A global object-oriented dynamic network for low-altitude remote sensing object detection
With advancements in drone control technology, low-altitude remote sensing image processing holds significant potential for intelligent, real-time urban management. However, achieving high accuracy with deep learning algorithms remains challenging due to the stringent requirements for low computatio...
Uloženo v:
| Vydáno v: | Scientific reports Ročník 15; číslo 1; s. 19071 - 20 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
30.05.2025
Nature Publishing Group Nature Portfolio |
| Témata: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | With advancements in drone control technology, low-altitude remote sensing image processing holds significant potential for intelligent, real-time urban management. However, achieving high accuracy with deep learning algorithms remains challenging due to the stringent requirements for low computational cost, minimal parameters, and real-time performance. This study introduces the Global Object-Oriented Dynamic Network (GOOD-Net) algorithm, comprising three fundamental components: an object-oriented, dynamically adaptive backbone network; a neck network designed to optimize the utilization of global information; and a task-specific processing head augmented for detailed feature refinement. Novel module components, such as the ReSSD Block, GPSA, and DECBS, are integrated to enable fine-grained feature extraction while maintaining computational and parameter efficiency. The efficacy of individual components in the GOOD-Net algorithm, as well as their synergistic interaction, is assessed through ablation experiments. Evaluation conducted on the VisDrone dataset demonstrates substantial enhancements. Furthermore, experiments assessing robustness and deployment on edge devices validate the algorithm’s scalability and practical applicability. Visualization methods further highlight the algorithm’s performance advantages. This research presents a scalable object detection framework adaptable to various application scenarios and contributes a novel design paradigm for efficient deep learning-based object detection. |
|---|---|
| AbstractList | With advancements in drone control technology, low-altitude remote sensing image processing holds significant potential for intelligent, real-time urban management. However, achieving high accuracy with deep learning algorithms remains challenging due to the stringent requirements for low computational cost, minimal parameters, and real-time performance. This study introduces the Global Object-Oriented Dynamic Network (GOOD-Net) algorithm, comprising three fundamental components: an object-oriented, dynamically adaptive backbone network; a neck network designed to optimize the utilization of global information; and a task-specific processing head augmented for detailed feature refinement. Novel module components, such as the ReSSD Block, GPSA, and DECBS, are integrated to enable fine-grained feature extraction while maintaining computational and parameter efficiency. The efficacy of individual components in the GOOD-Net algorithm, as well as their synergistic interaction, is assessed through ablation experiments. Evaluation conducted on the VisDrone dataset demonstrates substantial enhancements. Furthermore, experiments assessing robustness and deployment on edge devices validate the algorithm’s scalability and practical applicability. Visualization methods further highlight the algorithm’s performance advantages. This research presents a scalable object detection framework adaptable to various application scenarios and contributes a novel design paradigm for efficient deep learning-based object detection. With advancements in drone control technology, low-altitude remote sensing image processing holds significant potential for intelligent, real-time urban management. However, achieving high accuracy with deep learning algorithms remains challenging due to the stringent requirements for low computational cost, minimal parameters, and real-time performance. This study introduces the Global Object-Oriented Dynamic Network (GOOD-Net) algorithm, comprising three fundamental components: an object-oriented, dynamically adaptive backbone network; a neck network designed to optimize the utilization of global information; and a task-specific processing head augmented for detailed feature refinement. Novel module components, such as the ReSSD Block, GPSA, and DECBS, are integrated to enable fine-grained feature extraction while maintaining computational and parameter efficiency. The efficacy of individual components in the GOOD-Net algorithm, as well as their synergistic interaction, is assessed through ablation experiments. Evaluation conducted on the VisDrone dataset demonstrates substantial enhancements. Furthermore, experiments assessing robustness and deployment on edge devices validate the algorithm's scalability and practical applicability. Visualization methods further highlight the algorithm's performance advantages. This research presents a scalable object detection framework adaptable to various application scenarios and contributes a novel design paradigm for efficient deep learning-based object detection.With advancements in drone control technology, low-altitude remote sensing image processing holds significant potential for intelligent, real-time urban management. However, achieving high accuracy with deep learning algorithms remains challenging due to the stringent requirements for low computational cost, minimal parameters, and real-time performance. This study introduces the Global Object-Oriented Dynamic Network (GOOD-Net) algorithm, comprising three fundamental components: an object-oriented, dynamically adaptive backbone network; a neck network designed to optimize the utilization of global information; and a task-specific processing head augmented for detailed feature refinement. Novel module components, such as the ReSSD Block, GPSA, and DECBS, are integrated to enable fine-grained feature extraction while maintaining computational and parameter efficiency. The efficacy of individual components in the GOOD-Net algorithm, as well as their synergistic interaction, is assessed through ablation experiments. Evaluation conducted on the VisDrone dataset demonstrates substantial enhancements. Furthermore, experiments assessing robustness and deployment on edge devices validate the algorithm's scalability and practical applicability. Visualization methods further highlight the algorithm's performance advantages. This research presents a scalable object detection framework adaptable to various application scenarios and contributes a novel design paradigm for efficient deep learning-based object detection. Abstract With advancements in drone control technology, low-altitude remote sensing image processing holds significant potential for intelligent, real-time urban management. However, achieving high accuracy with deep learning algorithms remains challenging due to the stringent requirements for low computational cost, minimal parameters, and real-time performance. This study introduces the Global Object-Oriented Dynamic Network (GOOD-Net) algorithm, comprising three fundamental components: an object-oriented, dynamically adaptive backbone network; a neck network designed to optimize the utilization of global information; and a task-specific processing head augmented for detailed feature refinement. Novel module components, such as the ReSSD Block, GPSA, and DECBS, are integrated to enable fine-grained feature extraction while maintaining computational and parameter efficiency. The efficacy of individual components in the GOOD-Net algorithm, as well as their synergistic interaction, is assessed through ablation experiments. Evaluation conducted on the VisDrone dataset demonstrates substantial enhancements. Furthermore, experiments assessing robustness and deployment on edge devices validate the algorithm’s scalability and practical applicability. Visualization methods further highlight the algorithm’s performance advantages. This research presents a scalable object detection framework adaptable to various application scenarios and contributes a novel design paradigm for efficient deep learning-based object detection. |
| ArticleNumber | 19071 |
| Author | Tang, Daoze Tang, Shuyun Wang, Yalin Guan, Shaoyun Jin, Yining |
| Author_xml | – sequence: 1 givenname: Daoze surname: Tang fullname: Tang, Daoze organization: Harbin University of Commerce – sequence: 2 givenname: Shuyun surname: Tang fullname: Tang, Shuyun organization: Harbin University of Commerce – sequence: 3 givenname: Yalin surname: Wang fullname: Wang, Yalin organization: Harbin University of Commerce – sequence: 4 givenname: Shaoyun surname: Guan fullname: Guan, Shaoyun email: guanshy@hrbcu.edu.cn organization: Harbin University of Commerce – sequence: 5 givenname: Yining surname: Jin fullname: Jin, Yining email: jinyn@hrbcu.edu.cn organization: Harbin University of Commerce |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40447715$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kstu1TAQhi1UREvpC7BAkdiwCfgee4WqikulSmxgwcpynEnwIbGL7VD17TEnh9KywJI1luf7f4_G8xQdhRgAoecEvyaYqTeZE6FVi6mom2jeykfohGIuWsooPbp3PkZnOe9wXYJqTvQTdMwx511HxAn6et5Mc-zt3MR-B660MXkIBYZmuA128a4JUG5i-t6MMTVzvGntXHxZB2gSLLFAkyFkH6aDvhmg1OBjeIYej3bOcHaIp-jL-3efLz62V58-XF6cX7WOa17angBWQgtHAQNmYHvAcrRkBMI4EKeU5hIDdbomhJWjlsoJgbuh073Tjp2iy813iHZnrpNfbLo10Xqzv4hpMjYV72YwXdeN3FWPUVjOpe6xVRqkot0oZW919Xq7eV2v_QKDq51Idn5g-jAT_DczxZ-GUEIFlbg6vDo4pPhjhVzM4rODebYB4poNo4QzIilTFX35D7qLawq1V3sKY6U6XqkX90u6q-XPF1aAboBLMecE4x1CsPk9KmYbFVNHxexHxcgqYpsoVzhMkP6-_R_VL8zxwQ8 |
| Cites_doi | 10.1109/TITS.2018.2797697 10.3390/diagnostics15030364 10.1109/TCSVT.2019.2905881 10.1109/CVPR.2016.91 10.1109/CVPR52733.2024.01605 10.3390/cancers16223782 10.1016/j.neucom.2015.11.049 10.1109/TETCI.2024.3349464 10.3390/electronics12102323 10.3390/rs16224265 10.1109/TPAMI.2018.2858826 10.1109/ICCV.2015.169 10.1007/s11227-025-06987-4 10.1007/s00371-020-01974-7 10.1007/s12145-025-01808-x 10.3390/s24196437 10.3390/s25030707 10.1109/IJCNN60899.2024.10649954 10.3390/rs16163057 10.3390/rs15112728 10.1109/TCDS.2021.3124764 10.1109/TGRS.2024.3515648 10.1016/j.jksuci.2022.11.005 10.1109/TIM.2024.3381272 10.1038/s41598-024-78749-w 10.1109/ICCV48922.2021.00298 10.1109/ICCV.2019.00667 10.3390/rs16193630 10.1007/s11554-025-01622-0 10.1109/TGRS.2023.3295932 10.1109/CVPR.2018.00644 10.1007/s11760-025-03850-0 10.5281/zenodo.3908559 10.3390/rs16132416 10.1109/ICCV.2017.89 10.3390/rs14246302 10.1007/s13369-021-06288-x 10.1109/TGRS.2024.3457155 10.1109/TPAMI.2021.3119563 10.1109/TPAMI.2016.2577031 10.1007/s00371-024-03656-0 10.1007/978-3-031-72751-1_1 10.1007/s11263-019-01228-7 10.1016/j.patcog.2023.110152 10.1109/TCSVT.2023.3286896 10.1109/CVPR.2017.690 10.1109/ICSIP61881.2024.10671547 10.1007/s10044-024-01389-3 10.1109/CVPR.2018.00745 10.3390/drones8090453 10.1109/CVPR46437.2021.00281 10.3390/drones8070276 10.1109/CVPR46437.2021.01352 10.1007/s00530-024-01342-8 10.1109/ICCV.2017.446 10.1016/j.cja.2024.06.036 10.1038/s41598-023-36972-x 10.1007/s10489-024-06073-x 10.1007/s00371-025-03825-9 10.1109/CVPR42600.2020.00165 10.3390/rs16193697 10.1109/ICASSP48485.2024.10448458 10.1109/CVPR52729.2023.00721 10.1109/ICCEIC64099.2024.10775919 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-025-02194-6 |
| DatabaseName | Springer Open Access CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection (subscription) ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database Biological Science Database ProQuest Databases ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 20 |
| ExternalDocumentID | oai_doaj_org_article_777f4ca6ff5a4469b0a89e6827f66ba9 PMC12125260 40447715 10_1038_s41598_025_02194_6 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Harbin University of Commerce College Students’ Innovation and Entrepreneurship Training Program grantid: 202410240191; 202410240191; 202410240191; 202410240191; 202410240191 – fundername: Heilongjiang Provincial College Students’ Innovation and Entrepreneurship Training Program grantid: S202410240020; S202410240020; S202410240020; S202410240020; S202410240020 – fundername: National College Students’ Innovation and Entrepreneurship Training Program of China grantid: 202410240065; 202410240065; 202410240065; 202410240065; 202410240065 – fundername: Heilongjiang Province Philosophy and Social Sciences Research Planning Annual Project grantid: 23KSD105; 23KSD105; 23KSD105; 23KSD105; 23KSD105 – fundername: National College Students' Innovation and Entrepreneurship Training Program of China grantid: 202410240065 – fundername: Heilongjiang Province Philosophy and Social Sciences Research Planning Annual Project grantid: 23KSD105 – fundername: Heilongjiang Provincial College Students' Innovation and Entrepreneurship Training Program grantid: S202410240020 – fundername: Harbin University of Commerce College Students' Innovation and Entrepreneurship Training Program grantid: 202410240191 |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PMFND PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX AFFHD CITATION PJZUB PPXIY PQGLB NPM 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c494t-b1e08595c2e0e03eabe06fa1fe134e1c889460e2c9be05a6f968c5507d79bc9c3 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001499637800019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:51:04 EDT 2025 Tue Nov 04 02:02:10 EST 2025 Fri Sep 05 15:57:24 EDT 2025 Tue Oct 07 08:25:39 EDT 2025 Tue Jun 03 01:34:04 EDT 2025 Sat Nov 29 07:50:22 EST 2025 Sat May 31 01:17:44 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Deep learning Images processing Drone Low-altitude remote sensing Real-time |
| Language | English |
| License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c494t-b1e08595c2e0e03eabe06fa1fe134e1c889460e2c9be05a6f968c5507d79bc9c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/3214008874?pq-origsite=%requestingapplication% |
| PMID | 40447715 |
| PQID | 3214008874 |
| PQPubID | 2041939 |
| PageCount | 20 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_777f4ca6ff5a4469b0a89e6827f66ba9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12125260 proquest_miscellaneous_3214316238 proquest_journals_3214008874 pubmed_primary_40447715 crossref_primary_10_1038_s41598_025_02194_6 springer_journals_10_1038_s41598_025_02194_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-30 |
| PublicationDateYYYYMMDD | 2025-05-30 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | J Qu (2194_CR42) 2023 2194_CR52 2194_CR53 2194_CR10 2194_CR55 2194_CR12 2194_CR56 2194_CR13 2194_CR14 2194_CR15 2194_CR16 S Muksimova (2194_CR5) 2025 2194_CR17 2194_CR18 2194_CR19 J Yu (2194_CR72) 2022; 14 RR Selvaraju (2194_CR73) 2020; 128 M Yue (2194_CR36) 2024 T-Y Lin (2194_CR11) 2020; 42 W Yang (2194_CR65) 2025; 28 J Su (2194_CR61) 2024; 14 S Meng (2194_CR27) 2023; 61 J Li (2194_CR66) 2025; 19 2194_CR50 SD Khan (2194_CR4) 2021; 37 Z Wang (2194_CR38) 2025; 63 2194_CR22 B Wang (2194_CR43) 2025; 55 SD Khan (2194_CR8) 2016; 177 2194_CR23 H Lou (2194_CR26) 2023 2194_CR24 2194_CR25 Z Chen (2194_CR59) 2025; 38 2194_CR28 Z Yuan (2194_CR41) 2024 H Luo (2194_CR60) 2025; 18 R Ke (2194_CR1) 2019; 20 X Liu (2194_CR64) 2025; 81 S Basalamah (2194_CR6) 2023; 35 S Muksimova (2194_CR9) 2025 M Li (2194_CR70) 2023; 13 X Liang (2194_CR71) 2020; 30 J Zhan (2194_CR21) 2024; 148 SD Khan (2194_CR2) 2022; 47 Y Li (2194_CR54) 2024 2194_CR31 S Ren (2194_CR30) 2017; 39 2194_CR32 S Muksimova (2194_CR7) 2022 2194_CR33 2194_CR34 X Lu (2194_CR68) 2025; 41 J Zhang (2194_CR20) 2024; 8 2194_CR35 Y Dong (2194_CR69) 2025; 22 S Muksimova (2194_CR3) 2024 Y Xiao (2194_CR62) 2024; 62 Z Wang (2194_CR58) 2024 F Sun (2194_CR67) 2024; 30 J Zhang (2194_CR39) 2024 2194_CR44 Z Lin (2194_CR40) 2024 2194_CR45 P Zhu (2194_CR48) 2021; 44 2194_CR46 S Zhou (2194_CR51) 2024 2194_CR47 2194_CR49 Z Chen (2194_CR29) 2024; 34 L Jiang (2194_CR37) 2024; 73 H Zhang (2194_CR57) 2024 Y Zhang (2194_CR63) 2025 |
| References_xml | – volume: 20 start-page: 54 year: 2019 ident: 2194_CR1 publication-title: IEEE Trans. Intel. Transp. Syst. doi: 10.1109/TITS.2018.2797697 – year: 2025 ident: 2194_CR5 publication-title: Diagnostics doi: 10.3390/diagnostics15030364 – volume: 30 start-page: 1758 year: 2020 ident: 2194_CR71 publication-title: IEEE Trans. Circ. Syst. Video Technol. doi: 10.1109/TCSVT.2019.2905881 – ident: 2194_CR10 – ident: 2194_CR14 doi: 10.1109/CVPR.2016.91 – ident: 2194_CR34 doi: 10.1109/CVPR52733.2024.01605 – year: 2024 ident: 2194_CR3 publication-title: Cancers doi: 10.3390/cancers16223782 – volume: 177 start-page: 543 year: 2016 ident: 2194_CR8 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.11.049 – ident: 2194_CR17 – volume: 8 start-page: 1437 year: 2024 ident: 2194_CR20 publication-title: IEEE Trans. Emerg. Top. Comput. Intel. doi: 10.1109/TETCI.2024.3349464 – year: 2023 ident: 2194_CR26 publication-title: Electronics doi: 10.3390/electronics12102323 – year: 2024 ident: 2194_CR41 publication-title: Remote Sens. doi: 10.3390/rs16224265 – volume: 42 start-page: 318 year: 2020 ident: 2194_CR11 publication-title: IEEE Trans. Pattern Anal. Mach. Intel. doi: 10.1109/TPAMI.2018.2858826 – ident: 2194_CR31 doi: 10.1109/ICCV.2015.169 – volume: 81 start-page: 548 year: 2025 ident: 2194_CR64 publication-title: J. Supercomput. doi: 10.1007/s11227-025-06987-4 – volume: 37 start-page: 2127 year: 2021 ident: 2194_CR4 publication-title: Vis. Comput. doi: 10.1007/s00371-020-01974-7 – volume: 18 start-page: 282 year: 2025 ident: 2194_CR60 publication-title: Earth Sci. Informatics doi: 10.1007/s12145-025-01808-x – year: 2024 ident: 2194_CR58 publication-title: Sensors doi: 10.3390/s24196437 – year: 2025 ident: 2194_CR9 publication-title: Sensors doi: 10.3390/s25030707 – ident: 2194_CR52 doi: 10.1109/IJCNN60899.2024.10649954 – year: 2024 ident: 2194_CR54 publication-title: Remote Sens. doi: 10.3390/rs16163057 – year: 2023 ident: 2194_CR42 publication-title: Remote Sens. doi: 10.3390/rs15112728 – volume: 14 start-page: 1574 year: 2022 ident: 2194_CR72 publication-title: IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2021.3124764 – volume: 63 start-page: 1 year: 2025 ident: 2194_CR38 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2024.3515648 – volume: 35 start-page: 102 year: 2023 ident: 2194_CR6 publication-title: J. King Saud Univ. Comput. Inf. Sci. doi: 10.1016/j.jksuci.2022.11.005 – volume: 73 start-page: 1 year: 2024 ident: 2194_CR37 publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2024.3381272 – volume: 14 start-page: 27403 year: 2024 ident: 2194_CR61 publication-title: Sci. Rep. doi: 10.1038/s41598-024-78749-w – ident: 2194_CR28 doi: 10.1109/ICCV48922.2021.00298 – ident: 2194_CR33 doi: 10.1109/ICCV.2019.00667 – ident: 2194_CR16 – ident: 2194_CR23 – year: 2024 ident: 2194_CR39 publication-title: Remote Sens. doi: 10.3390/rs16193630 – ident: 2194_CR50 – volume: 22 start-page: 46 year: 2025 ident: 2194_CR69 publication-title: J. Real-Time Image Process. doi: 10.1007/s11554-025-01622-0 – volume: 61 start-page: 1 year: 2023 ident: 2194_CR27 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2023.3295932 – ident: 2194_CR32 doi: 10.1109/CVPR.2018.00644 – volume: 19 start-page: 302 year: 2025 ident: 2194_CR66 publication-title: Signal Image Video Process. doi: 10.1007/s11760-025-03850-0 – ident: 2194_CR18 doi: 10.5281/zenodo.3908559 – year: 2024 ident: 2194_CR51 publication-title: Remote Sens. doi: 10.3390/rs16132416 – ident: 2194_CR12 – ident: 2194_CR25 – ident: 2194_CR44 doi: 10.1109/ICCV.2017.89 – year: 2022 ident: 2194_CR7 publication-title: Remote Sens. doi: 10.3390/rs14246302 – ident: 2194_CR22 – volume: 47 start-page: 9489 year: 2022 ident: 2194_CR2 publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-021-06288-x – volume: 62 start-page: 1 year: 2024 ident: 2194_CR62 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2024.3457155 – volume: 44 start-page: 7380 year: 2021 ident: 2194_CR48 publication-title: IEEE Trans. Pattern Anal. Mach. Intel. doi: 10.1109/TPAMI.2021.3119563 – volume: 39 start-page: 1137 year: 2017 ident: 2194_CR30 publication-title: IEEE Trans. Pattern Anal. Mach. Intel. doi: 10.1109/TPAMI.2016.2577031 – volume: 41 start-page: 4221 year: 2025 ident: 2194_CR68 publication-title: Vis. Comput. doi: 10.1007/s00371-024-03656-0 – ident: 2194_CR24 doi: 10.1007/978-3-031-72751-1_1 – volume: 128 start-page: 336 year: 2020 ident: 2194_CR73 publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-019-01228-7 – volume: 148 year: 2024 ident: 2194_CR21 publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2023.110152 – volume: 34 start-page: 475 year: 2024 ident: 2194_CR29 publication-title: IEEE Trans. Circ. Syst. Video Technol. doi: 10.1109/TCSVT.2023.3286896 – ident: 2194_CR15 doi: 10.1109/CVPR.2017.690 – ident: 2194_CR56 doi: 10.1109/ICSIP61881.2024.10671547 – volume: 28 start-page: 29 year: 2025 ident: 2194_CR65 publication-title: Pattern Anal. Appl. doi: 10.1007/s10044-024-01389-3 – ident: 2194_CR46 doi: 10.1109/CVPR.2018.00745 – year: 2024 ident: 2194_CR57 publication-title: Drones doi: 10.3390/drones8090453 – ident: 2194_CR13 doi: 10.1109/CVPR46437.2021.00281 – year: 2024 ident: 2194_CR36 publication-title: Drones doi: 10.3390/drones8070276 – ident: 2194_CR45 doi: 10.1109/CVPR46437.2021.01352 – volume: 30 start-page: 143 year: 2024 ident: 2194_CR67 publication-title: Multimed. Syst. doi: 10.1007/s00530-024-01342-8 – ident: 2194_CR49 doi: 10.1109/ICCV.2017.446 – volume: 38 year: 2025 ident: 2194_CR59 publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2024.06.036 – volume: 13 start-page: 9883 year: 2023 ident: 2194_CR70 publication-title: Sci. Rep. doi: 10.1038/s41598-023-36972-x – volume: 55 start-page: 277 year: 2025 ident: 2194_CR43 publication-title: Appl. Intell. doi: 10.1007/s10489-024-06073-x – year: 2025 ident: 2194_CR63 publication-title: Vis. Comput. doi: 10.1007/s00371-025-03825-9 – ident: 2194_CR47 doi: 10.1109/CVPR42600.2020.00165 – ident: 2194_CR35 – year: 2024 ident: 2194_CR40 publication-title: Remote Sens. doi: 10.3390/rs16193697 – ident: 2194_CR55 doi: 10.1109/ICASSP48485.2024.10448458 – ident: 2194_CR19 doi: 10.1109/CVPR52729.2023.00721 – ident: 2194_CR53 doi: 10.1109/ICCEIC64099.2024.10775919 |
| SSID | ssj0000529419 |
| Score | 2.456413 |
| Snippet | With advancements in drone control technology, low-altitude remote sensing image processing holds significant potential for intelligent, real-time urban... Abstract With advancements in drone control technology, low-altitude remote sensing image processing holds significant potential for intelligent, real-time... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 19071 |
| SubjectTerms | 639/166/987 639/705/117 639/705/258 639/705/794 Algorithms Altitude Computer applications Deep learning Drone Humanities and Social Sciences Image processing Images processing Information processing Low-altitude remote sensing multidisciplinary Real-time Remote sensing Science Science (multidisciplinary) |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9UwEB6hCiQuqOwpLTISN4jqxI6XY6moOKCKA0jlZNnOBCqhpHoLiH_P2M579LGIC9fYsUbf2PFMZuYbgOdWCi9NSgqLfVvLPobaS0k-j4khdNEI02cS17f6_NxcXNh311p9pZywQg9cgDvWWg8yejUMHS2ibODeWFSm1YNSwefSPa7tNWeqsHq3VjZ2rpLhwhwv6aZK1WRtKkgmz71WOzdRJuz_k5X5e7LkLxHTfBGd7cOd2YJkJ0Xyu3ADx3twq_SU_H4fPp6wQvLBppD-sdRTYjImu5L1pfk8G0vmNyNzlX2ZvtU-leCue2QLJL0hW6ac9vHT_D7rcZXTtcYH8OHs9fvTN_XcP6GO0spVHRrM9GWxRY5coA_I1eCbARshsYnGWKk4ttHSQEcQW2Vi4jfrtQ3RRvEQ9sZpxMfAOFpP2AuL5BGa0PoUgDW0olKJRExW8GKDpbsqNBkuh7eFcQV5R8i7jLxTFbxKcG9nJorr_IAU72bFu38pvoLDjbLcfO6WLrVd4unDSRI92w7TiUlhED_itC5zRENmn6ngUdHtVhLJpdS66SowO1rfEXV3ZLz8nFm5GzICOvIOK3i52SA_5fo7Fgf_A4sncLvNO7urBT-EvdVijUdwM35dXS4XT_PR-AHiThHa priority: 102 providerName: Directory of Open Access Journals |
| Title | A global object-oriented dynamic network for low-altitude remote sensing object detection |
| URI | https://link.springer.com/article/10.1038/s41598-025-02194-6 https://www.ncbi.nlm.nih.gov/pubmed/40447715 https://www.proquest.com/docview/3214008874 https://www.proquest.com/docview/3214316238 https://pubmed.ncbi.nlm.nih.gov/PMC12125260 https://doaj.org/article/777f4ca6ff5a4469b0a89e6827f66ba9 |
| Volume | 15 |
| WOSCitedRecordID | wos001499637800019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BFyQuvKGBsjISN4iaxI4fJ9SiViDRVYRA2p4s23HaSihpN7sg_j0eJ7vV8rpw8SF2HDszY49nxt8AvFKMGiYxKMzVRcpqZ1PDWDjzSGdt6SSVdQRx_ShmMzmfq2o0uPVjWOV6TYwLdd05tJHvY0KdDEWCvb28SjFrFHpXxxQaN2GCabORz8VcbGws6MViuRrvymRU7vdhv8I7ZQVeSw7n95Rv7UcRtv9PuubvIZO_-E3jdnR8738nch_ujoooORg45wHc8O1DuD2kpvzxCE4PyIAVQjqLphrsAuE7a1IPOexJOwSQk6D1kq_d99TgTd5V7cnCB_J70mNofHs2vk9qv4xRX-1j-HJ89Pnd-3RMw5A6ptgytbmPKGiu8JnPqDfWZ7wxeeNzynzupFSMZ75wKlSUhjeKS4cwabVQ1ilHn8BO27V-F0jmleHKUuXDwVLawqAfV4YeOUcsMpbA6zUx9OWAtqGjl5xKPZBOB9LpSDrNEzhEem1aIlJ2fNAtzvQoeFoI0TAXRtWUgQnDxzMjleeyEA3n1qgE9tZk0qP49vqaRgm83FQHwUNviml9txra0DxojzKBpwNzbEbCMsaEyMsE5BbbbA11u6a9OI_g3nnQJcpwyEzgzZrDrsf193_x7N_TeA53isj0ZUqzPdhZLlb-Bdxy35YX_WIapSaWcgqTw6NZ9WkajROhPCkqLEUoJ9WHk-r0J15RJoI |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQguvB-BAkaCE0R1EsexDwiVR9VVt6s9FKk9GcdxykqQlM0u1f4pfiMeJ9lqed164LpOsuPkm_HYM_MNwHPJEs0EJoWZIg5ZYfJQM-b2PMLkeWpEIgpP4jrKxmNxdCQnG_Cjr4XBtMreJnpDXdQGz8i3saEORZVgb06_hdg1CqOrfQuNFhb7dnnmtmzN6-F7931fxPHuh8N3e2HXVSA0TLJ5mEfWk3qZ2FJLE6tzS3mpo9JGCbOREUIyTm1spBtINS8lFwZZv4pM5kaaxD33Emy6CaV0AJuT4cHkeHWqg3EzFsmuOocmYrtxKyRWscVYCB1JFvK1FdA3CviTd_t7kuYvkVq_AO7e-N9e3U243rnaZKfVjVuwYavbcKVtvrm8A8c7pGVDIXWOh1EoMhKUFqRYVvrr1JCqTZEnzq8nX-qzUGOt8qKwZGYdwC1pMPm_OunuJ4Wd-7y26i58vJB53YNBVVf2ARBqpeYyT6R1W2eRxxoj1cI9kXNkW2MBvOw_vjpt-USUzwNIhGqhohxUlIeK4gG8RXysrkQucP9DPTtRnWlRWZaVzDipytSpmftzqoW0XMRZyXmuZQBbPSxUZ6AadY6JAJ6thp1pwXiRrmy9aK9JIucfiwDut2BcScIoY1kWpQGINZiuibo-Uk0_e_ryyHlLqdtGB_CqR_S5XH9_Fw__PY2ncHXv8GCkRsPx_iO4FnuFS8OEbsFgPlvYx3DZfJ9Pm9mTTmcJfLporP8Ed5x-3w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED-NDhAvfH8EBhgJniBqEjuO_YDQxlYxbaoqBNJ48hzHGZUgGU3L1H-Nvw6fk3QqX2974LVO00v6u_Od7-53AM8lo5oJLAozRRKywuShZszFPMLkeWoEFYUncT3MxmNxdCQnG_Cj74XBssreJnpDXdQGz8iHOFAnQpVgw7Iri5jsjt6cfgtxghRmWvtxGi1EDuzyzIVvzev9Xfdfv0iS0d6Ht-_CbsJAaJhk8zCPrSf4MomNbEStzm3ESx2XNqbMxkYIyXhkEyPdQqp5KbkwyABWZDI30lB330uwmVEX9Axgc2dvPHm_OuHBHBqLZdepE1ExbNxuiR1tCTZFx5KFfG039EMD_uTp_l6w-UvW1m-Goxv_82u8Cdc7F5xstzpzCzZsdRuutEM5l3fg0zZpWVJIneMhFYqMxKUFKZaV_jo1pGpL54nz98mX-izU2MO8KCyZWQd8SxpsCqhOuu-Tws59vVt1Fz5eyHPdg0FVV_YBkMhKzWVOpXUhtcgTjRls4e7IObKwsQBe9kBQpy3PiPL1AVSoFjbKwUZ52CgewA5iZXUlcoT7D-rZiepMjsqyrGTGSVWmTv3cj0daSMtFkpWc51oGsNVDRHWGq1Hn-Ajg2WrZmRzMI-nK1ov2Gho7v1kEcL8F5koSFjGWZXEagFiD7Jqo6yvV9LOnNY-dF5W68DqAVz26z-X6-7t4-O_HeApXHcDV4f744BFcS7zupSGNtmAwny3sY7hsvs-nzexJp74Eji8a6j8BrsSHeQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+global+object-oriented+dynamic+network+for+low-altitude+remote+sensing+object+detection&rft.jtitle=Scientific+reports&rft.au=Tang%2C+Daoze&rft.au=Tang%2C+Shuyun&rft.au=Wang%2C+Yalin&rft.au=Guan%2C+Shaoyun&rft.date=2025-05-30&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-02194-6&rft.externalDocID=10_1038_s41598_025_02194_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |