx0fjM3i1Xn616PE1VIqLU6F6ZilklkrMUkUGR5FDm5ERGzt9mHdTNWw1JUId8NREu0x75nktjAzG49VS88ZV0mRwsGaMGjbsUl1zJYMXm27cajF-omd-ftmPYQLtUZHB414cNpTEut0xKpuB2BKULVK3e2YX5wnOO71W5pJl8HotU9d0_X0tnv57Gs_gdhXFPKL3Ngewu-ou_XO4ab-vLpbdCHaaSZNaMYK9o5Nx-2mU3BHYnlXtKO0j7Gnfn7VffwKFZSG-
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VLQguvB-GAosEJ7Dqx9rePSAEhapR0iiHIpXTdp9pL0lwUqL8KX4js2s7VXjdeuDig23Z6_W3M7M7O98H8Eo7VVXa0NiYXMaUuzyWqdExL7JEJolGJx9USwbVcMhOTvhoC350tTB-W2VnE4OhNlPt18j3AnFckSNA38--xV41ymdXOwmNBhZ9u1rilG3-rvcJ_-_rLDv4fLx_GLeqArGmnC78MXUcPZuVhUJ_io8sSs4cZxoPeVFq6rTnrSozR7VnK3dZYSqrlEmVM34BFE3-DkWws23YGfWORl_Xqzo-b0ZT3lbnJDnbm6OH9FVsWRGnZeJ3_G54wCAU8Kfo9vdNmr9kaoMDPLj9v3XdHbjVhtrkQzM27sKWndyD64345uo-9Pfr6Yys_A4-IieGLDHqrsmsYcANkhokyARhZxBfHTAmk4ZWRNZkXE-XizPig4Iwbh_Alyv5koewjS-1j4HQUuUq5ylLVEpTpqVBDKTKSFOigaxsBG-63y1mDYOICJn_nIkGHALBIQI4RBLBR4-I9Z2e_TucmNZj0RoTwVzp0C9g5CkttUXJFHfK4uRZFpXJuIpgtwOCaE3SXFyiIIKX68toTHyGSE7s9KK5hzKMuFkEjxr4rVvilcl93jkCtgHMjaZuXpmcnwXC8lCPXXAawdsOw5ft-ntfPPn3Z7yAG4fHRwMx6A37T-Fm5oeY5yqudmF7UV_YZ3BNf1-cz-vn7SglcHrV6P4J9EN4Kw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5V5SEuvB-GAosEJ7Dix9rePSAELRFVqqgHkHpbvK-0lyQ4KVH-Gr-OmbWdKrxuPXDxIbac9frbmfHOzPcBvDReV5WxPLY2r2MufR7XqTWxLLKkThKDTj6olhxV47E4OZHHO_Cj74WhssreJgZDbWeG9sgHgTiuyBGgA9-VRRwfDN_Nv8WkIEWZ1l5Oo4XIyK1X-Pm2eHt4gO_6VZYNP37e_xR3CgOx4ZIv6Zh6iV7O1YVG34q3L0opvBQGD3lRGu4NcViVmeeGmMt9VtjKaW1T7S1thqL5v1IRaXkoGzze7O9QBo2nsuvTSXIxWKCvpH62rIjTMqHa3y1fGCQD_hTn_l6u-UvONrjC4a3_eRJvw80uAGfv2xVzB3bc9C5cayU51_dgtN_M5mxNdX2snlq2wli8YfOWFzcIbbAgHoQTw6hnYMKmLdlI3bBJM1stTxmFCmE134cvl_IkD2AX_9Q9AsZLnetcpiLRKU-FqS3iIdW2tiWazcpF8Lp_9Wre8oqoUA-QC9UCRSFQVACKSiL4QOjYXEmc4OGHWTNRnYlRwpcevQXGo7XjriiFll47_KSui8pmUkew14NCdYZqoS4QEcGLzWk0MZQ3qqdudt5ewwXG4SKChy0UNyMhvXLKRkcgtkC6NdTtM9Oz00BjHrq0C8kjeNPj-WJcf5-Lx_9-jOdwHSGtjg7HoydwI6PVRgTG1R7sLptz9xSumu_Ls0XzLCxXBl8vG9o_ASvKf2o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crop+yield+and+water+productivity+modeling+using+nonlinear+growth+functions&rft.jtitle=Scientific+reports&rft.au=Hajirad%2C+Iman&rft.au=Ahmadaali%2C+Khaled&rft.au=Liaghat%2C+Abdolmajid&rft.date=2025-08-17&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=30087&rft_id=info:doi/10.1038%2Fs41598-025-16096-0&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon