An innovative Squid Game Optimizer for enhanced channel estimation and massive MIMO detection using dilated adaptive RNNs
The Multiple-Input Multiple-Output (MIMO) system can provide improved spectral efficiency and energy performance. However, the computational demand faced by conventional signal recognition techniques has significantly increased due to the growing number of antennas and higher-order modulations. To o...
Uloženo v:
| Vydáno v: | Scientific reports Ročník 15; číslo 1; s. 31921 - 33 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
29.08.2025
Nature Publishing Group Nature Portfolio |
| Témata: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The Multiple-Input Multiple-Output (MIMO) system can provide improved spectral efficiency and energy performance. However, the computational demand faced by conventional signal recognition techniques has significantly increased due to the growing number of antennas and higher-order modulations. To overcome these challenges, deep learning approaches are adopted as they offer versatility, nonlinear modelling capabilities, and parallel computation efficiency for large-scale MIMO detection. Therefore, a deep network for channel estimation and massive MIMO detection is developed to reduce computational complexity issues. Initially, a channel estimation scheme is developed to enhance the channel capacity of the MIMO system. It correlates the transmitted and received signals using a confusion matrix. The proposed Modified Squid Game Optimizer (MSGO) is employed for channel state estimation. Based on the obtained channel state information, MIMO detection is performed within the communication system. Here, Multiuser Interference Cancellation (MIC)-based iterative sequential detection is initially conducted. Then, massive MIMO detection is performed using the Dilated Adaptive Recurrent Neural Network with Attention Mechanism (DARNN-AM) through learnable parameters. Moreover, to further optimize the detection performance by fine-tuning the attributes of DARNN-AM, the MSGO is utilized. The proposed network performs multi-segment mapping across multiple constellation points with different modulation schemes. The effectiveness of the proposed deep learning-based MIMO detection system is evaluated by comparing it with existing techniques and algorithms to validate its superior performance. |
|---|---|
| AbstractList | The Multiple-Input Multiple-Output (MIMO) system can provide improved spectral efficiency and energy performance. However, the computational demand faced by conventional signal recognition techniques has significantly increased due to the growing number of antennas and higher-order modulations. To overcome these challenges, deep learning approaches are adopted as they offer versatility, nonlinear modelling capabilities, and parallel computation efficiency for large-scale MIMO detection. Therefore, a deep network for channel estimation and massive MIMO detection is developed to reduce computational complexity issues. Initially, a channel estimation scheme is developed to enhance the channel capacity of the MIMO system. It correlates the transmitted and received signals using a confusion matrix. The proposed Modified Squid Game Optimizer (MSGO) is employed for channel state estimation. Based on the obtained channel state information, MIMO detection is performed within the communication system. Here, Multiuser Interference Cancellation (MIC)-based iterative sequential detection is initially conducted. Then, massive MIMO detection is performed using the Dilated Adaptive Recurrent Neural Network with Attention Mechanism (DARNN-AM) through learnable parameters. Moreover, to further optimize the detection performance by fine-tuning the attributes of DARNN-AM, the MSGO is utilized. The proposed network performs multi-segment mapping across multiple constellation points with different modulation schemes. The effectiveness of the proposed deep learning-based MIMO detection system is evaluated by comparing it with existing techniques and algorithms to validate its superior performance. The Multiple-Input Multiple-Output (MIMO) system can provide improved spectral efficiency and energy performance. However, the computational demand faced by conventional signal recognition techniques has significantly increased due to the growing number of antennas and higher-order modulations. To overcome these challenges, deep learning approaches are adopted as they offer versatility, nonlinear modelling capabilities, and parallel computation efficiency for large-scale MIMO detection. Therefore, a deep network for channel estimation and massive MIMO detection is developed to reduce computational complexity issues. Initially, a channel estimation scheme is developed to enhance the channel capacity of the MIMO system. It correlates the transmitted and received signals using a confusion matrix. The proposed Modified Squid Game Optimizer (MSGO) is employed for channel state estimation. Based on the obtained channel state information, MIMO detection is performed within the communication system. Here, Multiuser Interference Cancellation (MIC)-based iterative sequential detection is initially conducted. Then, massive MIMO detection is performed using the Dilated Adaptive Recurrent Neural Network with Attention Mechanism (DARNN-AM) through learnable parameters. Moreover, to further optimize the detection performance by fine-tuning the attributes of DARNN-AM, the MSGO is utilized. The proposed network performs multi-segment mapping across multiple constellation points with different modulation schemes. The effectiveness of the proposed deep learning-based MIMO detection system is evaluated by comparing it with existing techniques and algorithms to validate its superior performance.The Multiple-Input Multiple-Output (MIMO) system can provide improved spectral efficiency and energy performance. However, the computational demand faced by conventional signal recognition techniques has significantly increased due to the growing number of antennas and higher-order modulations. To overcome these challenges, deep learning approaches are adopted as they offer versatility, nonlinear modelling capabilities, and parallel computation efficiency for large-scale MIMO detection. Therefore, a deep network for channel estimation and massive MIMO detection is developed to reduce computational complexity issues. Initially, a channel estimation scheme is developed to enhance the channel capacity of the MIMO system. It correlates the transmitted and received signals using a confusion matrix. The proposed Modified Squid Game Optimizer (MSGO) is employed for channel state estimation. Based on the obtained channel state information, MIMO detection is performed within the communication system. Here, Multiuser Interference Cancellation (MIC)-based iterative sequential detection is initially conducted. Then, massive MIMO detection is performed using the Dilated Adaptive Recurrent Neural Network with Attention Mechanism (DARNN-AM) through learnable parameters. Moreover, to further optimize the detection performance by fine-tuning the attributes of DARNN-AM, the MSGO is utilized. The proposed network performs multi-segment mapping across multiple constellation points with different modulation schemes. The effectiveness of the proposed deep learning-based MIMO detection system is evaluated by comparing it with existing techniques and algorithms to validate its superior performance. Abstract The Multiple-Input Multiple-Output (MIMO) system can provide improved spectral efficiency and energy performance. However, the computational demand faced by conventional signal recognition techniques has significantly increased due to the growing number of antennas and higher-order modulations. To overcome these challenges, deep learning approaches are adopted as they offer versatility, nonlinear modelling capabilities, and parallel computation efficiency for large-scale MIMO detection. Therefore, a deep network for channel estimation and massive MIMO detection is developed to reduce computational complexity issues. Initially, a channel estimation scheme is developed to enhance the channel capacity of the MIMO system. It correlates the transmitted and received signals using a confusion matrix. The proposed Modified Squid Game Optimizer (MSGO) is employed for channel state estimation. Based on the obtained channel state information, MIMO detection is performed within the communication system. Here, Multiuser Interference Cancellation (MIC)-based iterative sequential detection is initially conducted. Then, massive MIMO detection is performed using the Dilated Adaptive Recurrent Neural Network with Attention Mechanism (DARNN-AM) through learnable parameters. Moreover, to further optimize the detection performance by fine-tuning the attributes of DARNN-AM, the MSGO is utilized. The proposed network performs multi-segment mapping across multiple constellation points with different modulation schemes. The effectiveness of the proposed deep learning-based MIMO detection system is evaluated by comparing it with existing techniques and algorithms to validate its superior performance. |
| ArticleNumber | 31921 |
| Author | Ravikumar, C. V. Tolba, Amr Takacs, Oliver Reddy, G. Navabharat |
| Author_xml | – sequence: 1 givenname: G. Navabharat surname: Reddy fullname: Reddy, G. Navabharat organization: Physical Design Engineer, Wafersemiconductors Technologies Pvt Ltd – sequence: 2 givenname: C. V. surname: Ravikumar fullname: Ravikumar, C. V. email: cvrkvit@gmail.com organization: School of Electronics Engineering, Vellore Institute of Technology – sequence: 3 givenname: Oliver surname: Takacs fullname: Takacs, Oliver email: oliver.takacs@ddc.sze.hu organization: Digital Development Center, Szechenyi Istvan University – sequence: 4 givenname: Amr surname: Tolba fullname: Tolba, Amr organization: Computer Science Department, Community College, King Saud University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40883443$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9Uk1vEzEQtVARLaF_gAOyxIXLgr_Wa59QVZUSqW0kPs6W155NN9rYqb0bqfx6nKSUlgM-eCzPe2_G4_caHYUYAKG3lHykhKtPWdBaq4qwuqJSaV3RF-iEEVFXjDN29OR8jE5zXpGyaqYF1a_QsSBKcSH4Cbo_C7gPIW7t2G8Bf7-beo8v7RrwYjP26_4XJNzFhCHc2uDAY1digAFDLulCigHb4PHa5rwTuJ5fL7CHEdw-NeU-LLHvBzsWrvV2sy_z7eYmv0EvOztkOH2IM_Tzy8WP86_V1eJyfn52VTmhxVg5xoWjynWWKSdFJztipWbKNqwFoCCFIlJDp8B1VMuGeusZCNHVdevblvEZmh90fbQrs0ml63Rvou3N_iKmpbFp7N0AhhLtPWl8Q1QtLFfWldhK0MorSWooWp8PWpupXYN3EMZkh2eizzOhvzXLuDWUcd1wKYrChweFFO-mMkSz7rODYbAB4pQNZ0LyWtKyz9D7f6CrOKVQZrVDCa2IULvnvXva0mMvf764ANgB4FLMOUH3CKHE7KxkDlYyxUpmbyVDC4kfSLmAwxLS39r_Yf0G-ZzMPw |
| Cites_doi | 10.1002/ett.4766 10.1038/s41598-025-11116-5 10.1109/LSP.2007.913603 10.1038/s41598-023-32465-z 10.1016/j.procs.2021.04.091 10.1016/j.asej.2024.103136 10.1109/LCOMM.2010.08.100347 10.1038/s41598-025-92464-0 10.1155/2024/9652424 10.3390/jmse13020331 10.1109/ACCESS.2024.3420106 10.1109/ACCESS.2022.3211392 10.1016/j.cma.2020.113609 10.1038/s41598-024-67738-8 10.1109/MWC.013.2100652 10.1016/j.phycom.2022.101614 10.1109/TSP.2020.3048232 10.3390/s23229154 10.1109/ACCESS.2019.2914707 10.1038/s41598-024-55098-2 10.1016/j.engappai.2019.103249 10.1109/LCOMM.2016.2555299 10.1109/JCN.2016.000030 10.1038/s41598-025-92676-4 10.1504/IJAHUC.2023.134777 10.1007/s00500-020-04812-z 10.1109/ACCESS.2023.3326841 10.1038/s41598-024-58074-y 10.1016/j.compeleceng.2022.108045 10.1016/j.phycom.2022.101651 10.1109/TCOMM.2020.2974457 10.1038/s41598-024-84864-5 10.1007/s11042-023-18012-y 10.1155/2022/7777211 10.1109/ACCESS.2023.3266476 10.1109/LCOMM.2022.3151141 10.1109/LSP.2007.906630 10.1016/j.energy.2022.126600 10.1016/j.rineng.2024.103275 10.1016/j.dsp.2023.104027 10.1109/ACCESS.2023.3322945 10.1016/j.asej.2025.103286 10.1109/LSP.2006.874443 10.1109/ACCESS.2020.2995171 10.1109/ICCSPA55860.2022.10019100 10.1109/ACCESS.2021.3124863 10.1109/TSP.2020.3035832 10.1002/dac.3328 10.1109/LCOMM.2020.2989672 10.1080/25742558.2018.1483565 10.1109/TVT.2019.2960763 10.1002/dac.5606 10.1007/978-981-99-4742-3_24 10.1109/LSP.2007.901694 10.1016/j.aej.2023.09.047 10.23919/JCN.2022.000055 10.1109/LSP.2013.2283091 10.1016/j.optcom.2019.02.016 10.1016/j.compstruc.2022.106915 10.1109/ACCESS.2024.3472466 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-025-16899-1 |
| DatabaseName | SpringerLink Open Access Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database (subscription) Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: Open Access: DOAJ - Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 33 |
| ExternalDocumentID | oai_doaj_org_article_109dd07d70854a38ac854b6e98d8605e PMC12397364 40883443 10_1038_s41598_025_16899_1 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: This work was supported by the Ongoing Research Funding Program (ORF-2025-681) at King Saud University, Riyadh, Saudhi Arabia and by the Digital Development Centre, Szechenyi Istvan University, Hungary. |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RNT RNTTT RPM SNYQT UKHRP AAYXX AFFHD CITATION NPM 3V. 7XB 88A 8FK COVID K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c494t-c234c18cfa28c64f6f0a6928a72bee1e648069ef8ecf19671dad2e44f55bdbb23 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001565369000026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Mon Nov 10 04:33:46 EST 2025 Tue Nov 04 02:05:24 EST 2025 Thu Sep 04 12:32:57 EDT 2025 Sat Nov 01 15:01:36 EDT 2025 Thu Sep 04 05:04:53 EDT 2025 Sat Nov 29 07:34:59 EST 2025 Sat Aug 30 01:18:22 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Modified Squid Game Optimizer Channel estimation Massive MIMO detection Dilated adaptive recurrent neural network with attention mechanism |
| Language | English |
| License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c494t-c234c18cfa28c64f6f0a6928a72bee1e648069ef8ecf19671dad2e44f55bdbb23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/3244980482?pq-origsite=%requestingapplication% |
| PMID | 40883443 |
| PQID | 3244980482 |
| PQPubID | 2041939 |
| PageCount | 33 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_109dd07d70854a38ac854b6e98d8605e pubmedcentral_primary_oai_pubmedcentral_nih_gov_12397364 proquest_miscellaneous_3246356146 proquest_journals_3244980482 pubmed_primary_40883443 crossref_primary_10_1038_s41598_025_16899_1 springer_journals_10_1038_s41598_025_16899_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-29 |
| PublicationDateYYYYMMDD | 2025-08-29 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-29 day: 29 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | J Park (16899_CR8) 2016; 18 J Liao (16899_CR26) 2020; 24 R Chinthaginjala (16899_CR42) 2024; 14 Y Lee (16899_CR5) 2016; 63 J-K Lain (16899_CR7) 2010; 14 Z Wu (16899_CR14) 2022; 26 IN Tiba (16899_CR23) 2023; 137 V Hayyolalam (16899_CR62) 2020; 87 S-J Choi (16899_CR11) 2019; 7 CV Ravi Kumar (16899_CR39) 2019; 31 P Vineela (16899_CR35) 2024; 24 B Poudel (16899_CR2) 2019; 440 Y Liao (16899_CR60) 2023; 275 G Navabharat Reddy (16899_CR55) 2023; 34 M Azizi (16899_CR56) 2023; 13 Y Yang (16899_CR10) 2007; 14 GN Reddy (16899_CR54) 2023; 36 CV Ravi Kumar (16899_CR37) 2017; 30 SP Tera (16899_CR29) 2024 BMR Manasa (16899_CR51) 2023; 23 Y Yu (16899_CR20) 2023; 25 Z Gao (16899_CR64) 2016; 20 16899_CR19 16899_CR18 J Nasiri (16899_CR67) 2018; 5 O Mahmoud (16899_CR21) 2021; 9 R Chinthaginjala (16899_CR46) 2025; 15 V Sreenivasulu (16899_CR45) 2025; 16 LV Nguyen (16899_CR27) 2023; 30 S Kaveripakam (16899_CR52) 2023; 81 P Natha (16899_CR44) 2025; 15 AM Fathollahi-Fard (16899_CR61) 2020; 24 MK Hasan (16899_CR17) 2022; 101 M Chinnusami (16899_CR31) 2023; 11 D Xu (16899_CR24) 2021; 187 G NavaBharat Reddy (16899_CR34) 2023 T Kim (16899_CR41) 2025; 15 NS Kumar (16899_CR47) 2024; 14 H Garg (16899_CR66) 2016; 274 J Tachibana (16899_CR1) 2020; 8 A Rajesh (16899_CR30) 2023; 58 ND Sidiropoulos (16899_CR12) 2006; 13 KK Jyothi (16899_CR48) 2024; 14 GN Reddy (16899_CR53) 2023; 44 16899_CR57 M Renugadevi (16899_CR32) 2023 16899_CR58 SP Tera (16899_CR36) 2024; 12 16899_CR38 PS Varma (16899_CR33) 2023; 11 Y Qi (16899_CR6) 2013; 20 S Berra (16899_CR4) 2022; 52 Z Li (16899_CR15) 2007; 14 W Ma (16899_CR65) 2020; 68 R Karthiga (16899_CR50) 2024; 83 16899_CR3 X Tan (16899_CR25) 2020; 69 YH Gan (16899_CR9) 2008; 15 M Shao (16899_CR13) 2021; 69 16899_CR40 J Guo (16899_CR59) 2025; 13 L Abualigah (16899_CR63) 2021; 376 JN Chandra Sekhar (16899_CR49) 2024; 2024 K Bagadi (16899_CR28) 2022; 10 T Han (16899_CR16) 2022; 52 Y Wei (16899_CR22) 2020; 68 TH Kim (16899_CR43) 2025; 15 |
| References_xml | – volume: 34 issue: 6 year: 2023 ident: 16899_CR55 publication-title: Trans. Emerg. Telecommun. Technol. doi: 10.1002/ett.4766 – volume: 15 start-page: 25640 issue: 1 year: 2025 ident: 16899_CR46 publication-title: Sci. Rep. doi: 10.1038/s41598-025-11116-5 – volume: 15 start-page: 194 year: 2008 ident: 16899_CR9 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2007.913603 – volume: 13 start-page: 5373 year: 2023 ident: 16899_CR56 publication-title: Sci. Rep. doi: 10.1038/s41598-023-32465-z – volume: 187 start-page: 507 year: 2021 ident: 16899_CR24 publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2021.04.091 – ident: 16899_CR40 – ident: 16899_CR38 doi: 10.1016/j.asej.2024.103136 – volume: 14 start-page: 722 issue: 8 year: 2010 ident: 16899_CR7 publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2010.08.100347 – volume: 15 start-page: 9121 issue: 1 year: 2025 ident: 16899_CR43 publication-title: Sci. Rep. doi: 10.1038/s41598-025-92464-0 – volume: 2024 start-page: 9652424 issue: 1 year: 2024 ident: 16899_CR49 publication-title: J. Electr. Comput. Eng. doi: 10.1155/2024/9652424 – volume: 13 start-page: 331 issue: 2 year: 2025 ident: 16899_CR59 publication-title: J. Mar. Sci. Eng. doi: 10.3390/jmse13020331 – year: 2024 ident: 16899_CR29 publication-title: IEEE Access. doi: 10.1109/ACCESS.2024.3420106 – volume: 10 start-page: 105674 year: 2022 ident: 16899_CR28 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3211392 – volume: 376 year: 2021 ident: 16899_CR63 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113609 – volume: 14 start-page: 16800 issue: 1 year: 2024 ident: 16899_CR42 publication-title: Sci. Rep. doi: 10.1038/s41598-024-67738-8 – volume: 30 start-page: 174 year: 2023 ident: 16899_CR27 publication-title: IEEE Wirel Commun. doi: 10.1109/MWC.013.2100652 – volume: 52 year: 2022 ident: 16899_CR16 publication-title: Phys. Commun. doi: 10.1016/j.phycom.2022.101614 – volume: 69 start-page: 781 year: 2021 ident: 16899_CR13 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2020.3048232 – volume: 23 start-page: 9154 issue: 22 year: 2023 ident: 16899_CR51 publication-title: Sensors doi: 10.3390/s23229154 – volume: 7 start-page: 60389 year: 2019 ident: 16899_CR11 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2914707 – volume: 31 start-page: 1263 issue: Suppl_2 year: 2019 ident: 16899_CR39 publication-title: Neural Comput. Appl. – volume: 63 start-page: 949 issue: 10 year: 2016 ident: 16899_CR5 publication-title: IEEE Trans. Circuits Syst. II Express Briefs – volume: 14 start-page: 5590 issue: 1 year: 2024 ident: 16899_CR48 publication-title: Sci. Rep. doi: 10.1038/s41598-024-55098-2 – volume: 87 year: 2020 ident: 16899_CR62 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.103249 – volume: 20 start-page: 1259 issue: 6 year: 2016 ident: 16899_CR64 publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2016.2555299 – volume: 18 start-page: 210 issue: 2 year: 2016 ident: 16899_CR8 publication-title: J. Commun. Netw. doi: 10.1109/JCN.2016.000030 – volume: 15 start-page: 8297 issue: 1 year: 2025 ident: 16899_CR41 publication-title: Sci. Rep. doi: 10.1038/s41598-025-92676-4 – volume: 274 start-page: 292 year: 2016 ident: 16899_CR66 publication-title: Appl. Math. Comput. – volume: 44 start-page: 148 issue: 3 year: 2023 ident: 16899_CR53 publication-title: Int. J. Ad Hoc Ubiquitous Comput. doi: 10.1504/IJAHUC.2023.134777 – volume: 24 start-page: 14637 year: 2020 ident: 16899_CR61 publication-title: Soft. Comput. doi: 10.1007/s00500-020-04812-z – year: 2023 ident: 16899_CR32 publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3326841 – volume: 14 start-page: 8363 issue: 1 year: 2024 ident: 16899_CR47 publication-title: Sci. Rep. doi: 10.1038/s41598-024-58074-y – volume: 101 year: 2022 ident: 16899_CR17 publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2022.108045 – volume: 52 year: 2022 ident: 16899_CR4 publication-title: Phys. Commun. doi: 10.1016/j.phycom.2022.101651 – volume: 68 start-page: 2838 issue: 5 year: 2020 ident: 16899_CR65 publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2020.2974457 – volume: 15 start-page: 1290 issue: 1 year: 2025 ident: 16899_CR44 publication-title: Sci. Rep. doi: 10.1038/s41598-024-84864-5 – volume: 83 start-page: 65441 issue: 24 year: 2024 ident: 16899_CR50 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-023-18012-y – ident: 16899_CR57 doi: 10.1155/2022/7777211 – volume: 11 start-page: 91051 year: 2023 ident: 16899_CR31 publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3266476 – volume: 58 start-page: 1 year: 2023 ident: 16899_CR30 publication-title: Radio Sci. – volume: 26 start-page: 1062 year: 2022 ident: 16899_CR14 publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2022.3151141 – volume: 14 start-page: 924 year: 2007 ident: 16899_CR15 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2007.906630 – year: 2023 ident: 16899_CR34 publication-title: Energy doi: 10.1016/j.energy.2022.126600 – volume: 24 year: 2024 ident: 16899_CR35 publication-title: Results Eng. doi: 10.1016/j.rineng.2024.103275 – volume: 137 year: 2023 ident: 16899_CR23 publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2023.104027 – volume: 11 start-page: 112515 year: 2023 ident: 16899_CR33 publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3322945 – volume: 16 start-page: 103286 issue: 3 year: 2025 ident: 16899_CR45 publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2025.103286 – ident: 16899_CR58 – volume: 13 start-page: 525 year: 2006 ident: 16899_CR12 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2006.874443 – volume: 8 start-page: 96859 year: 2020 ident: 16899_CR1 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2995171 – ident: 16899_CR19 doi: 10.1109/ICCSPA55860.2022.10019100 – volume: 9 start-page: 148339 year: 2021 ident: 16899_CR21 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3124863 – volume: 68 start-page: 6336 year: 2020 ident: 16899_CR22 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2020.3035832 – volume: 30 start-page: e3328 issue: 16 year: 2017 ident: 16899_CR37 publication-title: Int. J. Commun. Syst. doi: 10.1002/dac.3328 – ident: 16899_CR3 – volume: 24 start-page: 1724 year: 2020 ident: 16899_CR26 publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2020.2989672 – volume: 5 start-page: 1483565 issue: 1 year: 2018 ident: 16899_CR67 publication-title: Cogent Math. Stat. doi: 10.1080/25742558.2018.1483565 – volume: 69 start-page: 1267 year: 2020 ident: 16899_CR25 publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2960763 – volume: 36 start-page: e5606 issue: 17 year: 2023 ident: 16899_CR54 publication-title: Int. J. Commun. Syst. doi: 10.1002/dac.5606 – ident: 16899_CR18 doi: 10.1007/978-981-99-4742-3_24 – volume: 14 start-page: 797 year: 2007 ident: 16899_CR10 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2007.901694 – volume: 81 start-page: 580 year: 2023 ident: 16899_CR52 publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2023.09.047 – volume: 25 start-page: 50 year: 2023 ident: 16899_CR20 publication-title: J. Commun. Netw. doi: 10.23919/JCN.2022.000055 – volume: 20 start-page: 1147 issue: 12 year: 2013 ident: 16899_CR6 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2013.2283091 – volume: 440 start-page: 41 year: 2019 ident: 16899_CR2 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2019.02.016 – volume: 275 year: 2023 ident: 16899_CR60 publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2022.106915 – volume: 12 start-page: 145671 year: 2024 ident: 16899_CR36 publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3472466 |
| SSID | ssj0000529419 |
| Score | 2.4580307 |
| Snippet | The Multiple-Input Multiple-Output (MIMO) system can provide improved spectral efficiency and energy performance. However, the computational demand faced by... Abstract The Multiple-Input Multiple-Output (MIMO) system can provide improved spectral efficiency and energy performance. However, the computational demand... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 31921 |
| SubjectTerms | 639/166 639/4077 Algorithms Antennas Channel estimation Communication Communications systems Computer applications Deep learning Design Dilated adaptive recurrent neural network with attention mechanism Efficiency Humanities and Social Sciences Massive MIMO detection Modified Squid Game Optimizer multidisciplinary Neural networks Science Science (multidisciplinary) Sensors |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQBRIXBOUVKJWRuEFEYjt-HAuihUO3iIfUm-XYExqp65Z9VCq_nrGT3XZ5iAunSLGVjDwznm9kzzeEvGgb1jXOi9KzEDBB6XipMSsolWc-kUEL5brcbEJNJvr42Hy81uor3Qkb6IGHhUOvNiFUKijEBsJx7Tw-WwlGB41QHNLuWylzLZkaWL2ZEbUZq2Qqrl_PMVKlajLWlLXEJKOsNyJRJuz_E8r8_bLkLyemORDt3yV3RgRJ9wbJ75EbELfJraGn5OV9crkXaT-2Or0A-vn7sg_0wE2BHuHuMO1_wIwiUKUQT_LhP02lvxFOaaLbGOoYqYuBThFVpw8cfjg8ogEW-cpWpOme_Dca-lPEqIG64M7zbz5NJvMH5Ov-uy9v35djf4XSCyMWqB4ufK1955j2UnSyq5w0TDvFWoAapNCVNNBp8B06qqqDCwyE6JqmDW3L-EOyFc8iPCY0tCa1bNLat0qgih2X4J1wmFxVEkFHQV6u1tqeDzQaNh9_c20HzVjUjM2asXVB3iR1rGcmCuz8Ag3DjoZh_2UYBdlZKdOOfjm3CB-F0bhrsYI8Xw-jR6VjEhfhbJnnJNI-DCEFeTTofi2JwE2ZC8ELojesYkPUzZHYn2TWboQIRnEpCvJqZUBXcv19LZ78j7V4Sm6zZPlVqrjZIVuL2RKekZv-YtHPZ7vZdX4CDIkdMA priority: 102 providerName: Directory of Open Access Journals |
| Title | An innovative Squid Game Optimizer for enhanced channel estimation and massive MIMO detection using dilated adaptive RNNs |
| URI | https://link.springer.com/article/10.1038/s41598-025-16899-1 https://www.ncbi.nlm.nih.gov/pubmed/40883443 https://www.proquest.com/docview/3244980482 https://www.proquest.com/docview/3246356146 https://pubmed.ncbi.nlm.nih.gov/PMC12397364 https://doaj.org/article/109dd07d70854a38ac854b6e98d8605e |
| Volume | 15 |
| WOSCitedRecordID | wos001565369000026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Open Access: DOAJ - Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: AUTh Library subscriptions: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db5swED-tzSbtpfvsytZFnrS3DRWMweZpaqd260Mo6jYpe0LGNi1SQ9KQVOr--p0NSZV9vezFSIDAcHe-3_m-AN6WMa1iqZivqNZooFSRL9Aq8LmiyhaDZlxWrtkEzzIxHqd5v-HW9mGVqzXRLdR6quwe-QEqfpYK5Df6YXbt265R1rvat9DYggEim9CGdI1ovt5jsV4sFqZ9rkwQiYMW9ZXNKaOxHyZoavjhhj5yZfv_hDV_D5n8xW_q1NHJo__9kMew0wNRcthxzhO4Z5qn8KBrTXn7DG4PG1L3HVNvDPlyvaw1-SQnhpzhIjOpf5g5QbxLTHPpYgiIzSBuzBWxVTu6dEgiG00mCM7tA0anozOizcJFfjXEhttfEF1fIdTVRGo5c685z7L2OXw7Of768bPft2nwFUvZAqkcMRUKVUkqVMKqpApkklIhOS2NCU3CRJCkphJGVSjvPNRSU8NYFcelLksa7cJ2M23MHhBdprbzkxCq5Aw5RUaJUZJJtNGCBLGLB-9WxCpmXTWOwnnRI1F0pC2QtIUjbRF6cGTpub7TVtJ2J6bzi6IXTOuB1zrgmiP2ZDISUuGxTEwqtEBTz3iwvyJj0Yt3W9zR0IM368somNbbIhszXbp7bO0_1EQevOiYZz0Thmt7xFjkgdhgq42pbl5p6ktX_BuRRsqjhHnwfsWBd_P6-794-e_PeAUPqRWKwKbk7MP2Yr40r-G-ulnU7XwIW3zM3SiGMDg6zvLzodu8GDp5syPHcZCfjvLvPwH_EzLS |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH6qWhBcyg6BAkaCE0RNHE_iHBAqS-monWkFReotOLbTRupkprMUDT-K38h7TjLVsN164BQpsRLb-d7mtwE8zzu86CgtfM2NQQOliHyJVoGfaK6pGLRIVOGaTST9vjw6Sg9W4EebC0NhlS1PdIzaDDWdkW-i4BepRLzxN6Mzn7pGkXe1baFRw2LXzr-hyTZ53X2P__cF59sfDt_t-E1XAV-LVExxUpHQodSF4lLHooiLQMUplyrhubWhjYUM4tQW0uoC4ZmERhluhSg6ndzkORU6QJa_JqiyGIUK8oPFmQ55zUSYNrk5QSQ3JygfKYeNd_wwRtPGD5fkn2sT8Cfd9vcQzV_8tE78bd_43zbuJqw3ijbbqinjFqzY6jZcrVtvzu_AfKtiZdMR9tyyz2ez0rCPamDZPjLRQfndjhnq88xWJy5GglGGdGVPGVUlqdM9maoMG6DxQS_odXv7zNipi2yrGKUTHDNTnqIqb5gyauQ-86nfn9yFL5ey7nuwWg0r-wCYyVPqbCWlzhOBlKCi2GolFNqgQYy6mQcvW3Bko7raSOaiBCKZ1VDKEEqZg1IWevCW8LMYSZXC3Y3h-DhrGA9FGBgTJCZB3VqoSCqN1zy2qTQSTVnrwUYLm6xhX5PsAjMePFs8RsZD3iRV2eHMjaHahihpPbhfg3UxE4GyKxIi8kAuwXhpqstPqvLEFTdHTSpNolh48KpF_MW8_r4XD_-9jKdwbeewt5ftdfu7j-A6J4IMKP1oA1an45l9DFf0-bScjJ84imbw9bIp4SdQsIrU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD6aOkC8cL8EBhgJniBq4jiJ84DQxihUo13FRRpPwbGdLdKadk07VH4av27HTtKp3N72wFOkxEps5zs3nxvAsyykeSgkcyVVCg2UPHA5WgVuLKk0xaBZLHLbbCIeDvnBQTLagJ9tLowJq2x5omXUaiLNGXkXBT9LOOKNdvMmLGK023s9PXFNBynjaW3badQQ2dPL72i-Va_6u_ivn1Pae_v5zXu36TDgSpawOU4wYNLnMheUy4jlUe6JKKFcxDTT2tcR416U6JxrmSNUY18JRTVjeRhmKstM0QNk_5uokjPagc1RfzD6ujrhMT405idNpo4X8G6F0tJktNHQ9SM0dFx_TRrapgF_0nR_D9j8xWtrhWHv-v-8jTfgWqOCk-2aZm7Chi5vweW6KefyNiy3S1I0vWJPNfl0sigUeSfGmuwjex0XP_SMoKZPdHlkoyeIyZ0u9TEx9UrqRFAiSkXGaJaYFwz6g32i9NzGvJXEJBocElUco5KviFBiaj_zcTis7sCXC1n3XeiUk1LfB6KyxPS84lxmMUMaEUGkpWACrVMvQq3NgRctUNJpXYcktfEDAU9rWKUIq9TCKvUd2DFYWo00NcTtjcnsMG1Ykok9UMqLVYxaNxMBFxKvWaQTrjgaudqBrRZCacPYqvQcPw48XT1GlmT8TKLUk4UdY6oeogx24F4N3NVMGEq1gLHAAb4G6bWprj8piyNb9hx1rCQOIubAyxb95_P6-148-PcynsAVJID0Q3-49xCuUkObnslL2oLOfLbQj-CSPJ0X1exxQ94Evl00KZwB-IOVHQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+innovative+Squid+Game+Optimizer+for+enhanced+channel+estimation+and+massive+MIMO+detection+using+dilated+adaptive+RNNs&rft.jtitle=Scientific+reports&rft.au=Reddy%2C+G+Navabharat&rft.au=Ravikumar%2C+C+V&rft.au=Takacs%2C+Oliver&rft.au=Tolba%2C+Amr&rft.date=2025-08-29&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=31921&rft_id=info:doi/10.1038%2Fs41598-025-16899-1&rft_id=info%3Apmid%2F40883443&rft.externalDocID=40883443 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |