Balancing complexity and accuracy for defect detection on filters with an improved RT-DETR

Filters are critical components in automotive engine systems, responsible for maintaining stable operation by removing impurities from liquids and gases. Their performance is highly sensitive to surface defects, rendering high-precision automated inspection essential. However, existing defect detect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 15; H. 1; S. 29720 - 21
Hauptverfasser: Zhang, Maoyuan, Wei, Xiaojuan, Liu, Guojun, Chen, Mengxu, Zhao, Chunxia, Liu, Yingxiao, Bao, Zhikang, Guo, Yunfeng, An, Run, Zhao, Pengcheng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 13.08.2025
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Filters are critical components in automotive engine systems, responsible for maintaining stable operation by removing impurities from liquids and gases. Their performance is highly sensitive to surface defects, rendering high-precision automated inspection essential. However, existing defect detection algorithms often struggle to balance between detection accuracy and the computational efficiency required for industrial deployment. To address this trade-off, this study introduces an improved detection method based on the Real-Time DEtection TRansformer(RT-DETR) framework. First, a large-kernel attention mechanism is integrated into the backbone to enhance multi-scale feature extraction and fusion, while reducing architectural redundancy. Second, the RepC3 structure within the cross-scale fusion module is replaced with a module based on the generalized-efficient layer aggregation network that uses a more efficient layer aggregation strategy to improve feature localization. Finally, the Adown downsampling module is introduced, employing a multi-path design that reduces parameter count while preserving critical feature details during scale reduction. Experimental results on our industrial filter surface defect dataset show that the enhanced RT-DETR model achieves a mean average precision of 97.6%, a 7.3 percentage point increase over the baseline. Furthermore, the model reduces parameter count by 6.9% and computational load by 13.1%, demonstrating its improved efficiency. Generalization experiments on the public NEU-DET dataset and GC10-DET dataset further confirm the model’s robustness and effectiveness, demonstrating its suitability for industrial applications requiring both high accuracy and lightweight deployment.
AbstractList Filters are critical components in automotive engine systems, responsible for maintaining stable operation by removing impurities from liquids and gases. Their performance is highly sensitive to surface defects, rendering high-precision automated inspection essential. However, existing defect detection algorithms often struggle to balance between detection accuracy and the computational efficiency required for industrial deployment. To address this trade-off, this study introduces an improved detection method based on the Real-Time DEtection TRansformer(RT-DETR) framework. First, a large-kernel attention mechanism is integrated into the backbone to enhance multi-scale feature extraction and fusion, while reducing architectural redundancy. Second, the RepC3 structure within the cross-scale fusion module is replaced with a module based on the generalized-efficient layer aggregation network that uses a more efficient layer aggregation strategy to improve feature localization. Finally, the Adown downsampling module is introduced, employing a multi-path design that reduces parameter count while preserving critical feature details during scale reduction. Experimental results on our industrial filter surface defect dataset show that the enhanced RT-DETR model achieves a mean average precision of 97.6%, a 7.3 percentage point increase over the baseline. Furthermore, the model reduces parameter count by 6.9% and computational load by 13.1%, demonstrating its improved efficiency. Generalization experiments on the public NEU-DET dataset and GC10-DET dataset further confirm the model's robustness and effectiveness, demonstrating its suitability for industrial applications requiring both high accuracy and lightweight deployment.Filters are critical components in automotive engine systems, responsible for maintaining stable operation by removing impurities from liquids and gases. Their performance is highly sensitive to surface defects, rendering high-precision automated inspection essential. However, existing defect detection algorithms often struggle to balance between detection accuracy and the computational efficiency required for industrial deployment. To address this trade-off, this study introduces an improved detection method based on the Real-Time DEtection TRansformer(RT-DETR) framework. First, a large-kernel attention mechanism is integrated into the backbone to enhance multi-scale feature extraction and fusion, while reducing architectural redundancy. Second, the RepC3 structure within the cross-scale fusion module is replaced with a module based on the generalized-efficient layer aggregation network that uses a more efficient layer aggregation strategy to improve feature localization. Finally, the Adown downsampling module is introduced, employing a multi-path design that reduces parameter count while preserving critical feature details during scale reduction. Experimental results on our industrial filter surface defect dataset show that the enhanced RT-DETR model achieves a mean average precision of 97.6%, a 7.3 percentage point increase over the baseline. Furthermore, the model reduces parameter count by 6.9% and computational load by 13.1%, demonstrating its improved efficiency. Generalization experiments on the public NEU-DET dataset and GC10-DET dataset further confirm the model's robustness and effectiveness, demonstrating its suitability for industrial applications requiring both high accuracy and lightweight deployment.
Filters are critical components in automotive engine systems, responsible for maintaining stable operation by removing impurities from liquids and gases. Their performance is highly sensitive to surface defects, rendering high-precision automated inspection essential. However, existing defect detection algorithms often struggle to balance between detection accuracy and the computational efficiency required for industrial deployment. To address this trade-off, this study introduces an improved detection method based on the Real-Time DEtection TRansformer(RT-DETR) framework. First, a large-kernel attention mechanism is integrated into the backbone to enhance multi-scale feature extraction and fusion, while reducing architectural redundancy. Second, the RepC3 structure within the cross-scale fusion module is replaced with a module based on the generalized-efficient layer aggregation network that uses a more efficient layer aggregation strategy to improve feature localization. Finally, the Adown downsampling module is introduced, employing a multi-path design that reduces parameter count while preserving critical feature details during scale reduction. Experimental results on our industrial filter surface defect dataset show that the enhanced RT-DETR model achieves a mean average precision of 97.6%, a 7.3 percentage point increase over the baseline. Furthermore, the model reduces parameter count by 6.9% and computational load by 13.1%, demonstrating its improved efficiency. Generalization experiments on the public NEU-DET dataset and GC10-DET dataset further confirm the model’s robustness and effectiveness, demonstrating its suitability for industrial applications requiring both high accuracy and lightweight deployment.
Abstract Filters are critical components in automotive engine systems, responsible for maintaining stable operation by removing impurities from liquids and gases. Their performance is highly sensitive to surface defects, rendering high-precision automated inspection essential. However, existing defect detection algorithms often struggle to balance between detection accuracy and the computational efficiency required for industrial deployment. To address this trade-off, this study introduces an improved detection method based on the Real-Time DEtection TRansformer(RT-DETR) framework. First, a large-kernel attention mechanism is integrated into the backbone to enhance multi-scale feature extraction and fusion, while reducing architectural redundancy. Second, the RepC3 structure within the cross-scale fusion module is replaced with a module based on the generalized-efficient layer aggregation network that uses a more efficient layer aggregation strategy to improve feature localization. Finally, the Adown downsampling module is introduced, employing a multi-path design that reduces parameter count while preserving critical feature details during scale reduction. Experimental results on our industrial filter surface defect dataset show that the enhanced RT-DETR model achieves a mean average precision of 97.6%, a 7.3 percentage point increase over the baseline. Furthermore, the model reduces parameter count by 6.9% and computational load by 13.1%, demonstrating its improved efficiency. Generalization experiments on the public NEU-DET dataset and GC10-DET dataset further confirm the model’s robustness and effectiveness, demonstrating its suitability for industrial applications requiring both high accuracy and lightweight deployment.
ArticleNumber 29720
Author Zhao, Chunxia
Liu, Yingxiao
Bao, Zhikang
Wei, Xiaojuan
Chen, Mengxu
Zhang, Maoyuan
Liu, Guojun
Guo, Yunfeng
An, Run
Zhao, Pengcheng
Author_xml – sequence: 1
  givenname: Maoyuan
  surname: Zhang
  fullname: Zhang, Maoyuan
  organization: College of Electrical Engineering, Northwest Minzu University, Gansu Engineering Research Center for Eco-Environmental Intelligent Networking
– sequence: 2
  givenname: Xiaojuan
  surname: Wei
  fullname: Wei, Xiaojuan
  email: weixiaojuan925@126.com
  organization: College of Electrical Engineering, Northwest Minzu University, Zhejiang Zhenhang Industrial Group Company Ltd., College of Electrical and Information Engineering, Lanzhou University of Technology, Gansu Engineering Research Center for Eco-Environmental Intelligent Networking
– sequence: 3
  givenname: Guojun
  surname: Liu
  fullname: Liu, Guojun
  organization: Zhejiang Zhenhang Industrial Group Company Ltd
– sequence: 4
  givenname: Mengxu
  surname: Chen
  fullname: Chen, Mengxu
  organization: Zhejiang Zhenhang Industrial Group Company Ltd
– sequence: 5
  givenname: Chunxia
  surname: Zhao
  fullname: Zhao, Chunxia
  organization: College of Electrical Engineering, Northwest Minzu University, Gansu Engineering Research Center for Eco-Environmental Intelligent Networking
– sequence: 6
  givenname: Yingxiao
  surname: Liu
  fullname: Liu, Yingxiao
  organization: College of Electrical Engineering, Northwest Minzu University, Gansu Engineering Research Center for Eco-Environmental Intelligent Networking
– sequence: 7
  givenname: Zhikang
  surname: Bao
  fullname: Bao, Zhikang
  organization: College of Electrical Engineering, Northwest Minzu University, Gansu Engineering Research Center for Eco-Environmental Intelligent Networking, Yunnan power grid limited liability company Wenshan Power Supply Bureau
– sequence: 8
  givenname: Yunfeng
  surname: Guo
  fullname: Guo, Yunfeng
  organization: College of Electrical Engineering, Northwest Minzu University, Gansu Engineering Research Center for Eco-Environmental Intelligent Networking
– sequence: 9
  givenname: Run
  surname: An
  fullname: An, Run
  organization: College of Electrical Engineering, Northwest Minzu University, Gansu Engineering Research Center for Eco-Environmental Intelligent Networking
– sequence: 10
  givenname: Pengcheng
  surname: Zhao
  fullname: Zhao, Pengcheng
  organization: College of Electrical Engineering, Northwest Minzu University, Gansu Engineering Research Center for Eco-Environmental Intelligent Networking
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40804409$$D View this record in MEDLINE/PubMed
BookMark eNp9ksFu1DAQhiNUREvpC3BAkbhwSXEce2OfEJRCK1VCqpYLF2tij7deJfZiJ2X37XE3pbQcsCzNyP7_z6PxvCwOfPBYFK9rclqTRrxPrOZSVITyqm7kglTbZ8URJYxXtKH04FF-WJyktCZ5cSpZLV8Uh4wIwhiRR8WPT9CD186vSh2GTY9bN-5K8KYEracIelfaEEuDFvWYw5iDC77M27p-xJjKX268yY7SDZsYbtGU18vq8_ny-lXx3EKf8OQ-Hhffv5wvzy6qq29fL88-XlWaSTZWnbWGmNZo0AjcWCEFAtFcdNBSynUDsJBMakQiLZMoiOW1hJzYVhoUzXFxOXNNgLXaRDdA3KkATu0PQlwpiKPTPSqKTAuBteAcmSTQgSSdYRRbA7JrSWZ9mFmbqRvQaPRjhP4J9OmNdzdqFW5VTRtOFpxlwrt7Qgw_J0yjGlzS2OcuY5iSamgjG9kKyrP07T_SdZiiz73aqzKxpnfAN49Leqjlzx9mAZ0FOoaUItoHSU3U3ayoeVZUnhW1nxW1zaZmNqUs9iuMf9_-j-s3mcnCjw
Cites_doi 10.3390/s20061562
10.1007/978-3-030-58452-8_13
10.1109/CSCWD61410.2024.10580137
10.1109/CVPR.2016.91
10.1109/IGARSS53475.2024.10641423
10.1007/978-3-031-72751-1_1
10.1109/ACCESS.2024.3391353
10.3390/rs13091670
10.3390/s24134262
10.1109/CVPRW50498.2020.00203
10.1038/s41598-025-94109-8
10.1109/CVPR52733.2024.01605
10.1007/s11554-024-01519-4
10.1109/ICCV.2017.74
10.1016/j.ress.2024.109966
10.3389/fpls.2024.1415297
10.1109/ACCESS.2024.3374869
10.1007/978-3-031-93688-3_30
10.1007/978-3-030-01234-2_49
10.1109/CVPR.2014.81
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-13960-x
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest One Academic
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



Publicly Available Content Database
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 21
ExternalDocumentID oai_doaj_org_article_2e4c88e1855e490aba90bd42e7da9b70
PMC12350654
40804409
10_1038_s41598_025_13960_x
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: No. 12205241
– fundername: the Fundamental Research Funds for the Central Universities
  grantid: No. 31920220049&31920230138
– fundername: the Key Research and Development Program of Gansu Province - Industrial Project
  grantid: No. 25YFGA059
– fundername: he Higher Education Teaching Achievement Cultivation Project of Gansu Province
  grantid: 2023GSJXCGPY-56
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AARCD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c494t-bffd0d7dcacea5df898ea0c58ba7225c3aa6949cee09f49e80f519a9e8f79de83
IEDL.DBID M2P
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001551326300030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Oct 14 19:04:32 EDT 2025
Tue Nov 04 02:04:46 EST 2025
Fri Sep 05 15:09:02 EDT 2025
Tue Oct 07 09:04:20 EDT 2025
Sun Aug 17 02:22:15 EDT 2025
Sat Nov 29 07:34:20 EST 2025
Thu Aug 14 01:14:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-bffd0d7dcacea5df898ea0c58ba7225c3aa6949cee09f49e80f519a9e8f79de83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3239235124?pq-origsite=%requestingapplication%
PMID 40804409
PQID 3239235124
PQPubID 2041939
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_2e4c88e1855e490aba90bd42e7da9b70
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12350654
proquest_miscellaneous_3239397825
proquest_journals_3239235124
pubmed_primary_40804409
crossref_primary_10_1038_s41598_025_13960_x
springer_journals_10_1038_s41598_025_13960_x
PublicationCentury 2000
PublicationDate 2025-08-13
PublicationDateYYYYMMDD 2025-08-13
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-13
  day: 13
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References 13960_CR19
13960_CR18
13960_CR17
13960_CR16
Z Zhao (13960_CR3) 2024; 244
13960_CR15
M Liu (13960_CR13) 2024; 24
D Avola (13960_CR9) 2021; 13
C Li (13960_CR21) 2024; 12
13960_CR7
13960_CR8
J-H Tian (13960_CR22) 2025; 15
13960_CR5
S Wang (13960_CR12) 2024; 15
13960_CR24
13960_CR4
13960_CR1
13960_CR11
CM Ewing (13960_CR14) 1995; 55
13960_CR2
13960_CR10
Z Cheng (13960_CR23) 2024; 12
13960_CR20
C-L Ji (13960_CR6) 2024; 21
References_xml – ident: 13960_CR20
  doi: 10.3390/s20061562
– ident: 13960_CR5
  doi: 10.1007/978-3-030-58452-8_13
– ident: 13960_CR7
  doi: 10.1109/CSCWD61410.2024.10580137
– ident: 13960_CR4
  doi: 10.1109/CVPR.2016.91
– ident: 13960_CR18
  doi: 10.1109/IGARSS53475.2024.10641423
– ident: 13960_CR17
  doi: 10.1007/978-3-031-72751-1_1
– volume: 12
  start-page: 62765
  year: 2024
  ident: 13960_CR23
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3391353
– volume: 13
  start-page: 1670
  year: 2021
  ident: 13960_CR9
  publication-title: R. Sens.
  doi: 10.3390/rs13091670
– volume: 24
  start-page: 4262
  year: 2024
  ident: 13960_CR13
  publication-title: Sensors
  doi: 10.3390/s24134262
– ident: 13960_CR11
– ident: 13960_CR15
  doi: 10.1109/CVPRW50498.2020.00203
– volume: 15
  start-page: 9756
  year: 2025
  ident: 13960_CR22
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-025-94109-8
– volume: 55
  start-page: 4813
  year: 1995
  ident: 13960_CR14
  publication-title: Cancer Res.
– ident: 13960_CR10
  doi: 10.1109/CVPR52733.2024.01605
– ident: 13960_CR16
– volume: 21
  start-page: 141
  year: 2024
  ident: 13960_CR6
  publication-title: J. Real-Time Image Process.
  doi: 10.1007/s11554-024-01519-4
– ident: 13960_CR19
– ident: 13960_CR24
  doi: 10.1109/ICCV.2017.74
– volume: 244
  start-page: 109966
  year: 2024
  ident: 13960_CR3
  publication-title: Reliab. Eng. Syst. Safety
  doi: 10.1016/j.ress.2024.109966
– volume: 15
  start-page: 1415297
  year: 2024
  ident: 13960_CR12
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2024.1415297
– volume: 12
  start-page: 37643
  year: 2024
  ident: 13960_CR21
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3374869
– ident: 13960_CR8
  doi: 10.1007/978-3-031-93688-3_30
– ident: 13960_CR2
  doi: 10.1007/978-3-030-01234-2_49
– ident: 13960_CR1
  doi: 10.1109/CVPR.2014.81
SSID ssj0000529419
Score 2.4567475
Snippet Filters are critical components in automotive engine systems, responsible for maintaining stable operation by removing impurities from liquids and gases. Their...
Abstract Filters are critical components in automotive engine systems, responsible for maintaining stable operation by removing impurities from liquids and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 29720
SubjectTerms 639/705/117
639/705/258
Accuracy
Classification
Computer applications
Deep learning
Defects
Efficiency
Filters
Humanities and Social Sciences
Impurities
Industrial applications
Localization
multidisciplinary
Network management systems
Queries
Real time
Science
Science (multidisciplinary)
Semantics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEB-kKPgitX5trSWCb7o07mYvyaPVFp-KlBOKL2GSTPBetnIfcv3vnWT3zp4f-CIs7LJJYJjJZH6TTGYAXsWEubCVryVqYgeF10GrPc9lFgjKmBrsfCk2oS8uzNWV_XSr1FeOCRvSAw-MO2lIBWOIzUpHykr0aKWPqiEd0XpdvHWp7S1nasjq3Vj11o63ZGRrThZsqfJtsqarGfRMZL3esUQlYf-fUObvwZK_nJgWQ3S-Dw9GBCneDZQ_hDvUH8C9oabkzSP4cpqDFQMPFSVcnNaMswX2UWAIqzmGG8E4VUTKcRz8WpZYrF7wk2b56Hwh8t4sjxCzsuFAUVxO6w9n08vH8Pn8bPr-Yz0WUKiDsmpZ-5SijDoGDIRdTMYaQhk641GzHocWcWKVZTspbVKWjEwM6JA_kraRTPsE9vrrnp6BmDQ6ETWsrpRUG7wN7Lh5StKEhLygVvB6w0z3bciT4cr5dmvcwHrHrHeF9W5dwWnm97ZnznFdfrDk3Sh59y_JV3C0kZYbFW_h2oYBX8soRlXwctvMKpPPQbCn69XQh2EY-8YVPB2Eu6VEMYJW7PNWYHbEvkPqbks_-1rScudbx_mqbgVvNjPkJ11_58Xh_-DFc7jf5Kmdc_W2R7C3nK_oBdwN35ezxfy46MYPgREUdw
  priority: 102
  providerName: Directory of Open Access Journals
Title Balancing complexity and accuracy for defect detection on filters with an improved RT-DETR
URI https://link.springer.com/article/10.1038/s41598-025-13960-x
https://www.ncbi.nlm.nih.gov/pubmed/40804409
https://www.proquest.com/docview/3239235124
https://www.proquest.com/docview/3239397825
https://pubmed.ncbi.nlm.nih.gov/PMC12350654
https://doaj.org/article/2e4c88e1855e490aba90bd42e7da9b70
Volume 15
WOSCitedRecordID wos001551326300030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xW5C48IYNLJWRuEG03sSp7ROi0BUctoqqIhUuluPH0ku627So--8ZO2lX5XVBqtwqD9XJvD7PjGcAXluvQ2OrKqWaO1ygoB6UvEJeRoJoan2miyo2m-DjsZjNZNk53JourXKrE6OitgsTfOQneYaWPEfzxN5dXqWha1SIrnYtNA6gh8jmNKR0nWflzscSoljsVHZ7ZWguThq0V2FPWVakCH0GNN3s2aNYtv9PWPP3lMlf4qbRHJ3d_98HeQD3OiBK3rec8xBuufoR3GlbU14_hm_DkPNo8L9JzDp3G4TrRNeWaGPWS22uCcJdYl1IB8GvVUzpqgl-_DxE4BsSXLx4B5lHv4WzZDJNP46mkyfw5Ww0_fAp7fowpIZJtkor7y213BptnC6sF1I4TU0hKs1RHZhc64FkEs0tlZ5JJ6hHXKjxh-fSOpE_hcN6UbsjIIOMe-cylHrnWW4qaXD9VzlPhfEa9XICb7bUUJdtuQ0Vw-S5UC3tFNJORdqpTQLDQLDdlaFUdjywWF6oTvJU5pgRwiEuKRyTVFda0sqyzHGrZcVpAsdbOqlOfht1Q6QEXu1Oo-SFcIqu3WLdXoNoDpfYCTxruWM3E4ZAnOHSOQGxxzd7U90_U8-_x-reYfNy2PGbwNsti93M6-_v4vm_H-MF3M0C14divvkxHK6Wa_cSbpsfq3mz7MMBn_E4ij70hqNxOelH70Q_ClQYOY698vN5-fUn6oko8w
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JbxMxFH4qBQQX9mWggJHgBKMajydjHxCitFWrlqiqglRxMV4hl0nJAsmf4jfy7JlJFbZbD0iREs1MRl4-v8X-3nsAz1zQsbCVyamuPDooKAdlZRDLOCGausB0aVKxiarfFycn8mgNfnSxMJFW2cnEJKjdyMY98s2CoSYvUD3xN6df81g1Kp6udiU0Glgc-MV3dNkmr_e3cX6fM7a7M3i3l7dVBXLLJZ_mJgRHXeWstl6XLggpvKa2FEZXCG5baN2TXKLyoDJw6QUNaOVo_BEq6bwo8L0X4CKPmcUiVZAdLfd04qkZfyXb2BxaiM0J6scYw8bKHE2tHs3nK_ovlQn4k237O0Xzl3PapP52r_9vA3cDrrWGNnnbrIybsObrW3C5Kb25uA0ftyKn02JfSWLV-zm6I0TXjmhrZ2NtFwTNeeJ8pLvg1zRR1mqCnzCMDIMJiVvY-A8yTPsy3pHjQb69Mzi-Ax_OpWN3Yb0e1f4-kB6rgvcMpZoPvLBGWvRvjQ9U2KBR72Twopt9ddqkE1GJBlAI1WBFIVZUwoqaZ7AVAbJ8MqYCTxdG48-qlSyKeW6F8Gh3lZ5Lqo2W1DjOfOW0NBXNYKPDhWrl00SdgSKDp8vbKFnicZGu_WjWPIPWqmBlBvcaNC5bwtHRwBUgMxArOF1p6uqdevglZS-PwdkxojmDlx2kz9r197F48O9uPIEre4P3h-pwv3_wEK6yuOJi4uJiA9an45l_BJfst-lwMn6cliyBT-cN9Z_qAYOM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jj9MwFH4aOoC4sC-BAYwEJ4hqHKexDwgxdCqqgaoaFWngYhwv0Es6NC20f41fx3OWjsp2mwNSpERxEtnO57fY3_MDeGy9Domt8pjqzKGDgnJQZjliGX-IptYzneZVsolsNBLHx3K8Az_aWJhAq2xlYiWo7cyEOfJuwlCTJ6ieeNc3tIhxf_Dy5GscMkiFldY2nUYNkUO3_o7uW_li2Md__YSxwcHk9Zu4yTAQGy75Is69t9Rm1mjjdGq9kMJpalKR6wyBbhKte5JLVCRUei6doB4tHo0XPpPWiQS_ew520STnrAO74-G78YfNDE9YQ-PPZROpQxPRLVFbhog2lsZoePVovNrShlXSgD9Zur8TNn9Zta2U4eDK_9yNV-FyY4KTV_WYuQY7rrgOF-qknOsb8HE_sD0NtptUfHu3QkeF6MISbcxyrs2aoKFPrAtEGDwtKjJbQfDw08A9KEmY3MY3yLSasXGWHE3i_sHk6Ca8P5OG3YJOMSvcHSA9lnnnGMo753licmnQ882dp8J4jRopgqctEtRJvdGIqggCiVA1bhTiRlW4UasI9gNYNk-GTcKrG7P5Z9XIHMUcN0I4tMhSxyXVuZY0t5y5zGqZZzSCvRYjqpFcpToFSASPNsUoc8JCki7cbFk_g3asYGkEt2tkbmrC0QXhnMoIxBZmt6q6XVJMv1T7moew7RDrHMGzFt6n9fp7X9z9dzMewkVEuHo7HB3eg0ssDL6wo3GyB53FfOnuw3nzbTEt5w-a8Uvg01lj_SdTr43V
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Balancing+complexity+and+accuracy+for+defect+detection+on+filters+with+an+improved+RT-DETR&rft.jtitle=Scientific+reports&rft.au=Zhang%2C+Maoyuan&rft.au=Wei%2C+Xiaojuan&rft.au=Liu%2C+Guojun&rft.au=Chen%2C+Mengxu&rft.date=2025-08-13&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=29720&rft_id=info:doi/10.1038%2Fs41598-025-13960-x&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon