An innovative Squid Game Optimizer for enhanced channel estimation and massive MIMO detection using dilated adaptive RNNs

The Multiple-Input Multiple-Output (MIMO) system can provide improved spectral efficiency and energy performance. However, the computational demand faced by conventional signal recognition techniques has significantly increased due to the growing number of antennas and higher-order modulations. To o...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Scientific reports Ročník 15; číslo 1; s. 31921 - 33
Hlavní autori: Reddy, G. Navabharat, Ravikumar, C. V., Takacs, Oliver, Tolba, Amr
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 29.08.2025
Nature Publishing Group
Nature Portfolio
Predmet:
ISSN:2045-2322, 2045-2322
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The Multiple-Input Multiple-Output (MIMO) system can provide improved spectral efficiency and energy performance. However, the computational demand faced by conventional signal recognition techniques has significantly increased due to the growing number of antennas and higher-order modulations. To overcome these challenges, deep learning approaches are adopted as they offer versatility, nonlinear modelling capabilities, and parallel computation efficiency for large-scale MIMO detection. Therefore, a deep network for channel estimation and massive MIMO detection is developed to reduce computational complexity issues. Initially, a channel estimation scheme is developed to enhance the channel capacity of the MIMO system. It correlates the transmitted and received signals using a confusion matrix. The proposed Modified Squid Game Optimizer (MSGO) is employed for channel state estimation. Based on the obtained channel state information, MIMO detection is performed within the communication system. Here, Multiuser Interference Cancellation (MIC)-based iterative sequential detection is initially conducted. Then, massive MIMO detection is performed using the Dilated Adaptive Recurrent Neural Network with Attention Mechanism (DARNN-AM) through learnable parameters. Moreover, to further optimize the detection performance by fine-tuning the attributes of DARNN-AM, the MSGO is utilized. The proposed network performs multi-segment mapping across multiple constellation points with different modulation schemes. The effectiveness of the proposed deep learning-based MIMO detection system is evaluated by comparing it with existing techniques and algorithms to validate its superior performance.
AbstractList The Multiple-Input Multiple-Output (MIMO) system can provide improved spectral efficiency and energy performance. However, the computational demand faced by conventional signal recognition techniques has significantly increased due to the growing number of antennas and higher-order modulations. To overcome these challenges, deep learning approaches are adopted as they offer versatility, nonlinear modelling capabilities, and parallel computation efficiency for large-scale MIMO detection. Therefore, a deep network for channel estimation and massive MIMO detection is developed to reduce computational complexity issues. Initially, a channel estimation scheme is developed to enhance the channel capacity of the MIMO system. It correlates the transmitted and received signals using a confusion matrix. The proposed Modified Squid Game Optimizer (MSGO) is employed for channel state estimation. Based on the obtained channel state information, MIMO detection is performed within the communication system. Here, Multiuser Interference Cancellation (MIC)-based iterative sequential detection is initially conducted. Then, massive MIMO detection is performed using the Dilated Adaptive Recurrent Neural Network with Attention Mechanism (DARNN-AM) through learnable parameters. Moreover, to further optimize the detection performance by fine-tuning the attributes of DARNN-AM, the MSGO is utilized. The proposed network performs multi-segment mapping across multiple constellation points with different modulation schemes. The effectiveness of the proposed deep learning-based MIMO detection system is evaluated by comparing it with existing techniques and algorithms to validate its superior performance.The Multiple-Input Multiple-Output (MIMO) system can provide improved spectral efficiency and energy performance. However, the computational demand faced by conventional signal recognition techniques has significantly increased due to the growing number of antennas and higher-order modulations. To overcome these challenges, deep learning approaches are adopted as they offer versatility, nonlinear modelling capabilities, and parallel computation efficiency for large-scale MIMO detection. Therefore, a deep network for channel estimation and massive MIMO detection is developed to reduce computational complexity issues. Initially, a channel estimation scheme is developed to enhance the channel capacity of the MIMO system. It correlates the transmitted and received signals using a confusion matrix. The proposed Modified Squid Game Optimizer (MSGO) is employed for channel state estimation. Based on the obtained channel state information, MIMO detection is performed within the communication system. Here, Multiuser Interference Cancellation (MIC)-based iterative sequential detection is initially conducted. Then, massive MIMO detection is performed using the Dilated Adaptive Recurrent Neural Network with Attention Mechanism (DARNN-AM) through learnable parameters. Moreover, to further optimize the detection performance by fine-tuning the attributes of DARNN-AM, the MSGO is utilized. The proposed network performs multi-segment mapping across multiple constellation points with different modulation schemes. The effectiveness of the proposed deep learning-based MIMO detection system is evaluated by comparing it with existing techniques and algorithms to validate its superior performance.
Abstract The Multiple-Input Multiple-Output (MIMO) system can provide improved spectral efficiency and energy performance. However, the computational demand faced by conventional signal recognition techniques has significantly increased due to the growing number of antennas and higher-order modulations. To overcome these challenges, deep learning approaches are adopted as they offer versatility, nonlinear modelling capabilities, and parallel computation efficiency for large-scale MIMO detection. Therefore, a deep network for channel estimation and massive MIMO detection is developed to reduce computational complexity issues. Initially, a channel estimation scheme is developed to enhance the channel capacity of the MIMO system. It correlates the transmitted and received signals using a confusion matrix. The proposed Modified Squid Game Optimizer (MSGO) is employed for channel state estimation. Based on the obtained channel state information, MIMO detection is performed within the communication system. Here, Multiuser Interference Cancellation (MIC)-based iterative sequential detection is initially conducted. Then, massive MIMO detection is performed using the Dilated Adaptive Recurrent Neural Network with Attention Mechanism (DARNN-AM) through learnable parameters. Moreover, to further optimize the detection performance by fine-tuning the attributes of DARNN-AM, the MSGO is utilized. The proposed network performs multi-segment mapping across multiple constellation points with different modulation schemes. The effectiveness of the proposed deep learning-based MIMO detection system is evaluated by comparing it with existing techniques and algorithms to validate its superior performance.
The Multiple-Input Multiple-Output (MIMO) system can provide improved spectral efficiency and energy performance. However, the computational demand faced by conventional signal recognition techniques has significantly increased due to the growing number of antennas and higher-order modulations. To overcome these challenges, deep learning approaches are adopted as they offer versatility, nonlinear modelling capabilities, and parallel computation efficiency for large-scale MIMO detection. Therefore, a deep network for channel estimation and massive MIMO detection is developed to reduce computational complexity issues. Initially, a channel estimation scheme is developed to enhance the channel capacity of the MIMO system. It correlates the transmitted and received signals using a confusion matrix. The proposed Modified Squid Game Optimizer (MSGO) is employed for channel state estimation. Based on the obtained channel state information, MIMO detection is performed within the communication system. Here, Multiuser Interference Cancellation (MIC)-based iterative sequential detection is initially conducted. Then, massive MIMO detection is performed using the Dilated Adaptive Recurrent Neural Network with Attention Mechanism (DARNN-AM) through learnable parameters. Moreover, to further optimize the detection performance by fine-tuning the attributes of DARNN-AM, the MSGO is utilized. The proposed network performs multi-segment mapping across multiple constellation points with different modulation schemes. The effectiveness of the proposed deep learning-based MIMO detection system is evaluated by comparing it with existing techniques and algorithms to validate its superior performance.
ArticleNumber 31921
Author Ravikumar, C. V.
Tolba, Amr
Takacs, Oliver
Reddy, G. Navabharat
Author_xml – sequence: 1
  givenname: G. Navabharat
  surname: Reddy
  fullname: Reddy, G. Navabharat
  organization: Physical Design Engineer, Wafersemiconductors Technologies Pvt Ltd
– sequence: 2
  givenname: C. V.
  surname: Ravikumar
  fullname: Ravikumar, C. V.
  email: cvrkvit@gmail.com
  organization: School of Electronics Engineering, Vellore Institute of Technology
– sequence: 3
  givenname: Oliver
  surname: Takacs
  fullname: Takacs, Oliver
  email: oliver.takacs@ddc.sze.hu
  organization: Digital Development Center, Szechenyi Istvan University
– sequence: 4
  givenname: Amr
  surname: Tolba
  fullname: Tolba, Amr
  organization: Computer Science Department, Community College, King Saud University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40883443$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1vEzEQtVARLaF_gAOyxIXLgr_Wa59QVZUSqW0kPs6W155NN9rYqb0bqfx6nKSUlgM-eCzPe2_G4_caHYUYAKG3lHykhKtPWdBaq4qwuqJSaV3RF-iEEVFXjDN29OR8jE5zXpGyaqYF1a_QsSBKcSH4Cbo_C7gPIW7t2G8Bf7-beo8v7RrwYjP26_4XJNzFhCHc2uDAY1digAFDLulCigHb4PHa5rwTuJ5fL7CHEdw-NeU-LLHvBzsWrvV2sy_z7eYmv0EvOztkOH2IM_Tzy8WP86_V1eJyfn52VTmhxVg5xoWjynWWKSdFJztipWbKNqwFoCCFIlJDp8B1VMuGeusZCNHVdevblvEZmh90fbQrs0ml63Rvou3N_iKmpbFp7N0AhhLtPWl8Q1QtLFfWldhK0MorSWooWp8PWpupXYN3EMZkh2eizzOhvzXLuDWUcd1wKYrChweFFO-mMkSz7rODYbAB4pQNZ0LyWtKyz9D7f6CrOKVQZrVDCa2IULvnvXva0mMvf764ANgB4FLMOUH3CKHE7KxkDlYyxUpmbyVDC4kfSLmAwxLS39r_Yf0G-ZzMPw
Cites_doi 10.1002/ett.4766
10.1038/s41598-025-11116-5
10.1109/LSP.2007.913603
10.1038/s41598-023-32465-z
10.1016/j.procs.2021.04.091
10.1016/j.asej.2024.103136
10.1109/LCOMM.2010.08.100347
10.1038/s41598-025-92464-0
10.1155/2024/9652424
10.3390/jmse13020331
10.1109/ACCESS.2024.3420106
10.1109/ACCESS.2022.3211392
10.1016/j.cma.2020.113609
10.1038/s41598-024-67738-8
10.1109/MWC.013.2100652
10.1016/j.phycom.2022.101614
10.1109/TSP.2020.3048232
10.3390/s23229154
10.1109/ACCESS.2019.2914707
10.1038/s41598-024-55098-2
10.1016/j.engappai.2019.103249
10.1109/LCOMM.2016.2555299
10.1109/JCN.2016.000030
10.1038/s41598-025-92676-4
10.1504/IJAHUC.2023.134777
10.1007/s00500-020-04812-z
10.1109/ACCESS.2023.3326841
10.1038/s41598-024-58074-y
10.1016/j.compeleceng.2022.108045
10.1016/j.phycom.2022.101651
10.1109/TCOMM.2020.2974457
10.1038/s41598-024-84864-5
10.1007/s11042-023-18012-y
10.1155/2022/7777211
10.1109/ACCESS.2023.3266476
10.1109/LCOMM.2022.3151141
10.1109/LSP.2007.906630
10.1016/j.energy.2022.126600
10.1016/j.rineng.2024.103275
10.1016/j.dsp.2023.104027
10.1109/ACCESS.2023.3322945
10.1016/j.asej.2025.103286
10.1109/LSP.2006.874443
10.1109/ACCESS.2020.2995171
10.1109/ICCSPA55860.2022.10019100
10.1109/ACCESS.2021.3124863
10.1109/TSP.2020.3035832
10.1002/dac.3328
10.1109/LCOMM.2020.2989672
10.1080/25742558.2018.1483565
10.1109/TVT.2019.2960763
10.1002/dac.5606
10.1007/978-981-99-4742-3_24
10.1109/LSP.2007.901694
10.1016/j.aej.2023.09.047
10.23919/JCN.2022.000055
10.1109/LSP.2013.2283091
10.1016/j.optcom.2019.02.016
10.1016/j.compstruc.2022.106915
10.1109/ACCESS.2024.3472466
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-16899-1
DatabaseName Springer_OA刊
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



Publicly Available Content Database
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 33
ExternalDocumentID oai_doaj_org_article_109dd07d70854a38ac854b6e98d8605e
PMC12397364
40883443
10_1038_s41598_025_16899_1
Genre Journal Article
GrantInformation_xml – fundername: This work was supported by the Ongoing Research Funding Program (ORF-2025-681) at King Saud University, Riyadh, Saudhi Arabia and by the Digital Development Centre, Szechenyi Istvan University, Hungary.
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
NPM
3V.
7XB
88A
8FK
COVID
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c494t-c234c18cfa28c64f6f0a6928a72bee1e648069ef8ecf19671dad2e44f55bdbb23
IEDL.DBID M2P
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001565369000026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Mon Nov 10 04:33:46 EST 2025
Tue Nov 04 02:05:24 EST 2025
Thu Sep 04 12:32:57 EDT 2025
Sat Nov 01 15:01:36 EDT 2025
Thu Sep 04 05:04:53 EDT 2025
Sat Nov 29 07:34:59 EST 2025
Sat Aug 30 01:18:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Modified Squid Game Optimizer
Channel estimation
Massive MIMO detection
Dilated adaptive recurrent neural network with attention mechanism
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-c234c18cfa28c64f6f0a6928a72bee1e648069ef8ecf19671dad2e44f55bdbb23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3244980482?pq-origsite=%requestingapplication%
PMID 40883443
PQID 3244980482
PQPubID 2041939
PageCount 33
ParticipantIDs doaj_primary_oai_doaj_org_article_109dd07d70854a38ac854b6e98d8605e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12397364
proquest_miscellaneous_3246356146
proquest_journals_3244980482
pubmed_primary_40883443
crossref_primary_10_1038_s41598_025_16899_1
springer_journals_10_1038_s41598_025_16899_1
PublicationCentury 2000
PublicationDate 2025-08-29
PublicationDateYYYYMMDD 2025-08-29
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-29
  day: 29
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References J Park (16899_CR8) 2016; 18
J Liao (16899_CR26) 2020; 24
R Chinthaginjala (16899_CR42) 2024; 14
Y Lee (16899_CR5) 2016; 63
J-K Lain (16899_CR7) 2010; 14
Z Wu (16899_CR14) 2022; 26
IN Tiba (16899_CR23) 2023; 137
V Hayyolalam (16899_CR62) 2020; 87
S-J Choi (16899_CR11) 2019; 7
CV Ravi Kumar (16899_CR39) 2019; 31
P Vineela (16899_CR35) 2024; 24
B Poudel (16899_CR2) 2019; 440
Y Liao (16899_CR60) 2023; 275
G Navabharat Reddy (16899_CR55) 2023; 34
M Azizi (16899_CR56) 2023; 13
Y Yang (16899_CR10) 2007; 14
GN Reddy (16899_CR54) 2023; 36
CV Ravi Kumar (16899_CR37) 2017; 30
SP Tera (16899_CR29) 2024
BMR Manasa (16899_CR51) 2023; 23
Y Yu (16899_CR20) 2023; 25
Z Gao (16899_CR64) 2016; 20
16899_CR19
16899_CR18
J Nasiri (16899_CR67) 2018; 5
O Mahmoud (16899_CR21) 2021; 9
R Chinthaginjala (16899_CR46) 2025; 15
V Sreenivasulu (16899_CR45) 2025; 16
LV Nguyen (16899_CR27) 2023; 30
S Kaveripakam (16899_CR52) 2023; 81
P Natha (16899_CR44) 2025; 15
AM Fathollahi-Fard (16899_CR61) 2020; 24
MK Hasan (16899_CR17) 2022; 101
M Chinnusami (16899_CR31) 2023; 11
D Xu (16899_CR24) 2021; 187
G NavaBharat Reddy (16899_CR34) 2023
T Kim (16899_CR41) 2025; 15
NS Kumar (16899_CR47) 2024; 14
H Garg (16899_CR66) 2016; 274
J Tachibana (16899_CR1) 2020; 8
A Rajesh (16899_CR30) 2023; 58
ND Sidiropoulos (16899_CR12) 2006; 13
KK Jyothi (16899_CR48) 2024; 14
GN Reddy (16899_CR53) 2023; 44
16899_CR57
M Renugadevi (16899_CR32) 2023
16899_CR58
SP Tera (16899_CR36) 2024; 12
16899_CR38
PS Varma (16899_CR33) 2023; 11
Y Qi (16899_CR6) 2013; 20
S Berra (16899_CR4) 2022; 52
Z Li (16899_CR15) 2007; 14
W Ma (16899_CR65) 2020; 68
R Karthiga (16899_CR50) 2024; 83
16899_CR3
X Tan (16899_CR25) 2020; 69
YH Gan (16899_CR9) 2008; 15
M Shao (16899_CR13) 2021; 69
16899_CR40
J Guo (16899_CR59) 2025; 13
L Abualigah (16899_CR63) 2021; 376
JN Chandra Sekhar (16899_CR49) 2024; 2024
K Bagadi (16899_CR28) 2022; 10
T Han (16899_CR16) 2022; 52
Y Wei (16899_CR22) 2020; 68
TH Kim (16899_CR43) 2025; 15
References_xml – volume: 34
  issue: 6
  year: 2023
  ident: 16899_CR55
  publication-title: Trans. Emerg. Telecommun. Technol.
  doi: 10.1002/ett.4766
– volume: 15
  start-page: 25640
  issue: 1
  year: 2025
  ident: 16899_CR46
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-025-11116-5
– volume: 15
  start-page: 194
  year: 2008
  ident: 16899_CR9
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2007.913603
– volume: 13
  start-page: 5373
  year: 2023
  ident: 16899_CR56
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-32465-z
– volume: 187
  start-page: 507
  year: 2021
  ident: 16899_CR24
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2021.04.091
– ident: 16899_CR40
– ident: 16899_CR38
  doi: 10.1016/j.asej.2024.103136
– volume: 14
  start-page: 722
  issue: 8
  year: 2010
  ident: 16899_CR7
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2010.08.100347
– volume: 15
  start-page: 9121
  issue: 1
  year: 2025
  ident: 16899_CR43
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-025-92464-0
– volume: 2024
  start-page: 9652424
  issue: 1
  year: 2024
  ident: 16899_CR49
  publication-title: J. Electr. Comput. Eng.
  doi: 10.1155/2024/9652424
– volume: 13
  start-page: 331
  issue: 2
  year: 2025
  ident: 16899_CR59
  publication-title: J. Mar. Sci. Eng.
  doi: 10.3390/jmse13020331
– year: 2024
  ident: 16899_CR29
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2024.3420106
– volume: 10
  start-page: 105674
  year: 2022
  ident: 16899_CR28
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3211392
– volume: 376
  year: 2021
  ident: 16899_CR63
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113609
– volume: 14
  start-page: 16800
  issue: 1
  year: 2024
  ident: 16899_CR42
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-67738-8
– volume: 30
  start-page: 174
  year: 2023
  ident: 16899_CR27
  publication-title: IEEE Wirel Commun.
  doi: 10.1109/MWC.013.2100652
– volume: 52
  year: 2022
  ident: 16899_CR16
  publication-title: Phys. Commun.
  doi: 10.1016/j.phycom.2022.101614
– volume: 69
  start-page: 781
  year: 2021
  ident: 16899_CR13
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2020.3048232
– volume: 23
  start-page: 9154
  issue: 22
  year: 2023
  ident: 16899_CR51
  publication-title: Sensors
  doi: 10.3390/s23229154
– volume: 7
  start-page: 60389
  year: 2019
  ident: 16899_CR11
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2914707
– volume: 31
  start-page: 1263
  issue: Suppl_2
  year: 2019
  ident: 16899_CR39
  publication-title: Neural Comput. Appl.
– volume: 63
  start-page: 949
  issue: 10
  year: 2016
  ident: 16899_CR5
  publication-title: IEEE Trans. Circuits Syst. II Express Briefs
– volume: 14
  start-page: 5590
  issue: 1
  year: 2024
  ident: 16899_CR48
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-55098-2
– volume: 87
  year: 2020
  ident: 16899_CR62
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.103249
– volume: 20
  start-page: 1259
  issue: 6
  year: 2016
  ident: 16899_CR64
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2016.2555299
– volume: 18
  start-page: 210
  issue: 2
  year: 2016
  ident: 16899_CR8
  publication-title: J. Commun. Netw.
  doi: 10.1109/JCN.2016.000030
– volume: 15
  start-page: 8297
  issue: 1
  year: 2025
  ident: 16899_CR41
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-025-92676-4
– volume: 274
  start-page: 292
  year: 2016
  ident: 16899_CR66
  publication-title: Appl. Math. Comput.
– volume: 44
  start-page: 148
  issue: 3
  year: 2023
  ident: 16899_CR53
  publication-title: Int. J. Ad Hoc Ubiquitous Comput.
  doi: 10.1504/IJAHUC.2023.134777
– volume: 24
  start-page: 14637
  year: 2020
  ident: 16899_CR61
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-020-04812-z
– year: 2023
  ident: 16899_CR32
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3326841
– volume: 14
  start-page: 8363
  issue: 1
  year: 2024
  ident: 16899_CR47
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-58074-y
– volume: 101
  year: 2022
  ident: 16899_CR17
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2022.108045
– volume: 52
  year: 2022
  ident: 16899_CR4
  publication-title: Phys. Commun.
  doi: 10.1016/j.phycom.2022.101651
– volume: 68
  start-page: 2838
  issue: 5
  year: 2020
  ident: 16899_CR65
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2020.2974457
– volume: 15
  start-page: 1290
  issue: 1
  year: 2025
  ident: 16899_CR44
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-84864-5
– volume: 83
  start-page: 65441
  issue: 24
  year: 2024
  ident: 16899_CR50
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-023-18012-y
– ident: 16899_CR57
  doi: 10.1155/2022/7777211
– volume: 11
  start-page: 91051
  year: 2023
  ident: 16899_CR31
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3266476
– volume: 58
  start-page: 1
  year: 2023
  ident: 16899_CR30
  publication-title: Radio Sci.
– volume: 26
  start-page: 1062
  year: 2022
  ident: 16899_CR14
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2022.3151141
– volume: 14
  start-page: 924
  year: 2007
  ident: 16899_CR15
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2007.906630
– year: 2023
  ident: 16899_CR34
  publication-title: Energy
  doi: 10.1016/j.energy.2022.126600
– volume: 24
  year: 2024
  ident: 16899_CR35
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2024.103275
– volume: 137
  year: 2023
  ident: 16899_CR23
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2023.104027
– volume: 11
  start-page: 112515
  year: 2023
  ident: 16899_CR33
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3322945
– volume: 16
  start-page: 103286
  issue: 3
  year: 2025
  ident: 16899_CR45
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2025.103286
– ident: 16899_CR58
– volume: 13
  start-page: 525
  year: 2006
  ident: 16899_CR12
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2006.874443
– volume: 8
  start-page: 96859
  year: 2020
  ident: 16899_CR1
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2995171
– ident: 16899_CR19
  doi: 10.1109/ICCSPA55860.2022.10019100
– volume: 9
  start-page: 148339
  year: 2021
  ident: 16899_CR21
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3124863
– volume: 68
  start-page: 6336
  year: 2020
  ident: 16899_CR22
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2020.3035832
– volume: 30
  start-page: e3328
  issue: 16
  year: 2017
  ident: 16899_CR37
  publication-title: Int. J. Commun. Syst.
  doi: 10.1002/dac.3328
– ident: 16899_CR3
– volume: 24
  start-page: 1724
  year: 2020
  ident: 16899_CR26
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2020.2989672
– volume: 5
  start-page: 1483565
  issue: 1
  year: 2018
  ident: 16899_CR67
  publication-title: Cogent Math. Stat.
  doi: 10.1080/25742558.2018.1483565
– volume: 69
  start-page: 1267
  year: 2020
  ident: 16899_CR25
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2960763
– volume: 36
  start-page: e5606
  issue: 17
  year: 2023
  ident: 16899_CR54
  publication-title: Int. J. Commun. Syst.
  doi: 10.1002/dac.5606
– ident: 16899_CR18
  doi: 10.1007/978-981-99-4742-3_24
– volume: 14
  start-page: 797
  year: 2007
  ident: 16899_CR10
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2007.901694
– volume: 81
  start-page: 580
  year: 2023
  ident: 16899_CR52
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2023.09.047
– volume: 25
  start-page: 50
  year: 2023
  ident: 16899_CR20
  publication-title: J. Commun. Netw.
  doi: 10.23919/JCN.2022.000055
– volume: 20
  start-page: 1147
  issue: 12
  year: 2013
  ident: 16899_CR6
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2013.2283091
– volume: 440
  start-page: 41
  year: 2019
  ident: 16899_CR2
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2019.02.016
– volume: 275
  year: 2023
  ident: 16899_CR60
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2022.106915
– volume: 12
  start-page: 145671
  year: 2024
  ident: 16899_CR36
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3472466
SSID ssj0000529419
Score 2.4581096
Snippet The Multiple-Input Multiple-Output (MIMO) system can provide improved spectral efficiency and energy performance. However, the computational demand faced by...
Abstract The Multiple-Input Multiple-Output (MIMO) system can provide improved spectral efficiency and energy performance. However, the computational demand...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 31921
SubjectTerms 639/166
639/4077
Algorithms
Antennas
Channel estimation
Communication
Communications systems
Computer applications
Deep learning
Design
Dilated adaptive recurrent neural network with attention mechanism
Efficiency
Humanities and Social Sciences
Massive MIMO detection
Modified Squid Game Optimizer
multidisciplinary
Neural networks
Science
Science (multidisciplinary)
Sensors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLZQBRIXxE5oQUbiBhGO7ST2sSAKSHSKWKTeLC8vbaSO285Sqfx6np3M0GERF06RYie2_BZ_1vP7HiHPgSlopO1KZztbSmhF6SoRSs9kpQBqJ0Pmmf3YTibq8FB_ulLqK90JG-iBh4VDq9YhsDa0iA2kFcp6fLoGtAoKoTgk78tafeUwNbB6cy0rPWbJMKFezXGnStlkvC6rBg8ZZbWxE2XC_j-hzN8vS_4SMc0b0d5tcmtEkHR3mPkdcg3iXXJjqCl5eY9c7kbaj6VOL4B-OV_2gb6zU6AH6B2m_XeYUQSqFOJxDv7TlPob4YQmuo0hj5HaGOgUUXX6wf6H_QMaYJGvbEWa7skf0dCfIEYN1AZ7lof5PJnM75Nve2-_vnlfjvUVSi-1XJSeC-kr5TvLlW9k13TMNpor23IHUKEMFWs0dAp8h4baVsEGDlJ2de2Cc1w8IFvxNMIjgsOB8K72wGorGX6CMAKBlXSao3QUFOTFaq3N2UCjYXL4WygzSMagZEyWjKkK8jqJY90zUWDnF6gYZlQM8y_FKMjOSphmtMu5QfgotUKvxQvybN2MFpXCJDbC6TL3SaR9uIUU5OEg-_VMJDplIaUoiNrQio2pbrbE_jizdiNE0K1oZEFerhTo57z-vhaP_8dabJObPGk-Sxk3O2RrMVvCE3LdXyz6-expNp0f4xQddw
  priority: 102
  providerName: Directory of Open Access Journals
Title An innovative Squid Game Optimizer for enhanced channel estimation and massive MIMO detection using dilated adaptive RNNs
URI https://link.springer.com/article/10.1038/s41598-025-16899-1
https://www.ncbi.nlm.nih.gov/pubmed/40883443
https://www.proquest.com/docview/3244980482
https://www.proquest.com/docview/3246356146
https://pubmed.ncbi.nlm.nih.gov/PMC12397364
https://doaj.org/article/109dd07d70854a38ac854b6e98d8605e
Volume 15
WOSCitedRecordID wos001565369000026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (via ProQuest SciTech Premium Collection)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB7RLki8cB-BsjISbxA1sZ3EeUItaqESu10VkMpT5NiTNlI3u92jUvn1jJ3sVsv1wosj5bKTmfF89lwAbzBSmEpdhaWudCgxE2EZCxuaSMYKMSml9XlmP2fDoTo9zUfdhtu8c6tczYl-orYT4_bId0nxy1wRv_H308vQVY1y1tWuhMYW9AjZxM6la8BH6z0WZ8WScd7FykRC7c5JX7mYMp6EcUpLjTDe0Ec-bf-fsObvLpO_2E29Ojq8_78f8gDudUCU7bWc8xBuYfMI7rSlKa8fw_Vew-quYuoVsi-Xy9qyj3qM7JgmmXH9A2eM8C7D5tz7EDAXQdzgBXNZO9pwSKYby8YEzt0LBkeDY2Zx4T2_Gubc7c-YrS8I6lqmrZ76bk6Gw_kT-HZ48PXDp7Ar0xAamctFaLiQJlam0lyZVFZpFek050pnvESMiRVUlOZYKTQVyXsWW205SlklSWnLkounsN1MGnwO1B0KUyYGo0TLiB4hNEL4TJY554RlMIC3K2IV0zYbR-Gt6EIVLWkLIm3hSVvEAew7eq7vdJm0_YnJ7KzoBNNZ4K2NMpsR9pRaKG3oWKaYK6toqUdd7qzIWHTiPS9uaBjA6_VlEkxnbdENTpb-Hpf7jzRRAM9a5lmPRNLcLqQUAagNttoY6uaVpj73yb8JaeSZSGUA71YceDOuv_-LF__-jJdwlzuhiFxIzg5sL2ZLfAW3zdWins_6sJWdZr5VfejtHwxHJ32_edH38ubajNre6Ggw-v4T4eEzGQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFLaqAoIL-xIoYCQ4QdTEcRLngFBZSkedSSsoUm_GsV_aSJ3MdJai4UfxG3l2kqmG7dYDp0iJEy_5_N5n-y2EPIdAQMJV6ReqVD6HNPKLMDK-DngoAOKCGxdntp_muTg8zPbXyI_OF8aaVXYy0QlqM9J2j3wTFT_PBOKNvRmf-jZrlD1d7VJoNLDYhcU3XLJNX_fe4_99wdj2h4N3O36bVcDXPOMzX7OI61DoUjGhE14mZaCSjAmVsgIgxJaLIMmgFKBLhGcaGmUYcF7GcWGKwgY6QJF_idvIYtZUkO0v93TsqRkPs9Y3J4jE5hT1o_VhY7EfJri08cMV_efSBPyJ2_5uovnLOa1Tf9s3_reBu0mut0SbbjUz4xZZg_o2udKk3lzcIYutmlZtRtgzoJ9P55WhH9UQ6B4K0WH1HSYU-TyF-tjZSFDrIV3DCbVRSRp3T6pqQ4e4-LAfGPQGe9TAzFm21dS6ExxRU50glTdUGTV21XzK8-ld8uVC-n2PrNejGh4QrA4iXcQagljxAF9BtoX8kxcZY8jVwCMvO3DIcRNtRDorgUjIBkoSoSQdlGTokbcWP8uSNlK4uzGaHMlW8FgLA2OC1KTIrbmKhNJ4LRLIhBG4lMUqNzrYyFZ8TeU5ZjzybPkYBY89TVI1jOaujI1tiJrWI_cbsC5bwlF3RZxHHhErMF5p6uqTujp2wc2RSWVplHCPvOoQf96uv4_Fw3934ym5unMw6Mt-L999RK4xOyED6360QdZnkzk8Jpf12ayaTp64GU3J14ueCT8Ba--LGw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLamDhAv3C-BAUaCJ4iaOE7iPCA0GIVqa1cBk8ZTcOyTLdKadk07VH4av45jJ-lUbm974ClSbraT75zz2T4XQp6BJyDiMnczmUuXQxy4mR9oV3ncFwBhxrXNM7sXD4fi8DAZbZAfbSyMcatsdaJV1HqizBp5Fw0_TwTijXXzxi1itNN7PT11TQUps9PaltOoIbILy284fate9XfwXz9nrPfu89sPblNhwFU84XNXsYArX6hcMqEinke5J6OECRmzDMDHUQgvSiAXoHKEauxrqRlwnodhprPMJD1A9b-JlJyzDtkc9QejL6sVHrOHxv2kidTxAtGt0FqaiDYWun6EEx3XX7OGtmjAn5ju7w6bv-zaWmPYu_4_f8Yb5FpDwel2LTM3yQaUt8jluijn8jZZbpe0aGrFngH9dLooNH0vx0D3Ub2Oi-8wo8j0KZTH1nuCmtjpEk6oyVdSB4JSWWo6xmmJecGgP9inGubW562kJtDgiOriBEm-plLLqW3m43BY3SEHFzLuu6RTTkq4T7A5CFQWKvBCyT18BHkYMlOeJYwhiwOHvGiBkk7rPCSp9R8IRFrDKkVYpRZWqe-QNwZLqztNDnF7YjI7ShuVZHwPtPZiHSPr5jIQUuExiyARWuAkF5vcaiGUNoqtSs_x45Cnq8uoksw-kyxhsrD3mKyHaIMdcq8G7qonHK1awHngELEG6bWurl8pi2Ob9hw5VhIHEXfIyxb95_36-7d48O9hPCFXUADSvf5w9yG5yoxseiYuaYt05rMFPCKX1Nm8qGaPG_Gm5OtFi8JPGFyVZA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+innovative+Squid+Game+Optimizer+for+enhanced+channel+estimation+and+massive+MIMO+detection+using+dilated+adaptive+RNNs&rft.jtitle=Scientific+reports&rft.au=Reddy%2C+G+Navabharat&rft.au=Ravikumar%2C+C+V&rft.au=Takacs%2C+Oliver&rft.au=Tolba%2C+Amr&rft.date=2025-08-29&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=31921&rft_id=info:doi/10.1038%2Fs41598-025-16899-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon