Scalable Nearest Neighbor Algorithms for High Dimensional Data
For many computer vision and machine learning problems, large training sets are key for good performance. However, the most computationally expensive part of many computer vision and machine learning algorithms consists of finding nearest neighbor matches to high dimensional vectors that represent t...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence Jg. 36; H. 11; S. 2227 - 2240 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.11.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0162-8828, 1939-3539, 2160-9292, 1939-3539 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | For many computer vision and machine learning problems, large training sets are key for good performance. However, the most computationally expensive part of many computer vision and machine learning algorithms consists of finding nearest neighbor matches to high dimensional vectors that represent the training data. We propose new algorithms for approximate nearest neighbor matching and evaluate and compare them with previous algorithms. For matching high dimensional features, we find two algorithms to be the most efficient: the randomized k-d forest and a new algorithm proposed in this paper, the priority search k-means tree. We also propose a new algorithm for matching binary features by searching multiple hierarchical clustering trees and show it outperforms methods typically used in the literature. We show that the optimal nearest neighbor algorithm and its parameters depend on the data set characteristics and describe an automated configuration procedure for finding the best algorithm to search a particular data set. In order to scale to very large data sets that would otherwise not fit in the memory of a single machine, we propose a distributed nearest neighbor matching framework that can be used with any of the algorithms described in the paper. All this research has been released as an open source library called fast library for approximate nearest neighbors (FLANN), which has been incorporated into OpenCV and is now one of the most popular libraries for nearest neighbor matching. |
|---|---|
| AbstractList | For many computer vision and machine learning problems, large training sets are key for good performance. However, the most computationally expensive part of many computer vision and machine learning algorithms consists of finding nearest neighbor matches to high dimensional vectors that represent the training data. We propose new algorithms for approximate nearest neighbor matching and evaluate and compare them with previous algorithms. For matching high dimensional features, we find two algorithms to be the most efficient: the randomized k-d forest and a new algorithm proposed in this paper, the priority search k-means tree. We also propose a new algorithm for matching binary features by searching multiple hierarchical clustering trees and show it outperforms methods typically used in the literature. We show that the optimal nearest neighbor algorithm and its parameters depend on the data set characteristics and describe an automated configuration procedure for finding the best algorithm to search a particular data set. In order to scale to very large data sets that would otherwise not fit in the memory of a single machine, we propose a distributed nearest neighbor matching framework that can be used with any of the algorithms described in the paper. All this research has been released as an open source library called fast library for approximate nearest neighbors (FLANN), which has been incorporated into OpenCV and is now one of the most popular libraries for nearest neighbor matching.For many computer vision and machine learning problems, large training sets are key for good performance. However, the most computationally expensive part of many computer vision and machine learning algorithms consists of finding nearest neighbor matches to high dimensional vectors that represent the training data. We propose new algorithms for approximate nearest neighbor matching and evaluate and compare them with previous algorithms. For matching high dimensional features, we find two algorithms to be the most efficient: the randomized k-d forest and a new algorithm proposed in this paper, the priority search k-means tree. We also propose a new algorithm for matching binary features by searching multiple hierarchical clustering trees and show it outperforms methods typically used in the literature. We show that the optimal nearest neighbor algorithm and its parameters depend on the data set characteristics and describe an automated configuration procedure for finding the best algorithm to search a particular data set. In order to scale to very large data sets that would otherwise not fit in the memory of a single machine, we propose a distributed nearest neighbor matching framework that can be used with any of the algorithms described in the paper. All this research has been released as an open source library called fast library for approximate nearest neighbors (FLANN), which has been incorporated into OpenCV and is now one of the most popular libraries for nearest neighbor matching. For many computer vision and machine learning problems, large training sets are key for good performance. However, the most computationally expensive part of many computer vision and machine learning algorithms consists of finding nearest neighbor matches to high dimensional vectors that represent the training data. We propose new algorithms for approximate nearest neighbor matching and evaluate and compare them with previous algorithms. For matching high dimensional features, we find two algorithms to be the most efficient: the randomized k-d forest and a new algorithm proposed in this paper, the priority search k-means tree. We also propose a new algorithm for matching binary features by searching multiple hierarchical clustering trees and show it outperforms methods typically used in the literature. We show that the optimal nearest neighbor algorithm and its parameters depend on the data set characteristics and describe an automated configuration procedure for finding the best algorithm to search a particular data set. In order to scale to very large data sets that would otherwise not fit in the memory of a single machine, we propose a distributed nearest neighbor matching framework that can be used with any of the algorithms described in the paper. All this research has been released as an open source library called fast library for approximate nearest neighbors (FLANN), which has been incorporated into OpenCV and is now one of the most popular libraries for nearest neighbor matching. |
| Author | Lowe, David G. Muja, Marius |
| Author_xml | – sequence: 1 givenname: Marius surname: Muja fullname: Muja, Marius email: mariusm@cs.ubc.ca organization: BitLit Media Inc., Vancouver, BC, Canada – sequence: 2 givenname: David G. surname: Lowe fullname: Lowe, David G. email: lowe@cs.ubc.ca organization: Comput. Sci. Dept., Univ. of British Columbia (UBC), Vancouver, BC, Canada |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26353063$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkclOwzAQhi0EghZ4AZBQJC5cUrzEjn1BqlqWSmWRgHPkOONilAXs9MDbY9rCgQOcRjP6_tn-IdpuuxYQOiJ4RAhW508P49vZiGKSjSijhOViCw0oEThVVNFtNMBE0FRKKvfQMIRXHEmO2S7ao4JxhgUboItHo2td1pDcgfYQ-hjd4qXsfDKuF513_UsTEhvTm1hOpq6BNriu1XUy1b0-QDtW1wEON3EfPV9dPk1u0vn99WwynqcmU1mfamDSGmV1VmnDudVWcGpEJTkzuQUlacmNLEVWSmkty8ESVpXAuKlohfOc7aOzdd83370v45pF44KButYtdMtQkFxQLAmNh_2PEsJZxlddT3-hr93Sx9siJXKhMiYxi9TJhlqWDVTFm3eN9h_F9xMjQNeA8V0IHuwPQnDx5VSxcqr4cqrYOBVF8pfIuF738bW9167-W3q8ljoA-JklJFZEEfYJhIme4Q |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_3390_a15050170 crossref_primary_10_4018_IJEHMC_2017100103 crossref_primary_10_1109_TFUZZ_2020_2979365 crossref_primary_10_1109_TII_2020_2972290 crossref_primary_10_1016_j_neucom_2019_06_065 crossref_primary_10_1109_TVCG_2016_2570755 crossref_primary_10_1109_TVCG_2019_2934307 crossref_primary_10_1145_3284555 crossref_primary_10_3390_rs10020310 crossref_primary_10_1109_JSTARS_2015_2461556 crossref_primary_10_1016_j_engappai_2024_108944 crossref_primary_10_1016_j_cag_2022_01_006 crossref_primary_10_1109_TKDE_2017_2761347 crossref_primary_10_1109_TNNLS_2018_2830700 crossref_primary_10_3233_JIFS_232279 crossref_primary_10_1007_s40747_024_01384_5 crossref_primary_10_1016_j_patrec_2018_07_036 crossref_primary_10_1109_TIP_2024_3473301 crossref_primary_10_1109_TKDE_2019_2953897 crossref_primary_10_1007_s10994_018_5711_7 crossref_primary_10_1016_j_future_2019_04_033 crossref_primary_10_1145_3709729 crossref_primary_10_1007_s10115_023_01899_2 crossref_primary_10_1002_cpe_4634 crossref_primary_10_1016_j_cviu_2016_02_015 crossref_primary_10_1016_j_pss_2018_01_007 crossref_primary_10_1088_1757_899X_435_1_012001 crossref_primary_10_1016_j_daach_2024_e00329 crossref_primary_10_1007_s00138_015_0689_7 crossref_primary_10_1007_s11042_018_7004_3 crossref_primary_10_1145_3196826 crossref_primary_10_1109_ACCESS_2022_3195488 crossref_primary_10_1007_s10586_024_04731_w crossref_primary_10_1109_TGRS_2019_2913004 crossref_primary_10_1117_1_JEI_32_2_023020 crossref_primary_10_1016_j_fss_2018_01_019 crossref_primary_10_1016_j_isprsjprs_2022_01_010 crossref_primary_10_1016_j_cad_2019_01_006 crossref_primary_10_3390_rs11232869 crossref_primary_10_1109_ACCESS_2019_2930339 crossref_primary_10_24201_edu_v37i3_2048 crossref_primary_10_1109_ACCESS_2020_3020621 crossref_primary_10_1109_TIP_2016_2624141 crossref_primary_10_1145_3749167 crossref_primary_10_1109_TKDE_2015_2460735 crossref_primary_10_1145_3434769 crossref_primary_10_1145_3709743 crossref_primary_10_1145_3733610 crossref_primary_10_1016_j_sigpro_2021_108082 crossref_primary_10_3389_fenrg_2024_1448362 crossref_primary_10_1016_j_jvcir_2016_01_003 crossref_primary_10_3389_fnagi_2016_00077 crossref_primary_10_1007_s11390_022_2185_7 crossref_primary_10_3390_informatics4030024 crossref_primary_10_1109_TCSS_2022_3205015 crossref_primary_10_1109_TPAMI_2017_2679100 crossref_primary_10_1109_ACCESS_2018_2871729 crossref_primary_10_3390_drones8090502 crossref_primary_10_1007_s10559_016_9899_x crossref_primary_10_1109_TMM_2020_3038305 crossref_primary_10_1007_s11554_016_0607_x crossref_primary_10_1007_s42786_022_00043_y crossref_primary_10_1109_ACCESS_2020_3020632 crossref_primary_10_1109_ACCESS_2020_3042885 crossref_primary_10_1007_s10462_018_9673_8 crossref_primary_10_1177_1687814020962587 crossref_primary_10_1007_s10559_017_9966_y crossref_primary_10_1109_TPAMI_2018_2848925 crossref_primary_10_1016_j_neucom_2015_06_061 crossref_primary_10_1016_j_cmpb_2020_105370 crossref_primary_10_1007_s12555_018_0790_6 crossref_primary_10_1007_s00138_021_01176_8 crossref_primary_10_1109_TR_2019_2892230 crossref_primary_10_1109_OAJPE_2025_3573961 crossref_primary_10_1016_j_patcog_2018_07_027 crossref_primary_10_3390_rs15041116 crossref_primary_10_1109_TFUZZ_2019_2949769 crossref_primary_10_1016_j_ins_2016_08_009 crossref_primary_10_1016_j_neunet_2019_09_014 crossref_primary_10_1016_j_patcog_2017_11_003 crossref_primary_10_1145_3654970 crossref_primary_10_1016_j_patcog_2017_11_008 crossref_primary_10_1016_j_sysarc_2025_103514 crossref_primary_10_1109_TCSVT_2023_3309661 crossref_primary_10_1145_3291057 crossref_primary_10_1109_TIFS_2015_2421332 crossref_primary_10_1007_s00138_018_00999_2 crossref_primary_10_1016_j_ins_2019_01_010 crossref_primary_10_1007_s13735_017_0140_0 crossref_primary_10_1109_TSMC_2019_2956527 crossref_primary_10_1177_0278364920917465 crossref_primary_10_1109_TMI_2015_2508150 crossref_primary_10_1007_s11042_022_12248_w crossref_primary_10_1016_j_media_2021_102104 crossref_primary_10_3390_s24186079 crossref_primary_10_1109_ACCESS_2017_2689040 crossref_primary_10_1016_j_neucom_2016_05_109 crossref_primary_10_3390_math8091613 crossref_primary_10_1007_s40747_024_01461_9 crossref_primary_10_3390_app122211675 crossref_primary_10_1016_j_future_2022_03_040 crossref_primary_10_3389_fepid_2025_1563731 crossref_primary_10_1109_ACCESS_2020_2997387 crossref_primary_10_1109_ACCESS_2019_2928380 crossref_primary_10_1109_TIV_2024_3378716 crossref_primary_10_1145_3639471 crossref_primary_10_1109_MGRS_2015_2502280 crossref_primary_10_1016_j_neucom_2021_04_029 crossref_primary_10_1007_s12596_022_01024_6 crossref_primary_10_1016_j_measurement_2021_110043 crossref_primary_10_1016_j_ins_2024_120731 crossref_primary_10_1109_ACCESS_2020_3037118 crossref_primary_10_1109_TAI_2021_3052425 crossref_primary_10_1587_transinf_2017EDP7275 crossref_primary_10_1109_TGRS_2021_3099506 crossref_primary_10_14778_3748191_3748212 crossref_primary_10_1016_j_patcog_2024_111006 crossref_primary_10_1016_j_spc_2022_05_022 crossref_primary_10_1109_TVCG_2022_3193406 crossref_primary_10_1145_3486250 crossref_primary_10_1049_iet_ifs_2018_5287 crossref_primary_10_1515_pjbr_2018_0006 crossref_primary_10_3390_math12233872 crossref_primary_10_7717_peerj_cs_571 crossref_primary_10_1007_s00778_020_00635_4 crossref_primary_10_3233_JIFS_179101 crossref_primary_10_4218_etrij_17_0116_0584 crossref_primary_10_1007_s11042_020_09717_5 crossref_primary_10_1109_JIOT_2023_3341146 crossref_primary_10_1109_TIP_2015_2485783 crossref_primary_10_1109_TIP_2019_2910662 crossref_primary_10_1061__ASCE_CP_1943_5487_0000616 crossref_primary_10_1007_s11390_019_1932_x crossref_primary_10_1016_j_jbi_2021_103714 crossref_primary_10_1145_3589282 crossref_primary_10_14778_3725688_3725696 crossref_primary_10_1016_j_cviu_2017_04_002 crossref_primary_10_1016_j_compbiolchem_2020_107206 crossref_primary_10_1016_j_neucom_2022_12_019 crossref_primary_10_1016_j_jestch_2022_101098 crossref_primary_10_1186_s13634_021_00795_7 crossref_primary_10_1016_j_mri_2019_01_011 crossref_primary_10_1109_TIM_2023_3260263 crossref_primary_10_1109_TBDATA_2021_3101517 crossref_primary_10_1007_s11277_017_4502_y crossref_primary_10_1016_j_ins_2019_01_026 crossref_primary_10_1016_j_knosys_2025_113343 crossref_primary_10_1080_15230406_2020_1762513 crossref_primary_10_1109_TVCG_2018_2849386 crossref_primary_10_1007_s10489_020_01730_3 crossref_primary_10_1145_3709712 crossref_primary_10_1073_pnas_1700770114 crossref_primary_10_1109_LWC_2025_3568164 crossref_primary_10_1134_S1054661819030064 crossref_primary_10_1587_transinf_2017EDP7050 crossref_primary_10_1016_j_eswa_2024_126254 crossref_primary_10_1016_j_foodres_2024_114464 crossref_primary_10_1007_s10586_018_1940_6 crossref_primary_10_1109_TKDE_2022_3220683 crossref_primary_10_1109_TPAMI_2019_2902391 crossref_primary_10_1007_s11042_018_5955_z crossref_primary_10_1016_j_ijar_2018_10_018 crossref_primary_10_1109_ACCESS_2023_3268862 crossref_primary_10_1109_ACCESS_2023_3288594 crossref_primary_10_1016_j_isprsjprs_2022_03_018 crossref_primary_10_1109_TMM_2016_2625260 crossref_primary_10_1016_j_ins_2018_07_005 crossref_primary_10_1109_TIP_2018_2873064 crossref_primary_10_1111_exsy_13139 crossref_primary_10_1109_TBDATA_2016_2557348 crossref_primary_10_1109_ACCESS_2020_2969287 crossref_primary_10_1007_s00205_022_01836_7 crossref_primary_10_1016_j_tcs_2020_12_039 crossref_primary_10_1007_s10618_019_00621_7 crossref_primary_10_1007_s13369_016_2405_y crossref_primary_10_3390_ijgi8020090 crossref_primary_10_1007_s11042_018_6039_9 crossref_primary_10_1016_j_patcog_2015_06_017 crossref_primary_10_1109_TNNLS_2025_3543947 crossref_primary_10_1109_TSMC_2023_3234227 crossref_primary_10_1016_j_patcog_2025_111854 crossref_primary_10_1038_s41592_019_0666_6 crossref_primary_10_1016_j_knosys_2019_06_032 crossref_primary_10_1109_LSENS_2023_3334724 crossref_primary_10_1016_j_neucom_2017_07_038 crossref_primary_10_1109_TCSVT_2018_2838453 crossref_primary_10_1109_TIP_2018_2865674 crossref_primary_10_1007_s11263_015_0878_x crossref_primary_10_1049_iet_cvi_2018_5613 crossref_primary_10_1107_S1600576716011353 crossref_primary_10_1016_j_eswa_2022_119068 crossref_primary_10_1109_LSP_2022_3179168 crossref_primary_10_1007_s00224_020_10009_6 crossref_primary_10_1007_s11042_015_3125_0 crossref_primary_10_1109_TITS_2017_2749974 crossref_primary_10_1177_0278364919872252 crossref_primary_10_1016_j_asoc_2024_111518 crossref_primary_10_1109_TMM_2017_2692181 crossref_primary_10_1016_j_cma_2022_115704 crossref_primary_10_1016_j_jpdc_2020_11_004 crossref_primary_10_1080_00221686_2020_1818309 crossref_primary_10_14778_3749646_3749666 crossref_primary_10_1145_3701624 crossref_primary_10_1109_TIP_2018_2881906 crossref_primary_10_3390_ijgi9010034 crossref_primary_10_1145_2980179_2982438 crossref_primary_10_1038_s41598_017_11873_y crossref_primary_10_1109_TIFS_2018_2796999 crossref_primary_10_1177_14738716221086589 crossref_primary_10_1111_cgf_12966 crossref_primary_10_1109_TIP_2017_2691799 crossref_primary_10_1016_j_patcog_2020_107624 crossref_primary_10_1109_TCYB_2016_2636370 crossref_primary_10_1109_TNNLS_2023_3297261 crossref_primary_10_1016_j_neucom_2023_126788 crossref_primary_10_1109_TMC_2021_3093619 crossref_primary_10_3390_agronomy10081137 crossref_primary_10_1080_15732479_2017_1330891 crossref_primary_10_1145_3237189 crossref_primary_10_1109_TIP_2018_2874289 crossref_primary_10_1016_j_ins_2021_01_042 crossref_primary_10_1016_j_patcog_2016_05_021 crossref_primary_10_1109_TPAMI_2022_3174130 crossref_primary_10_1109_LRA_2018_2795651 crossref_primary_10_3390_su15042947 crossref_primary_10_1016_j_knosys_2020_105474 crossref_primary_10_1016_j_parco_2018_12_005 crossref_primary_10_3390_app14020751 crossref_primary_10_1109_TMM_2015_2446201 crossref_primary_10_1016_j_jvcir_2017_01_013 crossref_primary_10_3390_rs15133411 crossref_primary_10_14778_3717755_3717770 crossref_primary_10_1016_j_cose_2017_11_014 crossref_primary_10_1016_j_patcog_2017_06_001 crossref_primary_10_1016_j_procs_2025_04_121 crossref_primary_10_3390_app8060913 crossref_primary_10_1109_TMECH_2018_2854544 crossref_primary_10_1016_j_isprsjprs_2018_12_005 crossref_primary_10_1109_TVCG_2018_2869149 crossref_primary_10_1109_MCG_2017_3621224 crossref_primary_10_1016_j_compgeo_2025_107362 crossref_primary_10_3390_su14063428 crossref_primary_10_1016_j_patcog_2017_09_038 crossref_primary_10_1109_TIP_2020_2972102 crossref_primary_10_1109_TMI_2017_2750978 crossref_primary_10_1007_s00158_019_02320_9 crossref_primary_10_1007_s10559_018_0016_1 crossref_primary_10_3390_rs70606932 crossref_primary_10_1016_j_cities_2016_07_007 crossref_primary_10_1109_TIM_2020_3028401 crossref_primary_10_1109_LSP_2018_2820645 crossref_primary_10_1109_TGRS_2019_2908381 crossref_primary_10_1016_j_infsof_2024_107476 crossref_primary_10_1109_TCSVT_2023_3253548 crossref_primary_10_1080_01431161_2021_1956698 crossref_primary_10_1016_j_optlaseng_2017_05_011 crossref_primary_10_1016_j_patcog_2017_09_043 crossref_primary_10_1049_iet_ipr_2017_0880 crossref_primary_10_1038_s41467_023_39279_7 crossref_primary_10_1016_j_bdr_2021_100223 crossref_primary_10_3390_app9010142 crossref_primary_10_1109_TKDE_2018_2873791 crossref_primary_10_1109_TIM_2021_3134326 crossref_primary_10_1109_TPAMI_2018_2882816 crossref_primary_10_1017_jfm_2016_430 crossref_primary_10_1007_s00500_019_04330_7 crossref_primary_10_2139_ssrn_5372886 crossref_primary_10_1007_s00778_024_00894_5 crossref_primary_10_2478_amcs_2019_0034 crossref_primary_10_1016_j_neucom_2017_05_042 crossref_primary_10_1016_j_isprsjprs_2019_08_005 crossref_primary_10_1007_s11263_020_01297_z crossref_primary_10_1109_TMM_2016_2614427 crossref_primary_10_1002_nla_2371 crossref_primary_10_1007_s00138_019_01045_5 crossref_primary_10_1016_j_cam_2015_01_041 crossref_primary_10_1016_j_compag_2024_109199 crossref_primary_10_1109_TIT_2022_3226479 crossref_primary_10_3390_s16050667 crossref_primary_10_1109_TCSVT_2019_2896438 crossref_primary_10_1089_big_2021_0420 crossref_primary_10_3390_sym12040519 crossref_primary_10_1109_TPAMI_2024_3400281 crossref_primary_10_3233_JIFS_179073 crossref_primary_10_1016_j_ijdrr_2025_105655 crossref_primary_10_1109_ACCESS_2020_2987966 crossref_primary_10_3390_app8091676 crossref_primary_10_1007_s10559_017_9983_x crossref_primary_10_1016_j_patcog_2019_02_015 crossref_primary_10_3390_drones6070175 crossref_primary_10_1080_22348972_2017_1345371 crossref_primary_10_1137_15M1026377 crossref_primary_10_1587_transinf_2017EDP7215 crossref_primary_10_1007_s11390_019_1900_5 crossref_primary_10_1186_s40064_016_1906_1 crossref_primary_10_1007_s11704_018_7304_9 crossref_primary_10_3390_s18082577 crossref_primary_10_1109_TKDE_2024_3381111 crossref_primary_10_1155_er_8940534 crossref_primary_10_1109_TPAMI_2018_2889473 crossref_primary_10_1109_TVLSI_2024_3496589 crossref_primary_10_3390_app15115969 crossref_primary_10_1109_TIP_2017_2678163 crossref_primary_10_1145_3725413 crossref_primary_10_1177_14738716251342965 crossref_primary_10_1109_TMI_2021_3123252 crossref_primary_10_14778_3725688_3725709 crossref_primary_10_1109_JSEN_2021_3131579 crossref_primary_10_1109_TMM_2016_2645398 crossref_primary_10_1049_iet_cvi_2015_0137 crossref_primary_10_1109_TII_2023_3274216 crossref_primary_10_1016_j_ins_2018_09_012 crossref_primary_10_1007_s10489_025_06596_x crossref_primary_10_1109_TIP_2021_3134456 crossref_primary_10_1371_journal_pone_0226067 crossref_primary_10_1177_02783649231166977 crossref_primary_10_1007_s11042_018_6626_9 crossref_primary_10_1007_s11263_016_0926_1 crossref_primary_10_1007_s10115_024_02272_7 crossref_primary_10_1109_TBME_2018_2884319 crossref_primary_10_3390_info11020069 crossref_primary_10_3390_s150819937 crossref_primary_10_1016_j_cma_2023_116385 crossref_primary_10_1109_TIP_2016_2576402 crossref_primary_10_1186_s12859_018_2453_2 crossref_primary_10_1016_j_imavis_2017_08_008 crossref_primary_10_1109_LSP_2018_2816582 crossref_primary_10_1016_j_future_2021_06_058 crossref_primary_10_1016_j_isprsjprs_2020_01_015 crossref_primary_10_3390_signals2020021 crossref_primary_10_1109_TMC_2016_2595573 crossref_primary_10_1016_j_knosys_2025_114171 crossref_primary_10_1109_TCYB_2018_2869861 crossref_primary_10_1016_j_isprsjprs_2018_11_009 crossref_primary_10_1016_j_asoc_2020_106676 crossref_primary_10_1080_08927022_2017_1400164 crossref_primary_10_1109_TIP_2018_2872831 crossref_primary_10_3390_app9020237 crossref_primary_10_1016_j_jisa_2024_103863 crossref_primary_10_1186_s41074_017_0024_5 crossref_primary_10_1007_s11042_017_5582_0 crossref_primary_10_1016_j_jpdc_2020_10_001 crossref_primary_10_1016_j_acha_2017_08_004 crossref_primary_10_1145_3161173 crossref_primary_10_1007_s10489_022_03253_5 crossref_primary_10_1016_j_isprsjprs_2018_04_023 crossref_primary_10_1017_S0263574725000517 crossref_primary_10_1016_j_ins_2022_11_024 crossref_primary_10_1109_TPAMI_2017_2652468 crossref_primary_10_1016_j_mechatronics_2018_07_007 crossref_primary_10_1109_TNNLS_2015_2437901 crossref_primary_10_1109_TCOMM_2024_3478108 crossref_primary_10_3390_ijgi12070295 crossref_primary_10_1088_2057_1976_abaf5c crossref_primary_10_1016_j_cviu_2019_04_005 crossref_primary_10_1007_s11042_020_10262_4 crossref_primary_10_1016_j_icte_2021_01_003 crossref_primary_10_3390_s22218264 crossref_primary_10_1016_j_jvcir_2019_02_017 crossref_primary_10_1109_TGRS_2017_2703084 crossref_primary_10_1016_j_patrec_2017_10_038 crossref_primary_10_1109_TBDATA_2017_2677964 crossref_primary_10_1016_j_neucom_2024_128728 crossref_primary_10_1587_transinf_2015EDP7333 crossref_primary_10_1016_j_cad_2018_04_010 crossref_primary_10_1109_TBDATA_2017_2697441 crossref_primary_10_1109_TPAMI_2023_3307889 crossref_primary_10_1002_adem_201600668 crossref_primary_10_1007_s10044_020_00946_w crossref_primary_10_1109_TPAMI_2019_2907086 crossref_primary_10_1049_trit_2018_1041 crossref_primary_10_1007_s00500_020_05467_6 crossref_primary_10_1007_s11042_017_5034_x crossref_primary_10_1002_ijc_34699 crossref_primary_10_1007_s10559_017_9914_x crossref_primary_10_1016_j_isprsjprs_2021_10_017 crossref_primary_10_1049_iet_syb_2015_0064 crossref_primary_10_1109_TVCG_2021_3114865 crossref_primary_10_1109_TBDATA_2022_3161156 crossref_primary_10_1016_j_bspc_2021_102443 crossref_primary_10_1111_cgf_12998 crossref_primary_10_1109_TCSVT_2022_3174577 crossref_primary_10_1080_17480930_2024_2410041 crossref_primary_10_1016_j_egyr_2021_07_077 crossref_primary_10_1109_TMM_2021_3073811 crossref_primary_10_1109_TPAMI_2017_2709749 crossref_primary_10_1016_j_cag_2020_02_004 crossref_primary_10_1016_j_neunet_2024_106697 crossref_primary_10_1016_j_patcog_2017_02_036 crossref_primary_10_1038_s41598_025_09856_5 crossref_primary_10_1016_j_neuroimage_2019_116208 crossref_primary_10_1016_j_patrec_2020_02_018 crossref_primary_10_1017_S0263574718000164 crossref_primary_10_1109_TASLP_2018_2809864 crossref_primary_10_1109_ACCESS_2022_3158682 crossref_primary_10_1109_TKDE_2024_3401075 crossref_primary_10_3390_computers9040096 crossref_primary_10_1016_j_neucom_2018_02_072 crossref_primary_10_1016_j_aei_2023_102268 crossref_primary_10_1016_j_eswa_2021_115297 crossref_primary_10_1016_j_image_2019_08_009 crossref_primary_10_1016_j_jpdc_2019_06_003 crossref_primary_10_1016_j_eswa_2022_117885 crossref_primary_10_1016_j_eswa_2021_115293 crossref_primary_10_1109_TKDE_2017_2654445 crossref_primary_10_3390_s21061944 crossref_primary_10_1007_s10514_017_9664_7 crossref_primary_10_1177_0278364914548708 crossref_primary_10_1016_j_knosys_2020_106374 crossref_primary_10_1107_S1600576716004039 crossref_primary_10_1016_j_inffus_2020_03_008 crossref_primary_10_1016_j_patcog_2023_109442 crossref_primary_10_1016_j_image_2018_06_001 crossref_primary_10_4018_IJEHMC_2017070104 crossref_primary_10_3390_app11062761 crossref_primary_10_1049_el_2015_2806 crossref_primary_10_1109_TDSC_2021_3049942 crossref_primary_10_1016_j_mri_2017_07_007 crossref_primary_10_1109_ACCESS_2025_3590790 crossref_primary_10_1007_s10489_024_05962_5 crossref_primary_10_1016_j_cviu_2016_07_011 crossref_primary_10_1016_j_knosys_2023_110281 crossref_primary_10_1109_TBDATA_2017_2757522 crossref_primary_10_1007_s11760_016_0966_6 crossref_primary_10_1109_TKDE_2019_2909204 crossref_primary_10_3390_rs16020214 crossref_primary_10_1007_s11042_018_6059_5 crossref_primary_10_3390_s21155013 crossref_primary_10_1109_TPAMI_2017_2727048 crossref_primary_10_1186_s41074_017_0034_3 crossref_primary_10_1145_2766959 crossref_primary_10_1016_j_procs_2016_05_319 crossref_primary_10_1016_j_cviu_2015_05_009 crossref_primary_10_1016_j_compeleceng_2021_107002 crossref_primary_10_1016_j_patcog_2019_107082 crossref_primary_10_3390_drones7030212 crossref_primary_10_1145_3381028 crossref_primary_10_3233_JIFS_220629 crossref_primary_10_1007_s00778_022_00762_0 crossref_primary_10_1016_j_ins_2021_10_027 crossref_primary_10_1109_TCSVT_2019_2943892 crossref_primary_10_1016_j_jpdc_2018_11_009 crossref_primary_10_1088_1361_6501_ad2c4f crossref_primary_10_1186_s13638_021_01941_3 crossref_primary_10_1016_j_energy_2025_135747 crossref_primary_10_1016_j_patcog_2023_109300 crossref_primary_10_1007_s10559_018_0034_z crossref_primary_10_1109_TCSVT_2016_2632302 crossref_primary_10_1109_TMM_2024_3405664 crossref_primary_10_3389_frobt_2022_982131 crossref_primary_10_1007_s10044_016_0546_y crossref_primary_10_1109_TNNLS_2018_2850823 crossref_primary_10_1109_LRA_2020_3036615 crossref_primary_10_1017_S0956792520000406 crossref_primary_10_1007_s00466_016_1262_6 crossref_primary_10_1145_3484730 crossref_primary_10_1007_s10586_023_04159_8 crossref_primary_10_1038_s41598_019_57255_4 crossref_primary_10_1007_s12652_021_03386_4 crossref_primary_10_1016_j_jvcir_2021_103253 crossref_primary_10_1088_1361_6501_aab5a0 crossref_primary_10_3390_electronics12091971 crossref_primary_10_1016_j_jaap_2024_106596 crossref_primary_10_1145_3626729 crossref_primary_10_3390_rs11070858 crossref_primary_10_3390_s19183855 crossref_primary_10_1145_3639269 crossref_primary_10_1109_TIE_2020_2978722 crossref_primary_10_1109_TITS_2022_3215538 crossref_primary_10_1177_00405175211037186 crossref_primary_10_3390_rs14061516 crossref_primary_10_1109_TVCG_2016_2608828 crossref_primary_10_14778_3415478_3415564 crossref_primary_10_1016_j_is_2019_06_006 crossref_primary_10_3233_JIFS_169662 crossref_primary_10_1016_j_cie_2024_110329 crossref_primary_10_1016_j_neucom_2015_11_117 crossref_primary_10_1145_2716315 crossref_primary_10_1016_j_jvcir_2016_10_002 crossref_primary_10_1016_j_knosys_2015_09_015 crossref_primary_10_1016_j_patrec_2015_06_004 crossref_primary_10_1109_TITS_2023_3292396 crossref_primary_10_1016_j_robot_2018_08_010 crossref_primary_10_1016_j_patcog_2021_108356 crossref_primary_10_1109_ACCESS_2020_2989430 crossref_primary_10_1109_TKDE_2021_3137310 crossref_primary_10_1007_s11042_016_3738_y crossref_primary_10_1038_lsa_2015_119 crossref_primary_10_1007_s11263_018_1081_7 crossref_primary_10_1109_TCYB_2021_3086194 crossref_primary_10_1016_j_neucom_2018_01_011 crossref_primary_10_7717_peerj_cs_2189 crossref_primary_10_1007_s11276_022_02927_9 crossref_primary_10_1016_j_knosys_2017_06_010 crossref_primary_10_1186_s12859_017_1907_2 crossref_primary_10_3390_s150818427 crossref_primary_10_3724_SP_J_1089_2022_18846 crossref_primary_10_1016_j_ins_2019_10_011 crossref_primary_10_1109_TNNLS_2017_2676239 crossref_primary_10_1186_s40965_018_0056_5 crossref_primary_10_1016_j_cviu_2017_05_003 crossref_primary_10_1007_s10994_021_05965_0 crossref_primary_10_3389_frobt_2024_1423319 crossref_primary_10_1007_s13042_024_02525_5 crossref_primary_10_1109_TIP_2020_3036779 crossref_primary_10_1002_cpe_5339 crossref_primary_10_1109_TCSVT_2018_2869875 crossref_primary_10_1109_TPAMI_2021_3133763 crossref_primary_10_1002_rob_22060 crossref_primary_10_1145_3309545 crossref_primary_10_1109_TBDATA_2019_2908178 crossref_primary_10_1016_j_engappai_2023_107172 crossref_primary_10_1109_TIP_2015_2414873 crossref_primary_10_1002_cav_1780 crossref_primary_10_1109_TITS_2019_2955734 crossref_primary_10_1007_s11042_023_16667_1 crossref_primary_10_1016_j_neucom_2015_12_129 crossref_primary_10_1111_cgf_13441 crossref_primary_10_1016_j_patcog_2019_106970 crossref_primary_10_1109_TIP_2017_2733739 crossref_primary_10_3390_ijgi7110431 crossref_primary_10_1155_2022_7409171 crossref_primary_10_1007_s13735_017_0121_3 crossref_primary_10_1016_j_cma_2021_113855 crossref_primary_10_1145_3583564 crossref_primary_10_1007_s00466_019_01731_1 crossref_primary_10_1109_ACCESS_2023_3242556 crossref_primary_10_1109_TBME_2016_2603119 crossref_primary_10_1109_TPAMI_2017_2699960 crossref_primary_10_1109_TIP_2023_3334594 crossref_primary_10_1186_s40537_019_0259_3 crossref_primary_10_3390_s16020237 crossref_primary_10_1016_j_ijar_2016_11_010 crossref_primary_10_1109_TFUZZ_2018_2874017 crossref_primary_10_1016_j_neuroimage_2018_06_084 crossref_primary_10_3390_f13101549 crossref_primary_10_1007_s42452_020_2039_2 crossref_primary_10_3390_rs11172055 crossref_primary_10_1007_s10994_019_05800_7 crossref_primary_10_1016_j_jvcir_2021_103068 crossref_primary_10_1016_j_parco_2022_102992 crossref_primary_10_1109_TKDE_2019_2911946 crossref_primary_10_1667_RR15552_1 crossref_primary_10_1002_cav_1775 crossref_primary_10_1016_j_cma_2021_113868 crossref_primary_10_1002_int_22692 crossref_primary_10_1016_j_aei_2018_05_005 crossref_primary_10_3390_f15101776 crossref_primary_10_1016_j_jestch_2019_06_005 crossref_primary_10_1007_s41870_017_0058_z crossref_primary_10_1109_OJCS_2025_3602355 crossref_primary_10_1016_j_inffus_2018_07_001 crossref_primary_10_1109_TPAMI_2018_2794976 crossref_primary_10_1016_j_neucom_2018_03_064 crossref_primary_10_1088_1742_6596_1546_1_012027 crossref_primary_10_1007_s11554_015_0485_7 crossref_primary_10_3390_app14167097 crossref_primary_10_1186_s40649_016_0028_9 crossref_primary_10_1080_15325008_2018_1531442 crossref_primary_10_1007_s00138_022_01279_w crossref_primary_10_1007_s10586_024_05098_8 crossref_primary_10_1109_TMM_2016_2616298 crossref_primary_10_1109_JSTSP_2016_2555239 crossref_primary_10_1016_j_eswa_2018_07_048 crossref_primary_10_1007_s11042_017_4777_8 crossref_primary_10_3389_fbuil_2018_00031 crossref_primary_10_1016_j_pss_2019_104719 crossref_primary_10_1016_j_cageo_2021_104696 crossref_primary_10_1109_TGRS_2023_3332916 crossref_primary_10_1109_TVCG_2015_2513408 crossref_primary_10_1007_s10472_023_09882_x crossref_primary_10_3390_math11020436 crossref_primary_10_1016_j_patcog_2018_05_030 crossref_primary_10_1371_journal_pone_0155119 crossref_primary_10_1109_JSEN_2022_3148390 crossref_primary_10_3390_ijgi9060368 crossref_primary_10_1016_j_patrec_2018_02_020 crossref_primary_10_1109_TMI_2016_2589760 crossref_primary_10_3390_sym10010004 crossref_primary_10_1109_ACCESS_2025_3603088 crossref_primary_10_1109_TC_2017_2748131 |
| Cites_doi | 10.1109/CVPR.1997.609451 10.1109/T-C.1975.224297 10.1145/1143844.1143857 10.1007/BF01759061 10.1109/ICCV.2007.4408871 10.1145/1060745.1060840 10.1109/ICCV.2009.5459466 10.1109/CVPR.2006.264 10.1109/CVPR.2008.4587633 10.1109/CVPR.2005.320 10.1109/CVPR.2009.5206677 10.1109/ICCV.2011.6126542 10.1145/355744.355745 10.1109/CVPR.2007.383172 10.1109/CRV.2012.60 10.1109/CVPR.2008.4587638 10.1109/ICCVW.2009.5457541 10.1145/293347.293348 10.1109/CVPR.2010.5540006 10.1109/CVPR.2008.4587841 10.1145/1374376.1374452 10.1145/1276377.1276382 10.1109/ICCV.2011.6126544 10.1109/MIS.2009.36 10.1109/ICCV.2003.1238663 10.1145/1835804.1835946 10.1109/ICPR.2002.1047852 10.1109/CVPR.2012.6248038 10.1093/comjnl/7.4.308 10.5244/C.20.81 10.1023/B:VISI.0000029664.99615.94 10.1109/CVPR.2008.4587784 10.1145/361002.361007 10.1145/1327452.1327494 10.1109/ICCV.2003.1238424 10.1109/CVPR.2010.5539994 10.1109/CVPR.2007.382971 10.1109/CVPR.2007.383150 10.1109/TPAMI.2008.128 10.1613/jair.2861 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 F28 FR3 |
| DOI | 10.1109/TPAMI.2014.2321376 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | MEDLINE - Academic Technology Research Database Technology Research Database PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2160-9292 1939-3539 |
| EndPage | 2240 |
| ExternalDocumentID | 3670120301 26353063 10_1109_TPAMI_2014_2321376 6809191 |
| Genre | orig-research Journal Article |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AGSQL AHBIQ AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD ESBDL F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 AAYXX CITATION 5VS 9M8 ABFSI ADRHT AETEA AETIX AI. AIBXA AKJIK ALLEH FA8 H~9 IBMZZ ICLAB IFJZH NPM RIG RNI RZB VH1 XJT 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 F28 FR3 |
| ID | FETCH-LOGICAL-c494t-ae38fc9fa4dac55faf652c6d853c7fe982b5c8b64b88ff37ef13dbe35cd2d0773 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 956 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000343702400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-8828 1939-3539 |
| IngestDate | Sun Sep 28 08:57:53 EDT 2025 Thu Oct 02 06:14:36 EDT 2025 Sun Nov 09 08:08:09 EST 2025 Mon Jul 21 05:51:16 EDT 2025 Sat Nov 29 05:15:56 EST 2025 Tue Nov 18 21:24:08 EST 2025 Wed Aug 27 02:47:52 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Nearest neighbor search algorithm configuration approximate search big data |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c494t-ae38fc9fa4dac55faf652c6d853c7fe982b5c8b64b88ff37ef13dbe35cd2d0773 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/6809191 |
| PMID | 26353063 |
| PQID | 1676943803 |
| PQPubID | 85458 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1109_TPAMI_2014_2321376 proquest_journals_1676943803 pubmed_primary_26353063 crossref_citationtrail_10_1109_TPAMI_2014_2321376 ieee_primary_6809191 proquest_miscellaneous_1711534577 proquest_miscellaneous_1762081226 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-11-01 |
| PublicationDateYYYYMMDD | 2014-11-01 |
| PublicationDate_xml | – month: 11 year: 2014 text: 2014-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
| PublicationYear | 2014 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref56 ref12 ref15 ref53 ref52 ref55 ref11 ref54 ref10 hays (ref4) 2007; 26 ref17 ref16 hutter (ref45) 2009; 36 ref18 lv (ref30) 0 ref51 ref50 hajebi (ref41) 0 (ref60) 0 ref43 (ref59) 0 muja (ref14) 0 calonder (ref49) 0 arthur (ref48) 0 ref7 bradski (ref65) 2008 ref9 (ref58) 0 ref3 ref6 ref5 ref40 yianilos (ref21) 0 havlena (ref61) 0 (ref23) 0 (ref44) 0 ref34 ref37 ref31 ref33 raginsky (ref36) 0; 22 bergstra (ref46) 2012; 13 wang (ref42) 0 ref2 ref1 moore (ref20) 0 ref38 xu (ref39) 0 muja (ref47) 2013 quigley (ref63) 0 jégou (ref27) 2010; 32 ref24 ref26 ref25 ref64 ref22 kulis (ref35) 0; 22 ref28 brin (ref19) 0 ref29 deng (ref8) 0 ref62 weiss (ref32) 0 |
| References_xml | – ident: ref12 doi: 10.1109/CVPR.1997.609451 – ident: ref18 doi: 10.1109/T-C.1975.224297 – ident: ref22 doi: 10.1145/1143844.1143857 – ident: ref15 doi: 10.1007/BF01759061 – volume: 22 start-page: 1042 year: 0 ident: ref35 article-title: Learning to hash with binary reconstructive embeddings publication-title: Proc Adv Neural Inf Process Syst – ident: ref54 doi: 10.1109/ICCV.2007.4408871 – year: 2013 ident: ref47 publication-title: Scalable nearest neighbour methods for high dimensional data – ident: ref31 doi: 10.1145/1060745.1060840 – volume: 13 start-page: 281 year: 2012 ident: ref46 article-title: Random search for hyper-parameter optimization publication-title: J Mach Learn Res – start-page: 1106 year: 0 ident: ref42 article-title: Scalable k-NN graph construction for visual descriptors publication-title: Proc IEEE Conf Comput Vis Pattern Recog – ident: ref34 doi: 10.1109/ICCV.2009.5459466 – ident: ref24 doi: 10.1109/CVPR.2006.264 – ident: ref57 doi: 10.1109/CVPR.2008.4587633 – ident: ref6 doi: 10.1109/CVPR.2005.320 – ident: ref62 doi: 10.1109/CVPR.2009.5206677 – ident: ref51 doi: 10.1109/ICCV.2011.6126542 – ident: ref10 doi: 10.1145/355744.355745 – ident: ref2 doi: 10.1109/CVPR.2007.383172 – ident: ref52 doi: 10.1109/CRV.2012.60 – ident: ref13 doi: 10.1109/CVPR.2008.4587638 – ident: ref64 doi: 10.1109/ICCVW.2009.5457541 – ident: ref11 doi: 10.1145/293347.293348 – ident: ref17 doi: 10.1109/CVPR.2010.5540006 – ident: ref33 doi: 10.1109/CVPR.2008.4587841 – ident: ref16 doi: 10.1145/1374376.1374452 – start-page: 778 year: 0 ident: ref49 article-title: BRIEF: Binary robust independent elementary features publication-title: Proc 11th Eur Conf Comput Vis – start-page: 1312 year: 0 ident: ref41 article-title: Fast approximate nearest-neighbor search with k-nearest neighbor graph publication-title: Proc 22nd Int Joint Conf Artif Intell – volume: 26 start-page: 4 year: 2007 ident: ref4 article-title: Scene completion using millions of photographs publication-title: ACM Trans Graph doi: 10.1145/1276377.1276382 – ident: ref50 doi: 10.1109/ICCV.2011.6126544 – ident: ref56 doi: 10.1109/MIS.2009.36 – start-page: 397 year: 0 ident: ref20 article-title: The anchors hierarchy: Using the triangle inequality to survive high dimensional data publication-title: Proc 16th Conf Uncertainty Artif Intell – start-page: 574 year: 0 ident: ref19 article-title: Near neighbor search in large metric spaces publication-title: Proc Int Conf On Very Large Data Bases – ident: ref3 doi: 10.1109/ICCV.2003.1238663 – year: 2008 ident: ref65 publication-title: Learning OpenCV Computer Vision With the OpenCV Library – ident: ref38 doi: 10.1145/1835804.1835946 – year: 0 ident: ref60 – ident: ref40 doi: 10.1109/ICPR.2002.1047852 – start-page: 950 year: 0 ident: ref30 article-title: Multi-probe LSH: Efficient indexing for high-dimensional similarity search publication-title: Proc Int Conf Very Large Data Bases – year: 0 ident: ref44 – year: 0 ident: ref23 – ident: ref28 doi: 10.1109/CVPR.2012.6248038 – year: 0 ident: ref63 article-title: ROS: An open-source robot operating system publication-title: ICRA Workshop on Open Source Software – ident: ref43 doi: 10.1093/comjnl/7.4.308 – volume: 32 start-page: 1 year: 2010 ident: ref27 article-title: Product quantization for nearest neighbor search publication-title: IEEE Trans Pattern Anal Mach Intell – ident: ref25 doi: 10.5244/C.20.81 – ident: ref1 doi: 10.1023/B:VISI.0000029664.99615.94 – ident: ref55 doi: 10.1109/CVPR.2008.4587784 – start-page: 331 year: 0 ident: ref14 article-title: Fast approximate nearest neighbors with automatic algorithm configuration publication-title: Proc Int Conf Computer Vis Theory Appl – start-page: 248 year: 0 ident: ref8 article-title: ImageNet: A large-scale hierarchical image database publication-title: Proc IEEE Conf Comput Vis Pattern Recog – start-page: 1631 year: 0 ident: ref39 article-title: Complementary hashing for approximate nearest neighbor search publication-title: Proc IEEE Int Conf Comput Vis – start-page: 1027 year: 0 ident: ref48 article-title: K-Means++: The advantages of careful seeding publication-title: Proc Symp Discrete Algorithms – start-page: 6 year: 0 ident: ref32 article-title: Spectral hashing publication-title: Proc Adv Neural Inf Process Syst – start-page: 280 year: 0 ident: ref61 article-title: Automatic reconstruction of Mars artifacts publication-title: Proc Eur Planet Sci Congr – ident: ref9 doi: 10.1145/361002.361007 – ident: ref29 doi: 10.1145/1327452.1327494 – volume: 22 start-page: 1509 year: 0 ident: ref36 article-title: Locality-sensitive binary codes from shift-invariant kernels publication-title: Proc Adv Neural Inf Process Syst – ident: ref5 doi: 10.1109/ICCV.2003.1238424 – ident: ref37 doi: 10.1109/CVPR.2010.5539994 – year: 0 ident: ref58 – ident: ref53 doi: 10.1109/CVPR.2007.382971 – ident: ref26 doi: 10.1109/CVPR.2007.383150 – start-page: 311 year: 0 ident: ref21 article-title: Data structures and algorithms for nearest neighbor search in general metric spaces publication-title: Proc ACM-SIAM Symp Discrete Algorithms – year: 0 ident: ref59 – ident: ref7 doi: 10.1109/TPAMI.2008.128 – volume: 36 start-page: 267 year: 2009 ident: ref45 article-title: ParamILS: An automatic algorithm configuration framework publication-title: J Artif Intell Res doi: 10.1613/jair.2861 |
| SSID | ssj0014503 |
| Score | 2.6620092 |
| Snippet | For many computer vision and machine learning problems, large training sets are key for good performance. However, the most computationally expensive part of... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2227 |
| SubjectTerms | Algorithms Approximation algorithms Approximation methods Clustering algorithms Computer vision Libraries Machine learning Machine learning algorithms Matching Partitioning algorithms Searching Training Trees Vegetation |
| Title | Scalable Nearest Neighbor Algorithms for High Dimensional Data |
| URI | https://ieeexplore.ieee.org/document/6809191 https://www.ncbi.nlm.nih.gov/pubmed/26353063 https://www.proquest.com/docview/1676943803 https://www.proquest.com/docview/1711534577 https://www.proquest.com/docview/1762081226 |
| Volume | 36 |
| WOSCitedRecordID | wos000343702400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2160-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9q8UEfbG39iLZlBd80bXLZ7MeLcLQWBT0KVrm3sNnM1kK9k7ucf78zmw8UbMGnC9yELDszmd9kZ34D8FqZYJjZMyXsbVNpUKa1y2WqUTublY2vY8n_t096NjPzub3YgrdjLwwixuIzPObLeJbfLP2GP5WdKEPRjVvV72mtul6t8cRAlnEKMiEY8nBKI4YGmcyeXF5MP3_kKi55TPghJ5diCmCKtASXi7_iURywcjvWjDHnfOf_VrsLj3psKaadMTyGLVzswc4wt0H0brwHD_8gIdyHd19ITdxAJWbMZ7tu6ZcydrINMb25Wq6u2-8_1oKwreCaEHHG4wA6Kg9x5lr3BL6ev788_ZD2UxVSL61sU4eFCd4GJxvnyzK4oMqJVw3Fba8DWjOpS29qJWtjQig0hrxoaixK30yaTOviKWwvlgt8DqJW9Hb0SDkPWukzWxuuWDQSCSQ4pWQC-bC3le8px3nyxU0VU4_MVlE1Faum6lWTwJvxnp8d4cad0vu88aNkv-cJHAwqrHqfXFc5V_MywX6RwKvxb_ImPiJxC1xuSEYTQi5kqfVdMmpCQIpwawLPOvMYnz9Y1Yt_r-slPODVd72MB7DdrjZ4CPf9r_Z6vTois56bo2jWvwH6_u-I |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9KFdQHq63VaNUVfNO0-djPF-GwlhavR8FT-hY2m10t1Du5y_n3O7P5QEELPiWQDdnszGR-k535DcBrqYMmZs8UsbdJufY8rW3OU-WVNZloXB1T_r9M1WymLy_NxRa8HWthvPcx-cwf0mncy2-WbkO_yo6kRu9Gpeq3BOdF1lVrjXsGXMQ-yIhh0MYxkBhKZDJzNL-YnJ9RHhc_RASRo1ERCTD6WgTM5R8eKbZY-TfajF7nZOf_5vsA7vfokk06dXgIW36xCztD5wbWG_Iu3PuNhnAP3n1CQVEJFZsRo-26xSPG7KgdbHL9dbm6ar99XzNEt4yyQtgxNQToyDzYsW3tI_h88mH-_jTt-yqkjhveptaXOjgTLG-sEyLYIEXhZIOe26ngjS5q4XQtea11CKXyIS-b2pfCNUWTKVXuw_ZiufBPgNUSv4_OY9TjDXeZqTXlLGruESZYKXkC-bC2letJx6n3xXUVg4_MVFE0FYmm6kWTwJvxnh8d5caNo_do4ceR_ZoncDCIsOqtcl3llM9LFPtlAq_Gy2hPtEliF365wTEKMXLJhVI3jZEFQilErgk87tRjfP6gVU__Pq-XcOd0fj6tpmezj8_gLr1JV9l4ANvtauOfw233s71ar15E5f4F8Mfx5w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+Nearest+Neighbor+Algorithms+for+High+Dimensional+Data&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Muja%2C+Marius&rft.au=Lowe%2C+David+G.&rft.date=2014-11-01&rft.issn=0162-8828&rft.eissn=2160-9292&rft.volume=36&rft.issue=11&rft.spage=2227&rft.epage=2240&rft_id=info:doi/10.1109%2FTPAMI.2014.2321376&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPAMI_2014_2321376 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |