Scalable Nearest Neighbor Algorithms for High Dimensional Data

For many computer vision and machine learning problems, large training sets are key for good performance. However, the most computationally expensive part of many computer vision and machine learning algorithms consists of finding nearest neighbor matches to high dimensional vectors that represent t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence Jg. 36; H. 11; S. 2227 - 2240
Hauptverfasser: Muja, Marius, Lowe, David G.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.11.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract For many computer vision and machine learning problems, large training sets are key for good performance. However, the most computationally expensive part of many computer vision and machine learning algorithms consists of finding nearest neighbor matches to high dimensional vectors that represent the training data. We propose new algorithms for approximate nearest neighbor matching and evaluate and compare them with previous algorithms. For matching high dimensional features, we find two algorithms to be the most efficient: the randomized k-d forest and a new algorithm proposed in this paper, the priority search k-means tree. We also propose a new algorithm for matching binary features by searching multiple hierarchical clustering trees and show it outperforms methods typically used in the literature. We show that the optimal nearest neighbor algorithm and its parameters depend on the data set characteristics and describe an automated configuration procedure for finding the best algorithm to search a particular data set. In order to scale to very large data sets that would otherwise not fit in the memory of a single machine, we propose a distributed nearest neighbor matching framework that can be used with any of the algorithms described in the paper. All this research has been released as an open source library called fast library for approximate nearest neighbors (FLANN), which has been incorporated into OpenCV and is now one of the most popular libraries for nearest neighbor matching.
AbstractList For many computer vision and machine learning problems, large training sets are key for good performance. However, the most computationally expensive part of many computer vision and machine learning algorithms consists of finding nearest neighbor matches to high dimensional vectors that represent the training data. We propose new algorithms for approximate nearest neighbor matching and evaluate and compare them with previous algorithms. For matching high dimensional features, we find two algorithms to be the most efficient: the randomized k-d forest and a new algorithm proposed in this paper, the priority search k-means tree. We also propose a new algorithm for matching binary features by searching multiple hierarchical clustering trees and show it outperforms methods typically used in the literature. We show that the optimal nearest neighbor algorithm and its parameters depend on the data set characteristics and describe an automated configuration procedure for finding the best algorithm to search a particular data set. In order to scale to very large data sets that would otherwise not fit in the memory of a single machine, we propose a distributed nearest neighbor matching framework that can be used with any of the algorithms described in the paper. All this research has been released as an open source library called fast library for approximate nearest neighbors (FLANN), which has been incorporated into OpenCV and is now one of the most popular libraries for nearest neighbor matching.For many computer vision and machine learning problems, large training sets are key for good performance. However, the most computationally expensive part of many computer vision and machine learning algorithms consists of finding nearest neighbor matches to high dimensional vectors that represent the training data. We propose new algorithms for approximate nearest neighbor matching and evaluate and compare them with previous algorithms. For matching high dimensional features, we find two algorithms to be the most efficient: the randomized k-d forest and a new algorithm proposed in this paper, the priority search k-means tree. We also propose a new algorithm for matching binary features by searching multiple hierarchical clustering trees and show it outperforms methods typically used in the literature. We show that the optimal nearest neighbor algorithm and its parameters depend on the data set characteristics and describe an automated configuration procedure for finding the best algorithm to search a particular data set. In order to scale to very large data sets that would otherwise not fit in the memory of a single machine, we propose a distributed nearest neighbor matching framework that can be used with any of the algorithms described in the paper. All this research has been released as an open source library called fast library for approximate nearest neighbors (FLANN), which has been incorporated into OpenCV and is now one of the most popular libraries for nearest neighbor matching.
For many computer vision and machine learning problems, large training sets are key for good performance. However, the most computationally expensive part of many computer vision and machine learning algorithms consists of finding nearest neighbor matches to high dimensional vectors that represent the training data. We propose new algorithms for approximate nearest neighbor matching and evaluate and compare them with previous algorithms. For matching high dimensional features, we find two algorithms to be the most efficient: the randomized k-d forest and a new algorithm proposed in this paper, the priority search k-means tree. We also propose a new algorithm for matching binary features by searching multiple hierarchical clustering trees and show it outperforms methods typically used in the literature. We show that the optimal nearest neighbor algorithm and its parameters depend on the data set characteristics and describe an automated configuration procedure for finding the best algorithm to search a particular data set. In order to scale to very large data sets that would otherwise not fit in the memory of a single machine, we propose a distributed nearest neighbor matching framework that can be used with any of the algorithms described in the paper. All this research has been released as an open source library called fast library for approximate nearest neighbors (FLANN), which has been incorporated into OpenCV and is now one of the most popular libraries for nearest neighbor matching.
Author Lowe, David G.
Muja, Marius
Author_xml – sequence: 1
  givenname: Marius
  surname: Muja
  fullname: Muja, Marius
  email: mariusm@cs.ubc.ca
  organization: BitLit Media Inc., Vancouver, BC, Canada
– sequence: 2
  givenname: David G.
  surname: Lowe
  fullname: Lowe, David G.
  email: lowe@cs.ubc.ca
  organization: Comput. Sci. Dept., Univ. of British Columbia (UBC), Vancouver, BC, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26353063$$D View this record in MEDLINE/PubMed
BookMark eNqFkclOwzAQhi0EghZ4AZBQJC5cUrzEjn1BqlqWSmWRgHPkOONilAXs9MDbY9rCgQOcRjP6_tn-IdpuuxYQOiJ4RAhW508P49vZiGKSjSijhOViCw0oEThVVNFtNMBE0FRKKvfQMIRXHEmO2S7ao4JxhgUboItHo2td1pDcgfYQ-hjd4qXsfDKuF513_UsTEhvTm1hOpq6BNriu1XUy1b0-QDtW1wEON3EfPV9dPk1u0vn99WwynqcmU1mfamDSGmV1VmnDudVWcGpEJTkzuQUlacmNLEVWSmkty8ESVpXAuKlohfOc7aOzdd83370v45pF44KButYtdMtQkFxQLAmNh_2PEsJZxlddT3-hr93Sx9siJXKhMiYxi9TJhlqWDVTFm3eN9h_F9xMjQNeA8V0IHuwPQnDx5VSxcqr4cqrYOBVF8pfIuF738bW9167-W3q8ljoA-JklJFZEEfYJhIme4Q
CODEN ITPIDJ
CitedBy_id crossref_primary_10_3390_a15050170
crossref_primary_10_4018_IJEHMC_2017100103
crossref_primary_10_1109_TFUZZ_2020_2979365
crossref_primary_10_1109_TII_2020_2972290
crossref_primary_10_1016_j_neucom_2019_06_065
crossref_primary_10_1109_TVCG_2016_2570755
crossref_primary_10_1109_TVCG_2019_2934307
crossref_primary_10_1145_3284555
crossref_primary_10_3390_rs10020310
crossref_primary_10_1109_JSTARS_2015_2461556
crossref_primary_10_1016_j_engappai_2024_108944
crossref_primary_10_1016_j_cag_2022_01_006
crossref_primary_10_1109_TKDE_2017_2761347
crossref_primary_10_1109_TNNLS_2018_2830700
crossref_primary_10_3233_JIFS_232279
crossref_primary_10_1007_s40747_024_01384_5
crossref_primary_10_1016_j_patrec_2018_07_036
crossref_primary_10_1109_TIP_2024_3473301
crossref_primary_10_1109_TKDE_2019_2953897
crossref_primary_10_1007_s10994_018_5711_7
crossref_primary_10_1016_j_future_2019_04_033
crossref_primary_10_1145_3709729
crossref_primary_10_1007_s10115_023_01899_2
crossref_primary_10_1002_cpe_4634
crossref_primary_10_1016_j_cviu_2016_02_015
crossref_primary_10_1016_j_pss_2018_01_007
crossref_primary_10_1088_1757_899X_435_1_012001
crossref_primary_10_1016_j_daach_2024_e00329
crossref_primary_10_1007_s00138_015_0689_7
crossref_primary_10_1007_s11042_018_7004_3
crossref_primary_10_1145_3196826
crossref_primary_10_1109_ACCESS_2022_3195488
crossref_primary_10_1007_s10586_024_04731_w
crossref_primary_10_1109_TGRS_2019_2913004
crossref_primary_10_1117_1_JEI_32_2_023020
crossref_primary_10_1016_j_fss_2018_01_019
crossref_primary_10_1016_j_isprsjprs_2022_01_010
crossref_primary_10_1016_j_cad_2019_01_006
crossref_primary_10_3390_rs11232869
crossref_primary_10_1109_ACCESS_2019_2930339
crossref_primary_10_24201_edu_v37i3_2048
crossref_primary_10_1109_ACCESS_2020_3020621
crossref_primary_10_1109_TIP_2016_2624141
crossref_primary_10_1145_3749167
crossref_primary_10_1109_TKDE_2015_2460735
crossref_primary_10_1145_3434769
crossref_primary_10_1145_3709743
crossref_primary_10_1145_3733610
crossref_primary_10_1016_j_sigpro_2021_108082
crossref_primary_10_3389_fenrg_2024_1448362
crossref_primary_10_1016_j_jvcir_2016_01_003
crossref_primary_10_3389_fnagi_2016_00077
crossref_primary_10_1007_s11390_022_2185_7
crossref_primary_10_3390_informatics4030024
crossref_primary_10_1109_TCSS_2022_3205015
crossref_primary_10_1109_TPAMI_2017_2679100
crossref_primary_10_1109_ACCESS_2018_2871729
crossref_primary_10_3390_drones8090502
crossref_primary_10_1007_s10559_016_9899_x
crossref_primary_10_1109_TMM_2020_3038305
crossref_primary_10_1007_s11554_016_0607_x
crossref_primary_10_1007_s42786_022_00043_y
crossref_primary_10_1109_ACCESS_2020_3020632
crossref_primary_10_1109_ACCESS_2020_3042885
crossref_primary_10_1007_s10462_018_9673_8
crossref_primary_10_1177_1687814020962587
crossref_primary_10_1007_s10559_017_9966_y
crossref_primary_10_1109_TPAMI_2018_2848925
crossref_primary_10_1016_j_neucom_2015_06_061
crossref_primary_10_1016_j_cmpb_2020_105370
crossref_primary_10_1007_s12555_018_0790_6
crossref_primary_10_1007_s00138_021_01176_8
crossref_primary_10_1109_TR_2019_2892230
crossref_primary_10_1109_OAJPE_2025_3573961
crossref_primary_10_1016_j_patcog_2018_07_027
crossref_primary_10_3390_rs15041116
crossref_primary_10_1109_TFUZZ_2019_2949769
crossref_primary_10_1016_j_ins_2016_08_009
crossref_primary_10_1016_j_neunet_2019_09_014
crossref_primary_10_1016_j_patcog_2017_11_003
crossref_primary_10_1145_3654970
crossref_primary_10_1016_j_patcog_2017_11_008
crossref_primary_10_1016_j_sysarc_2025_103514
crossref_primary_10_1109_TCSVT_2023_3309661
crossref_primary_10_1145_3291057
crossref_primary_10_1109_TIFS_2015_2421332
crossref_primary_10_1007_s00138_018_00999_2
crossref_primary_10_1016_j_ins_2019_01_010
crossref_primary_10_1007_s13735_017_0140_0
crossref_primary_10_1109_TSMC_2019_2956527
crossref_primary_10_1177_0278364920917465
crossref_primary_10_1109_TMI_2015_2508150
crossref_primary_10_1007_s11042_022_12248_w
crossref_primary_10_1016_j_media_2021_102104
crossref_primary_10_3390_s24186079
crossref_primary_10_1109_ACCESS_2017_2689040
crossref_primary_10_1016_j_neucom_2016_05_109
crossref_primary_10_3390_math8091613
crossref_primary_10_1007_s40747_024_01461_9
crossref_primary_10_3390_app122211675
crossref_primary_10_1016_j_future_2022_03_040
crossref_primary_10_3389_fepid_2025_1563731
crossref_primary_10_1109_ACCESS_2020_2997387
crossref_primary_10_1109_ACCESS_2019_2928380
crossref_primary_10_1109_TIV_2024_3378716
crossref_primary_10_1145_3639471
crossref_primary_10_1109_MGRS_2015_2502280
crossref_primary_10_1016_j_neucom_2021_04_029
crossref_primary_10_1007_s12596_022_01024_6
crossref_primary_10_1016_j_measurement_2021_110043
crossref_primary_10_1016_j_ins_2024_120731
crossref_primary_10_1109_ACCESS_2020_3037118
crossref_primary_10_1109_TAI_2021_3052425
crossref_primary_10_1587_transinf_2017EDP7275
crossref_primary_10_1109_TGRS_2021_3099506
crossref_primary_10_14778_3748191_3748212
crossref_primary_10_1016_j_patcog_2024_111006
crossref_primary_10_1016_j_spc_2022_05_022
crossref_primary_10_1109_TVCG_2022_3193406
crossref_primary_10_1145_3486250
crossref_primary_10_1049_iet_ifs_2018_5287
crossref_primary_10_1515_pjbr_2018_0006
crossref_primary_10_3390_math12233872
crossref_primary_10_7717_peerj_cs_571
crossref_primary_10_1007_s00778_020_00635_4
crossref_primary_10_3233_JIFS_179101
crossref_primary_10_4218_etrij_17_0116_0584
crossref_primary_10_1007_s11042_020_09717_5
crossref_primary_10_1109_JIOT_2023_3341146
crossref_primary_10_1109_TIP_2015_2485783
crossref_primary_10_1109_TIP_2019_2910662
crossref_primary_10_1061__ASCE_CP_1943_5487_0000616
crossref_primary_10_1007_s11390_019_1932_x
crossref_primary_10_1016_j_jbi_2021_103714
crossref_primary_10_1145_3589282
crossref_primary_10_14778_3725688_3725696
crossref_primary_10_1016_j_cviu_2017_04_002
crossref_primary_10_1016_j_compbiolchem_2020_107206
crossref_primary_10_1016_j_neucom_2022_12_019
crossref_primary_10_1016_j_jestch_2022_101098
crossref_primary_10_1186_s13634_021_00795_7
crossref_primary_10_1016_j_mri_2019_01_011
crossref_primary_10_1109_TIM_2023_3260263
crossref_primary_10_1109_TBDATA_2021_3101517
crossref_primary_10_1007_s11277_017_4502_y
crossref_primary_10_1016_j_ins_2019_01_026
crossref_primary_10_1016_j_knosys_2025_113343
crossref_primary_10_1080_15230406_2020_1762513
crossref_primary_10_1109_TVCG_2018_2849386
crossref_primary_10_1007_s10489_020_01730_3
crossref_primary_10_1145_3709712
crossref_primary_10_1073_pnas_1700770114
crossref_primary_10_1109_LWC_2025_3568164
crossref_primary_10_1134_S1054661819030064
crossref_primary_10_1587_transinf_2017EDP7050
crossref_primary_10_1016_j_eswa_2024_126254
crossref_primary_10_1016_j_foodres_2024_114464
crossref_primary_10_1007_s10586_018_1940_6
crossref_primary_10_1109_TKDE_2022_3220683
crossref_primary_10_1109_TPAMI_2019_2902391
crossref_primary_10_1007_s11042_018_5955_z
crossref_primary_10_1016_j_ijar_2018_10_018
crossref_primary_10_1109_ACCESS_2023_3268862
crossref_primary_10_1109_ACCESS_2023_3288594
crossref_primary_10_1016_j_isprsjprs_2022_03_018
crossref_primary_10_1109_TMM_2016_2625260
crossref_primary_10_1016_j_ins_2018_07_005
crossref_primary_10_1109_TIP_2018_2873064
crossref_primary_10_1111_exsy_13139
crossref_primary_10_1109_TBDATA_2016_2557348
crossref_primary_10_1109_ACCESS_2020_2969287
crossref_primary_10_1007_s00205_022_01836_7
crossref_primary_10_1016_j_tcs_2020_12_039
crossref_primary_10_1007_s10618_019_00621_7
crossref_primary_10_1007_s13369_016_2405_y
crossref_primary_10_3390_ijgi8020090
crossref_primary_10_1007_s11042_018_6039_9
crossref_primary_10_1016_j_patcog_2015_06_017
crossref_primary_10_1109_TNNLS_2025_3543947
crossref_primary_10_1109_TSMC_2023_3234227
crossref_primary_10_1016_j_patcog_2025_111854
crossref_primary_10_1038_s41592_019_0666_6
crossref_primary_10_1016_j_knosys_2019_06_032
crossref_primary_10_1109_LSENS_2023_3334724
crossref_primary_10_1016_j_neucom_2017_07_038
crossref_primary_10_1109_TCSVT_2018_2838453
crossref_primary_10_1109_TIP_2018_2865674
crossref_primary_10_1007_s11263_015_0878_x
crossref_primary_10_1049_iet_cvi_2018_5613
crossref_primary_10_1107_S1600576716011353
crossref_primary_10_1016_j_eswa_2022_119068
crossref_primary_10_1109_LSP_2022_3179168
crossref_primary_10_1007_s00224_020_10009_6
crossref_primary_10_1007_s11042_015_3125_0
crossref_primary_10_1109_TITS_2017_2749974
crossref_primary_10_1177_0278364919872252
crossref_primary_10_1016_j_asoc_2024_111518
crossref_primary_10_1109_TMM_2017_2692181
crossref_primary_10_1016_j_cma_2022_115704
crossref_primary_10_1016_j_jpdc_2020_11_004
crossref_primary_10_1080_00221686_2020_1818309
crossref_primary_10_14778_3749646_3749666
crossref_primary_10_1145_3701624
crossref_primary_10_1109_TIP_2018_2881906
crossref_primary_10_3390_ijgi9010034
crossref_primary_10_1145_2980179_2982438
crossref_primary_10_1038_s41598_017_11873_y
crossref_primary_10_1109_TIFS_2018_2796999
crossref_primary_10_1177_14738716221086589
crossref_primary_10_1111_cgf_12966
crossref_primary_10_1109_TIP_2017_2691799
crossref_primary_10_1016_j_patcog_2020_107624
crossref_primary_10_1109_TCYB_2016_2636370
crossref_primary_10_1109_TNNLS_2023_3297261
crossref_primary_10_1016_j_neucom_2023_126788
crossref_primary_10_1109_TMC_2021_3093619
crossref_primary_10_3390_agronomy10081137
crossref_primary_10_1080_15732479_2017_1330891
crossref_primary_10_1145_3237189
crossref_primary_10_1109_TIP_2018_2874289
crossref_primary_10_1016_j_ins_2021_01_042
crossref_primary_10_1016_j_patcog_2016_05_021
crossref_primary_10_1109_TPAMI_2022_3174130
crossref_primary_10_1109_LRA_2018_2795651
crossref_primary_10_3390_su15042947
crossref_primary_10_1016_j_knosys_2020_105474
crossref_primary_10_1016_j_parco_2018_12_005
crossref_primary_10_3390_app14020751
crossref_primary_10_1109_TMM_2015_2446201
crossref_primary_10_1016_j_jvcir_2017_01_013
crossref_primary_10_3390_rs15133411
crossref_primary_10_14778_3717755_3717770
crossref_primary_10_1016_j_cose_2017_11_014
crossref_primary_10_1016_j_patcog_2017_06_001
crossref_primary_10_1016_j_procs_2025_04_121
crossref_primary_10_3390_app8060913
crossref_primary_10_1109_TMECH_2018_2854544
crossref_primary_10_1016_j_isprsjprs_2018_12_005
crossref_primary_10_1109_TVCG_2018_2869149
crossref_primary_10_1109_MCG_2017_3621224
crossref_primary_10_1016_j_compgeo_2025_107362
crossref_primary_10_3390_su14063428
crossref_primary_10_1016_j_patcog_2017_09_038
crossref_primary_10_1109_TIP_2020_2972102
crossref_primary_10_1109_TMI_2017_2750978
crossref_primary_10_1007_s00158_019_02320_9
crossref_primary_10_1007_s10559_018_0016_1
crossref_primary_10_3390_rs70606932
crossref_primary_10_1016_j_cities_2016_07_007
crossref_primary_10_1109_TIM_2020_3028401
crossref_primary_10_1109_LSP_2018_2820645
crossref_primary_10_1109_TGRS_2019_2908381
crossref_primary_10_1016_j_infsof_2024_107476
crossref_primary_10_1109_TCSVT_2023_3253548
crossref_primary_10_1080_01431161_2021_1956698
crossref_primary_10_1016_j_optlaseng_2017_05_011
crossref_primary_10_1016_j_patcog_2017_09_043
crossref_primary_10_1049_iet_ipr_2017_0880
crossref_primary_10_1038_s41467_023_39279_7
crossref_primary_10_1016_j_bdr_2021_100223
crossref_primary_10_3390_app9010142
crossref_primary_10_1109_TKDE_2018_2873791
crossref_primary_10_1109_TIM_2021_3134326
crossref_primary_10_1109_TPAMI_2018_2882816
crossref_primary_10_1017_jfm_2016_430
crossref_primary_10_1007_s00500_019_04330_7
crossref_primary_10_2139_ssrn_5372886
crossref_primary_10_1007_s00778_024_00894_5
crossref_primary_10_2478_amcs_2019_0034
crossref_primary_10_1016_j_neucom_2017_05_042
crossref_primary_10_1016_j_isprsjprs_2019_08_005
crossref_primary_10_1007_s11263_020_01297_z
crossref_primary_10_1109_TMM_2016_2614427
crossref_primary_10_1002_nla_2371
crossref_primary_10_1007_s00138_019_01045_5
crossref_primary_10_1016_j_cam_2015_01_041
crossref_primary_10_1016_j_compag_2024_109199
crossref_primary_10_1109_TIT_2022_3226479
crossref_primary_10_3390_s16050667
crossref_primary_10_1109_TCSVT_2019_2896438
crossref_primary_10_1089_big_2021_0420
crossref_primary_10_3390_sym12040519
crossref_primary_10_1109_TPAMI_2024_3400281
crossref_primary_10_3233_JIFS_179073
crossref_primary_10_1016_j_ijdrr_2025_105655
crossref_primary_10_1109_ACCESS_2020_2987966
crossref_primary_10_3390_app8091676
crossref_primary_10_1007_s10559_017_9983_x
crossref_primary_10_1016_j_patcog_2019_02_015
crossref_primary_10_3390_drones6070175
crossref_primary_10_1080_22348972_2017_1345371
crossref_primary_10_1137_15M1026377
crossref_primary_10_1587_transinf_2017EDP7215
crossref_primary_10_1007_s11390_019_1900_5
crossref_primary_10_1186_s40064_016_1906_1
crossref_primary_10_1007_s11704_018_7304_9
crossref_primary_10_3390_s18082577
crossref_primary_10_1109_TKDE_2024_3381111
crossref_primary_10_1155_er_8940534
crossref_primary_10_1109_TPAMI_2018_2889473
crossref_primary_10_1109_TVLSI_2024_3496589
crossref_primary_10_3390_app15115969
crossref_primary_10_1109_TIP_2017_2678163
crossref_primary_10_1145_3725413
crossref_primary_10_1177_14738716251342965
crossref_primary_10_1109_TMI_2021_3123252
crossref_primary_10_14778_3725688_3725709
crossref_primary_10_1109_JSEN_2021_3131579
crossref_primary_10_1109_TMM_2016_2645398
crossref_primary_10_1049_iet_cvi_2015_0137
crossref_primary_10_1109_TII_2023_3274216
crossref_primary_10_1016_j_ins_2018_09_012
crossref_primary_10_1007_s10489_025_06596_x
crossref_primary_10_1109_TIP_2021_3134456
crossref_primary_10_1371_journal_pone_0226067
crossref_primary_10_1177_02783649231166977
crossref_primary_10_1007_s11042_018_6626_9
crossref_primary_10_1007_s11263_016_0926_1
crossref_primary_10_1007_s10115_024_02272_7
crossref_primary_10_1109_TBME_2018_2884319
crossref_primary_10_3390_info11020069
crossref_primary_10_3390_s150819937
crossref_primary_10_1016_j_cma_2023_116385
crossref_primary_10_1109_TIP_2016_2576402
crossref_primary_10_1186_s12859_018_2453_2
crossref_primary_10_1016_j_imavis_2017_08_008
crossref_primary_10_1109_LSP_2018_2816582
crossref_primary_10_1016_j_future_2021_06_058
crossref_primary_10_1016_j_isprsjprs_2020_01_015
crossref_primary_10_3390_signals2020021
crossref_primary_10_1109_TMC_2016_2595573
crossref_primary_10_1016_j_knosys_2025_114171
crossref_primary_10_1109_TCYB_2018_2869861
crossref_primary_10_1016_j_isprsjprs_2018_11_009
crossref_primary_10_1016_j_asoc_2020_106676
crossref_primary_10_1080_08927022_2017_1400164
crossref_primary_10_1109_TIP_2018_2872831
crossref_primary_10_3390_app9020237
crossref_primary_10_1016_j_jisa_2024_103863
crossref_primary_10_1186_s41074_017_0024_5
crossref_primary_10_1007_s11042_017_5582_0
crossref_primary_10_1016_j_jpdc_2020_10_001
crossref_primary_10_1016_j_acha_2017_08_004
crossref_primary_10_1145_3161173
crossref_primary_10_1007_s10489_022_03253_5
crossref_primary_10_1016_j_isprsjprs_2018_04_023
crossref_primary_10_1017_S0263574725000517
crossref_primary_10_1016_j_ins_2022_11_024
crossref_primary_10_1109_TPAMI_2017_2652468
crossref_primary_10_1016_j_mechatronics_2018_07_007
crossref_primary_10_1109_TNNLS_2015_2437901
crossref_primary_10_1109_TCOMM_2024_3478108
crossref_primary_10_3390_ijgi12070295
crossref_primary_10_1088_2057_1976_abaf5c
crossref_primary_10_1016_j_cviu_2019_04_005
crossref_primary_10_1007_s11042_020_10262_4
crossref_primary_10_1016_j_icte_2021_01_003
crossref_primary_10_3390_s22218264
crossref_primary_10_1016_j_jvcir_2019_02_017
crossref_primary_10_1109_TGRS_2017_2703084
crossref_primary_10_1016_j_patrec_2017_10_038
crossref_primary_10_1109_TBDATA_2017_2677964
crossref_primary_10_1016_j_neucom_2024_128728
crossref_primary_10_1587_transinf_2015EDP7333
crossref_primary_10_1016_j_cad_2018_04_010
crossref_primary_10_1109_TBDATA_2017_2697441
crossref_primary_10_1109_TPAMI_2023_3307889
crossref_primary_10_1002_adem_201600668
crossref_primary_10_1007_s10044_020_00946_w
crossref_primary_10_1109_TPAMI_2019_2907086
crossref_primary_10_1049_trit_2018_1041
crossref_primary_10_1007_s00500_020_05467_6
crossref_primary_10_1007_s11042_017_5034_x
crossref_primary_10_1002_ijc_34699
crossref_primary_10_1007_s10559_017_9914_x
crossref_primary_10_1016_j_isprsjprs_2021_10_017
crossref_primary_10_1049_iet_syb_2015_0064
crossref_primary_10_1109_TVCG_2021_3114865
crossref_primary_10_1109_TBDATA_2022_3161156
crossref_primary_10_1016_j_bspc_2021_102443
crossref_primary_10_1111_cgf_12998
crossref_primary_10_1109_TCSVT_2022_3174577
crossref_primary_10_1080_17480930_2024_2410041
crossref_primary_10_1016_j_egyr_2021_07_077
crossref_primary_10_1109_TMM_2021_3073811
crossref_primary_10_1109_TPAMI_2017_2709749
crossref_primary_10_1016_j_cag_2020_02_004
crossref_primary_10_1016_j_neunet_2024_106697
crossref_primary_10_1016_j_patcog_2017_02_036
crossref_primary_10_1038_s41598_025_09856_5
crossref_primary_10_1016_j_neuroimage_2019_116208
crossref_primary_10_1016_j_patrec_2020_02_018
crossref_primary_10_1017_S0263574718000164
crossref_primary_10_1109_TASLP_2018_2809864
crossref_primary_10_1109_ACCESS_2022_3158682
crossref_primary_10_1109_TKDE_2024_3401075
crossref_primary_10_3390_computers9040096
crossref_primary_10_1016_j_neucom_2018_02_072
crossref_primary_10_1016_j_aei_2023_102268
crossref_primary_10_1016_j_eswa_2021_115297
crossref_primary_10_1016_j_image_2019_08_009
crossref_primary_10_1016_j_jpdc_2019_06_003
crossref_primary_10_1016_j_eswa_2022_117885
crossref_primary_10_1016_j_eswa_2021_115293
crossref_primary_10_1109_TKDE_2017_2654445
crossref_primary_10_3390_s21061944
crossref_primary_10_1007_s10514_017_9664_7
crossref_primary_10_1177_0278364914548708
crossref_primary_10_1016_j_knosys_2020_106374
crossref_primary_10_1107_S1600576716004039
crossref_primary_10_1016_j_inffus_2020_03_008
crossref_primary_10_1016_j_patcog_2023_109442
crossref_primary_10_1016_j_image_2018_06_001
crossref_primary_10_4018_IJEHMC_2017070104
crossref_primary_10_3390_app11062761
crossref_primary_10_1049_el_2015_2806
crossref_primary_10_1109_TDSC_2021_3049942
crossref_primary_10_1016_j_mri_2017_07_007
crossref_primary_10_1109_ACCESS_2025_3590790
crossref_primary_10_1007_s10489_024_05962_5
crossref_primary_10_1016_j_cviu_2016_07_011
crossref_primary_10_1016_j_knosys_2023_110281
crossref_primary_10_1109_TBDATA_2017_2757522
crossref_primary_10_1007_s11760_016_0966_6
crossref_primary_10_1109_TKDE_2019_2909204
crossref_primary_10_3390_rs16020214
crossref_primary_10_1007_s11042_018_6059_5
crossref_primary_10_3390_s21155013
crossref_primary_10_1109_TPAMI_2017_2727048
crossref_primary_10_1186_s41074_017_0034_3
crossref_primary_10_1145_2766959
crossref_primary_10_1016_j_procs_2016_05_319
crossref_primary_10_1016_j_cviu_2015_05_009
crossref_primary_10_1016_j_compeleceng_2021_107002
crossref_primary_10_1016_j_patcog_2019_107082
crossref_primary_10_3390_drones7030212
crossref_primary_10_1145_3381028
crossref_primary_10_3233_JIFS_220629
crossref_primary_10_1007_s00778_022_00762_0
crossref_primary_10_1016_j_ins_2021_10_027
crossref_primary_10_1109_TCSVT_2019_2943892
crossref_primary_10_1016_j_jpdc_2018_11_009
crossref_primary_10_1088_1361_6501_ad2c4f
crossref_primary_10_1186_s13638_021_01941_3
crossref_primary_10_1016_j_energy_2025_135747
crossref_primary_10_1016_j_patcog_2023_109300
crossref_primary_10_1007_s10559_018_0034_z
crossref_primary_10_1109_TCSVT_2016_2632302
crossref_primary_10_1109_TMM_2024_3405664
crossref_primary_10_3389_frobt_2022_982131
crossref_primary_10_1007_s10044_016_0546_y
crossref_primary_10_1109_TNNLS_2018_2850823
crossref_primary_10_1109_LRA_2020_3036615
crossref_primary_10_1017_S0956792520000406
crossref_primary_10_1007_s00466_016_1262_6
crossref_primary_10_1145_3484730
crossref_primary_10_1007_s10586_023_04159_8
crossref_primary_10_1038_s41598_019_57255_4
crossref_primary_10_1007_s12652_021_03386_4
crossref_primary_10_1016_j_jvcir_2021_103253
crossref_primary_10_1088_1361_6501_aab5a0
crossref_primary_10_3390_electronics12091971
crossref_primary_10_1016_j_jaap_2024_106596
crossref_primary_10_1145_3626729
crossref_primary_10_3390_rs11070858
crossref_primary_10_3390_s19183855
crossref_primary_10_1145_3639269
crossref_primary_10_1109_TIE_2020_2978722
crossref_primary_10_1109_TITS_2022_3215538
crossref_primary_10_1177_00405175211037186
crossref_primary_10_3390_rs14061516
crossref_primary_10_1109_TVCG_2016_2608828
crossref_primary_10_14778_3415478_3415564
crossref_primary_10_1016_j_is_2019_06_006
crossref_primary_10_3233_JIFS_169662
crossref_primary_10_1016_j_cie_2024_110329
crossref_primary_10_1016_j_neucom_2015_11_117
crossref_primary_10_1145_2716315
crossref_primary_10_1016_j_jvcir_2016_10_002
crossref_primary_10_1016_j_knosys_2015_09_015
crossref_primary_10_1016_j_patrec_2015_06_004
crossref_primary_10_1109_TITS_2023_3292396
crossref_primary_10_1016_j_robot_2018_08_010
crossref_primary_10_1016_j_patcog_2021_108356
crossref_primary_10_1109_ACCESS_2020_2989430
crossref_primary_10_1109_TKDE_2021_3137310
crossref_primary_10_1007_s11042_016_3738_y
crossref_primary_10_1038_lsa_2015_119
crossref_primary_10_1007_s11263_018_1081_7
crossref_primary_10_1109_TCYB_2021_3086194
crossref_primary_10_1016_j_neucom_2018_01_011
crossref_primary_10_7717_peerj_cs_2189
crossref_primary_10_1007_s11276_022_02927_9
crossref_primary_10_1016_j_knosys_2017_06_010
crossref_primary_10_1186_s12859_017_1907_2
crossref_primary_10_3390_s150818427
crossref_primary_10_3724_SP_J_1089_2022_18846
crossref_primary_10_1016_j_ins_2019_10_011
crossref_primary_10_1109_TNNLS_2017_2676239
crossref_primary_10_1186_s40965_018_0056_5
crossref_primary_10_1016_j_cviu_2017_05_003
crossref_primary_10_1007_s10994_021_05965_0
crossref_primary_10_3389_frobt_2024_1423319
crossref_primary_10_1007_s13042_024_02525_5
crossref_primary_10_1109_TIP_2020_3036779
crossref_primary_10_1002_cpe_5339
crossref_primary_10_1109_TCSVT_2018_2869875
crossref_primary_10_1109_TPAMI_2021_3133763
crossref_primary_10_1002_rob_22060
crossref_primary_10_1145_3309545
crossref_primary_10_1109_TBDATA_2019_2908178
crossref_primary_10_1016_j_engappai_2023_107172
crossref_primary_10_1109_TIP_2015_2414873
crossref_primary_10_1002_cav_1780
crossref_primary_10_1109_TITS_2019_2955734
crossref_primary_10_1007_s11042_023_16667_1
crossref_primary_10_1016_j_neucom_2015_12_129
crossref_primary_10_1111_cgf_13441
crossref_primary_10_1016_j_patcog_2019_106970
crossref_primary_10_1109_TIP_2017_2733739
crossref_primary_10_3390_ijgi7110431
crossref_primary_10_1155_2022_7409171
crossref_primary_10_1007_s13735_017_0121_3
crossref_primary_10_1016_j_cma_2021_113855
crossref_primary_10_1145_3583564
crossref_primary_10_1007_s00466_019_01731_1
crossref_primary_10_1109_ACCESS_2023_3242556
crossref_primary_10_1109_TBME_2016_2603119
crossref_primary_10_1109_TPAMI_2017_2699960
crossref_primary_10_1109_TIP_2023_3334594
crossref_primary_10_1186_s40537_019_0259_3
crossref_primary_10_3390_s16020237
crossref_primary_10_1016_j_ijar_2016_11_010
crossref_primary_10_1109_TFUZZ_2018_2874017
crossref_primary_10_1016_j_neuroimage_2018_06_084
crossref_primary_10_3390_f13101549
crossref_primary_10_1007_s42452_020_2039_2
crossref_primary_10_3390_rs11172055
crossref_primary_10_1007_s10994_019_05800_7
crossref_primary_10_1016_j_jvcir_2021_103068
crossref_primary_10_1016_j_parco_2022_102992
crossref_primary_10_1109_TKDE_2019_2911946
crossref_primary_10_1667_RR15552_1
crossref_primary_10_1002_cav_1775
crossref_primary_10_1016_j_cma_2021_113868
crossref_primary_10_1002_int_22692
crossref_primary_10_1016_j_aei_2018_05_005
crossref_primary_10_3390_f15101776
crossref_primary_10_1016_j_jestch_2019_06_005
crossref_primary_10_1007_s41870_017_0058_z
crossref_primary_10_1109_OJCS_2025_3602355
crossref_primary_10_1016_j_inffus_2018_07_001
crossref_primary_10_1109_TPAMI_2018_2794976
crossref_primary_10_1016_j_neucom_2018_03_064
crossref_primary_10_1088_1742_6596_1546_1_012027
crossref_primary_10_1007_s11554_015_0485_7
crossref_primary_10_3390_app14167097
crossref_primary_10_1186_s40649_016_0028_9
crossref_primary_10_1080_15325008_2018_1531442
crossref_primary_10_1007_s00138_022_01279_w
crossref_primary_10_1007_s10586_024_05098_8
crossref_primary_10_1109_TMM_2016_2616298
crossref_primary_10_1109_JSTSP_2016_2555239
crossref_primary_10_1016_j_eswa_2018_07_048
crossref_primary_10_1007_s11042_017_4777_8
crossref_primary_10_3389_fbuil_2018_00031
crossref_primary_10_1016_j_pss_2019_104719
crossref_primary_10_1016_j_cageo_2021_104696
crossref_primary_10_1109_TGRS_2023_3332916
crossref_primary_10_1109_TVCG_2015_2513408
crossref_primary_10_1007_s10472_023_09882_x
crossref_primary_10_3390_math11020436
crossref_primary_10_1016_j_patcog_2018_05_030
crossref_primary_10_1371_journal_pone_0155119
crossref_primary_10_1109_JSEN_2022_3148390
crossref_primary_10_3390_ijgi9060368
crossref_primary_10_1016_j_patrec_2018_02_020
crossref_primary_10_1109_TMI_2016_2589760
crossref_primary_10_3390_sym10010004
crossref_primary_10_1109_ACCESS_2025_3603088
crossref_primary_10_1109_TC_2017_2748131
Cites_doi 10.1109/CVPR.1997.609451
10.1109/T-C.1975.224297
10.1145/1143844.1143857
10.1007/BF01759061
10.1109/ICCV.2007.4408871
10.1145/1060745.1060840
10.1109/ICCV.2009.5459466
10.1109/CVPR.2006.264
10.1109/CVPR.2008.4587633
10.1109/CVPR.2005.320
10.1109/CVPR.2009.5206677
10.1109/ICCV.2011.6126542
10.1145/355744.355745
10.1109/CVPR.2007.383172
10.1109/CRV.2012.60
10.1109/CVPR.2008.4587638
10.1109/ICCVW.2009.5457541
10.1145/293347.293348
10.1109/CVPR.2010.5540006
10.1109/CVPR.2008.4587841
10.1145/1374376.1374452
10.1145/1276377.1276382
10.1109/ICCV.2011.6126544
10.1109/MIS.2009.36
10.1109/ICCV.2003.1238663
10.1145/1835804.1835946
10.1109/ICPR.2002.1047852
10.1109/CVPR.2012.6248038
10.1093/comjnl/7.4.308
10.5244/C.20.81
10.1023/B:VISI.0000029664.99615.94
10.1109/CVPR.2008.4587784
10.1145/361002.361007
10.1145/1327452.1327494
10.1109/ICCV.2003.1238424
10.1109/CVPR.2010.5539994
10.1109/CVPR.2007.382971
10.1109/CVPR.2007.383150
10.1109/TPAMI.2008.128
10.1613/jair.2861
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
DOI 10.1109/TPAMI.2014.2321376
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList MEDLINE - Academic
Technology Research Database

Technology Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 2240
ExternalDocumentID 3670120301
26353063
10_1109_TPAMI_2014_2321376
6809191
Genre orig-research
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AGSQL
AHBIQ
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
ESBDL
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
5VS
9M8
ABFSI
ADRHT
AETEA
AETIX
AI.
AIBXA
AKJIK
ALLEH
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
RIG
RNI
RZB
VH1
XJT
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
ID FETCH-LOGICAL-c494t-ae38fc9fa4dac55faf652c6d853c7fe982b5c8b64b88ff37ef13dbe35cd2d0773
IEDL.DBID RIE
ISICitedReferencesCount 956
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000343702400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Sun Sep 28 08:57:53 EDT 2025
Thu Oct 02 06:14:36 EDT 2025
Sun Nov 09 08:08:09 EST 2025
Mon Jul 21 05:51:16 EDT 2025
Sat Nov 29 05:15:56 EST 2025
Tue Nov 18 21:24:08 EST 2025
Wed Aug 27 02:47:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Nearest neighbor search
algorithm configuration
approximate search
big data
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-ae38fc9fa4dac55faf652c6d853c7fe982b5c8b64b88ff37ef13dbe35cd2d0773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://ieeexplore.ieee.org/document/6809191
PMID 26353063
PQID 1676943803
PQPubID 85458
PageCount 14
ParticipantIDs crossref_primary_10_1109_TPAMI_2014_2321376
proquest_journals_1676943803
pubmed_primary_26353063
crossref_citationtrail_10_1109_TPAMI_2014_2321376
ieee_primary_6809191
proquest_miscellaneous_1711534577
proquest_miscellaneous_1762081226
PublicationCentury 2000
PublicationDate 2014-11-01
PublicationDateYYYYMMDD 2014-11-01
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2014
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref15
ref53
ref52
ref55
ref11
ref54
ref10
hays (ref4) 2007; 26
ref17
ref16
hutter (ref45) 2009; 36
ref18
lv (ref30) 0
ref51
ref50
hajebi (ref41) 0
(ref60) 0
ref43
(ref59) 0
muja (ref14) 0
calonder (ref49) 0
arthur (ref48) 0
ref7
bradski (ref65) 2008
ref9
(ref58) 0
ref3
ref6
ref5
ref40
yianilos (ref21) 0
havlena (ref61) 0
(ref23) 0
(ref44) 0
ref34
ref37
ref31
ref33
raginsky (ref36) 0; 22
bergstra (ref46) 2012; 13
wang (ref42) 0
ref2
ref1
moore (ref20) 0
ref38
xu (ref39) 0
muja (ref47) 2013
quigley (ref63) 0
jégou (ref27) 2010; 32
ref24
ref26
ref25
ref64
ref22
kulis (ref35) 0; 22
ref28
brin (ref19) 0
ref29
deng (ref8) 0
ref62
weiss (ref32) 0
References_xml – ident: ref12
  doi: 10.1109/CVPR.1997.609451
– ident: ref18
  doi: 10.1109/T-C.1975.224297
– ident: ref22
  doi: 10.1145/1143844.1143857
– ident: ref15
  doi: 10.1007/BF01759061
– volume: 22
  start-page: 1042
  year: 0
  ident: ref35
  article-title: Learning to hash with binary reconstructive embeddings
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref54
  doi: 10.1109/ICCV.2007.4408871
– year: 2013
  ident: ref47
  publication-title: Scalable nearest neighbour methods for high dimensional data
– ident: ref31
  doi: 10.1145/1060745.1060840
– volume: 13
  start-page: 281
  year: 2012
  ident: ref46
  article-title: Random search for hyper-parameter optimization
  publication-title: J Mach Learn Res
– start-page: 1106
  year: 0
  ident: ref42
  article-title: Scalable k-NN graph construction for visual descriptors
  publication-title: Proc IEEE Conf Comput Vis Pattern Recog
– ident: ref34
  doi: 10.1109/ICCV.2009.5459466
– ident: ref24
  doi: 10.1109/CVPR.2006.264
– ident: ref57
  doi: 10.1109/CVPR.2008.4587633
– ident: ref6
  doi: 10.1109/CVPR.2005.320
– ident: ref62
  doi: 10.1109/CVPR.2009.5206677
– ident: ref51
  doi: 10.1109/ICCV.2011.6126542
– ident: ref10
  doi: 10.1145/355744.355745
– ident: ref2
  doi: 10.1109/CVPR.2007.383172
– ident: ref52
  doi: 10.1109/CRV.2012.60
– ident: ref13
  doi: 10.1109/CVPR.2008.4587638
– ident: ref64
  doi: 10.1109/ICCVW.2009.5457541
– ident: ref11
  doi: 10.1145/293347.293348
– ident: ref17
  doi: 10.1109/CVPR.2010.5540006
– ident: ref33
  doi: 10.1109/CVPR.2008.4587841
– ident: ref16
  doi: 10.1145/1374376.1374452
– start-page: 778
  year: 0
  ident: ref49
  article-title: BRIEF: Binary robust independent elementary features
  publication-title: Proc 11th Eur Conf Comput Vis
– start-page: 1312
  year: 0
  ident: ref41
  article-title: Fast approximate nearest-neighbor search with k-nearest neighbor graph
  publication-title: Proc 22nd Int Joint Conf Artif Intell
– volume: 26
  start-page: 4
  year: 2007
  ident: ref4
  article-title: Scene completion using millions of photographs
  publication-title: ACM Trans Graph
  doi: 10.1145/1276377.1276382
– ident: ref50
  doi: 10.1109/ICCV.2011.6126544
– ident: ref56
  doi: 10.1109/MIS.2009.36
– start-page: 397
  year: 0
  ident: ref20
  article-title: The anchors hierarchy: Using the triangle inequality to survive high dimensional data
  publication-title: Proc 16th Conf Uncertainty Artif Intell
– start-page: 574
  year: 0
  ident: ref19
  article-title: Near neighbor search in large metric spaces
  publication-title: Proc Int Conf On Very Large Data Bases
– ident: ref3
  doi: 10.1109/ICCV.2003.1238663
– year: 2008
  ident: ref65
  publication-title: Learning OpenCV Computer Vision With the OpenCV Library
– ident: ref38
  doi: 10.1145/1835804.1835946
– year: 0
  ident: ref60
– ident: ref40
  doi: 10.1109/ICPR.2002.1047852
– start-page: 950
  year: 0
  ident: ref30
  article-title: Multi-probe LSH: Efficient indexing for high-dimensional similarity search
  publication-title: Proc Int Conf Very Large Data Bases
– year: 0
  ident: ref44
– year: 0
  ident: ref23
– ident: ref28
  doi: 10.1109/CVPR.2012.6248038
– year: 0
  ident: ref63
  article-title: ROS: An open-source robot operating system
  publication-title: ICRA Workshop on Open Source Software
– ident: ref43
  doi: 10.1093/comjnl/7.4.308
– volume: 32
  start-page: 1
  year: 2010
  ident: ref27
  article-title: Product quantization for nearest neighbor search
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: ref25
  doi: 10.5244/C.20.81
– ident: ref1
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: ref55
  doi: 10.1109/CVPR.2008.4587784
– start-page: 331
  year: 0
  ident: ref14
  article-title: Fast approximate nearest neighbors with automatic algorithm configuration
  publication-title: Proc Int Conf Computer Vis Theory Appl
– start-page: 248
  year: 0
  ident: ref8
  article-title: ImageNet: A large-scale hierarchical image database
  publication-title: Proc IEEE Conf Comput Vis Pattern Recog
– start-page: 1631
  year: 0
  ident: ref39
  article-title: Complementary hashing for approximate nearest neighbor search
  publication-title: Proc IEEE Int Conf Comput Vis
– start-page: 1027
  year: 0
  ident: ref48
  article-title: K-Means++: The advantages of careful seeding
  publication-title: Proc Symp Discrete Algorithms
– start-page: 6
  year: 0
  ident: ref32
  article-title: Spectral hashing
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 280
  year: 0
  ident: ref61
  article-title: Automatic reconstruction of Mars artifacts
  publication-title: Proc Eur Planet Sci Congr
– ident: ref9
  doi: 10.1145/361002.361007
– ident: ref29
  doi: 10.1145/1327452.1327494
– volume: 22
  start-page: 1509
  year: 0
  ident: ref36
  article-title: Locality-sensitive binary codes from shift-invariant kernels
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref5
  doi: 10.1109/ICCV.2003.1238424
– ident: ref37
  doi: 10.1109/CVPR.2010.5539994
– year: 0
  ident: ref58
– ident: ref53
  doi: 10.1109/CVPR.2007.382971
– ident: ref26
  doi: 10.1109/CVPR.2007.383150
– start-page: 311
  year: 0
  ident: ref21
  article-title: Data structures and algorithms for nearest neighbor search in general metric spaces
  publication-title: Proc ACM-SIAM Symp Discrete Algorithms
– year: 0
  ident: ref59
– ident: ref7
  doi: 10.1109/TPAMI.2008.128
– volume: 36
  start-page: 267
  year: 2009
  ident: ref45
  article-title: ParamILS: An automatic algorithm configuration framework
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.2861
SSID ssj0014503
Score 2.6620092
Snippet For many computer vision and machine learning problems, large training sets are key for good performance. However, the most computationally expensive part of...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2227
SubjectTerms Algorithms
Approximation algorithms
Approximation methods
Clustering algorithms
Computer vision
Libraries
Machine learning
Machine learning algorithms
Matching
Partitioning algorithms
Searching
Training
Trees
Vegetation
Title Scalable Nearest Neighbor Algorithms for High Dimensional Data
URI https://ieeexplore.ieee.org/document/6809191
https://www.ncbi.nlm.nih.gov/pubmed/26353063
https://www.proquest.com/docview/1676943803
https://www.proquest.com/docview/1711534577
https://www.proquest.com/docview/1762081226
Volume 36
WOSCitedRecordID wos000343702400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9q8UEfbG39iLZlBd80bXLZ7MeLcLQWBT0KVrm3sNnM1kK9k7ucf78zmw8UbMGnC9yELDszmd9kZ34D8FqZYJjZMyXsbVNpUKa1y2WqUTublY2vY8n_t096NjPzub3YgrdjLwwixuIzPObLeJbfLP2GP5WdKEPRjVvV72mtul6t8cRAlnEKMiEY8nBKI4YGmcyeXF5MP3_kKi55TPghJ5diCmCKtASXi7_iURywcjvWjDHnfOf_VrsLj3psKaadMTyGLVzswc4wt0H0brwHD_8gIdyHd19ITdxAJWbMZ7tu6ZcydrINMb25Wq6u2-8_1oKwreCaEHHG4wA6Kg9x5lr3BL6ev788_ZD2UxVSL61sU4eFCd4GJxvnyzK4oMqJVw3Fba8DWjOpS29qJWtjQig0hrxoaixK30yaTOviKWwvlgt8DqJW9Hb0SDkPWukzWxuuWDQSCSQ4pWQC-bC3le8px3nyxU0VU4_MVlE1Faum6lWTwJvxnp8d4cad0vu88aNkv-cJHAwqrHqfXFc5V_MywX6RwKvxb_ImPiJxC1xuSEYTQi5kqfVdMmpCQIpwawLPOvMYnz9Y1Yt_r-slPODVd72MB7DdrjZ4CPf9r_Z6vTois56bo2jWvwH6_u-I
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9KFdQHq63VaNUVfNO0-djPF-GwlhavR8FT-hY2m10t1Du5y_n3O7P5QEELPiWQDdnszGR-k535DcBrqYMmZs8UsbdJufY8rW3OU-WVNZloXB1T_r9M1WymLy_NxRa8HWthvPcx-cwf0mncy2-WbkO_yo6kRu9Gpeq3BOdF1lVrjXsGXMQ-yIhh0MYxkBhKZDJzNL-YnJ9RHhc_RASRo1ERCTD6WgTM5R8eKbZY-TfajF7nZOf_5vsA7vfokk06dXgIW36xCztD5wbWG_Iu3PuNhnAP3n1CQVEJFZsRo-26xSPG7KgdbHL9dbm6ar99XzNEt4yyQtgxNQToyDzYsW3tI_h88mH-_jTt-yqkjhveptaXOjgTLG-sEyLYIEXhZIOe26ngjS5q4XQtea11CKXyIS-b2pfCNUWTKVXuw_ZiufBPgNUSv4_OY9TjDXeZqTXlLGruESZYKXkC-bC2letJx6n3xXUVg4_MVFE0FYmm6kWTwJvxnh8d5caNo_do4ceR_ZoncDCIsOqtcl3llM9LFPtlAq_Gy2hPtEliF365wTEKMXLJhVI3jZEFQilErgk87tRjfP6gVU__Pq-XcOd0fj6tpmezj8_gLr1JV9l4ANvtauOfw233s71ar15E5f4F8Mfx5w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+Nearest+Neighbor+Algorithms+for+High+Dimensional+Data&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Muja%2C+Marius&rft.au=Lowe%2C+David+G.&rft.date=2014-11-01&rft.issn=0162-8828&rft.eissn=2160-9292&rft.volume=36&rft.issue=11&rft.spage=2227&rft.epage=2240&rft_id=info:doi/10.1109%2FTPAMI.2014.2321376&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPAMI_2014_2321376
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon