Hyperspectral Super-Resolution of Locally Low Rank Images From Complementary Multisource Data

Remote sensing hyperspectral images (HSIs) are quite often low rank, in the sense that the data belong to a low dimensional subspace/manifold. This has been recently exploited for the fusion of low spatial resolution HSI with high spatial resolution multispectral images in order to obtain super-reso...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing Vol. 25; no. 1; pp. 274 - 288
Main Authors: Veganzones, Miguel A., Simoes, Miguel, Licciardi, Giorgio, Yokoya, Naoto, Bioucas-Dias, Jose M., Chanussot, Jocelyn
Format: Journal Article
Language:English
Published: United States IEEE 01.01.2016
Institute of Electrical and Electronics Engineers
Subjects:
ISSN:1057-7149, 1941-0042
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Remote sensing hyperspectral images (HSIs) are quite often low rank, in the sense that the data belong to a low dimensional subspace/manifold. This has been recently exploited for the fusion of low spatial resolution HSI with high spatial resolution multispectral images in order to obtain super-resolution HSI. Most approaches adopt an unmixing or a matrix factorization perspective. The derived methods have led to state-of-the-art results when the spectral information lies in a low-dimensional subspace/manifold. However, if the subspace/manifold dimensionality spanned by the complete data set is large, i.e., larger than the number of multispectral bands, the performance of these methods mainly decreases because the underlying sparse regression problem is severely ill-posed. In this paper, we propose a local approach to cope with this difficulty. Fundamentally, we exploit the fact that real world HSIs are locally low rank, that is, pixels acquired from a given spatial neighborhood span a very low-dimensional subspace/manifold, i.e., lower or equal than the number of multispectral bands. Thus, we propose to partition the image into patches and solve the data fusion problem independently for each patch. This way, in each patch the subspace/manifold dimensionality is low enough, such that the problem is not ill-posed anymore. We propose two alternative approaches to define the hyperspectral super-resolution through local dictionary learning using endmember induction algorithms. We also explore two alternatives to define the local regions, using sliding windows and binary partition trees. The effectiveness of the proposed approaches is illustrated with synthetic and semi real data.
AbstractList Remote sensing hyperspectral images (HSIs) are quite often low rank, in the sense that the data belong to a low dimensional subspace/manifold. This has been recently exploited for the fusion of low spatial resolution HSI with high spatial resolution multispectral images in order to obtain super-resolution HSI. Most approaches adopt an unmixing or a matrix factorization perspective. The derived methods have led to state-of-the-art results when the spectral information lies in a low-dimensional subspace/manifold. However, if the subspace/manifold dimensionality spanned by the complete data set is large, i.e., larger than the number of multispectral bands, the performance of these methods mainly decreases because the underlying sparse regression problem is severely ill-posed. In this paper, we propose a local approach to cope with this difficulty. Fundamentally, we exploit the fact that real world HSIs are locally low rank, that is, pixels acquired from a given spatial neighborhood span a very low-dimensional subspace/manifold, i.e., lower or equal than the number of multispectral bands. Thus, we propose to partition the image into patches and solve the data fusion problem independently for each patch. This way, in each patch the subspace/manifold dimensionality is low enough, such that the problem is not ill-posed anymore. We propose two alternative approaches to define the hyperspectral super-resolution through local dictionary learning using endmember induction algorithms. We also explore two alternatives to define the local regions, using sliding windows and binary partition trees. The effectiveness of the proposed approaches is illustrated with synthetic and semi real data.
Remote sensing hyperspectral images (HSI) are quite often low rank, in the sense that the data belong to a low dimensional subspace/manifold. This has been recently exploited for the fusion of low spatial resolution HSI with high spatial resolution multispectral images (MSI) in order to obtain super-resolution HSI. Most approaches adopt an unmixing or a matrix factorization perspective. The derived methods have led to state-of-the-art results when the spectral information lies in a low dimensional subspace/manifold. However, if the subspace/manifold dimensionality spanned by the complete data set is large, i.e., larger than the number of multispectral bands, the performance of these methods decrease mainly because the underlying sparse regression problem is severely ill-posed. In this paper, we propose a local approach to cope with this difficulty. Fundamentally, we exploit the fact that real world HSI are locally low rank, that is, pixels acquired from a given spatial neighborhood span a very low dimensional subspace/manifold, i.e., lower or equal than the number of multispectral bands. Thus, we propose to partition the image into patches and solve the data fusion problem independently for each patch. This way, in each patch the subspace/manifold dimensionality is low enough such that the problem is not ill-posed anymore. We propose two alternative approaches to define the hyperspectral super-resolution via local dictionary learning using endmember induction algorithms (HSR-LDL-EIA). We also explore two alternatives to define the local regions, using sliding windows and binary partition trees. The effectiveness of the proposed approaches is illustrated with synthetic and semi real data.
Author Bioucas-Dias, Jose M.
Chanussot, Jocelyn
Veganzones, Miguel A.
Simoes, Miguel
Yokoya, Naoto
Licciardi, Giorgio
Author_xml – sequence: 1
  givenname: Miguel A.
  surname: Veganzones
  fullname: Veganzones, Miguel A.
  email: miguel-angel.veganzones@gipsa-lab.fr
  organization: Dept. of Image & Signal, Grenoble Images Parole Signal Autom. Lab., St. Martin d'Hères, France
– sequence: 2
  givenname: Miguel
  surname: Simoes
  fullname: Simoes, Miguel
  email: miguel.simoes@gipsa-lab.fr
  organization: Dept. of Image & Signal, Grenoble Images Parole Signal Autom. Lab., St. Martin d'Hères, France
– sequence: 3
  givenname: Giorgio
  surname: Licciardi
  fullname: Licciardi, Giorgio
  email: giorgio.licciardi@gipsa-lab.fr
  organization: Dept. of Image & Signal, Grenoble Images Parole Signal Autom. Lab., St. Martin d'Hères, France
– sequence: 4
  givenname: Naoto
  surname: Yokoya
  fullname: Yokoya, Naoto
  email: yokoya@sal.rcast.u-tokyo.ac.jp
  organization: Dept. of Adv. Interdiscipl. Studies, Univ. of Tokyo, Tokyo, Japan
– sequence: 5
  givenname: Jose M.
  surname: Bioucas-Dias
  fullname: Bioucas-Dias, Jose M.
  email: bioucas@lx.it.pt
  organization: Inst. de Telecomun., Univ. de Lisboa, Lisbon, Portugal
– sequence: 6
  givenname: Jocelyn
  surname: Chanussot
  fullname: Chanussot, Jocelyn
  email: jocelyn.chanussot@gipsa-lab.fr
  organization: Dept. of Image & Signal, Grenoble Images Parole Signal Autom. Lab., St. Martin d'Hères, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26540685$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01117253$$DView record in HAL
BookMark eNqNkUtv1DAUhS1URB-wR0JCXsIiU78dL6uBMiMNKupjiSzHvYaAE6dxApp_j0cz7YIFYnUf-s7V1Tmn6KhPPSD0mpIFpcSc366_LBihcsGEUUzxZ-iEGkErQgQ7Kj2RutJUmGN0mvMPQqiQVL1Ax0xJQVQtT9DX1XaAMQ_gp9FFfDOXqbqGnOI8tanHKeBN8i7Gbam_8bXrf-J1575Bxpdj6vAydUOEDvrJjVv8eY5Tm9M8esAf3OReoufBxQyvDvUM3V1-vF2uqs3Vp_XyYlN5YcRUOc2V8Fwo3XgjQSvnpdMQfGhUIN4oaWTgtYfAfOPrEKgA4eBeyKYRxDf8DL3f3_3uoh3GtivP2ORau7rY2N2OUEo1k_wXL-y7PTuM6WGGPNmuzR5idD2kOVuqdU2oMYz9D8pqzqUhBX17QOemg_unJx6dLoDaA35MOY8QrG8nt_O4GN9GS4ndRWpLpHYXqT1EWoTkL-Hj7X9I3uwlLQA84ZpTZkzN_wChAqua
CODEN IIPRE4
CitedBy_id crossref_primary_10_1109_ACCESS_2020_2981690
crossref_primary_10_1109_TGRS_2017_2718728
crossref_primary_10_1016_j_sigpro_2024_109718
crossref_primary_10_1109_TGRS_2021_3063105
crossref_primary_10_1109_JSTSP_2022_3180896
crossref_primary_10_3390_rs15184610
crossref_primary_10_1109_TGRS_2018_2885506
crossref_primary_10_1109_MGRS_2017_2762087
crossref_primary_10_1109_JSTARS_2023_3345411
crossref_primary_10_3389_fninf_2022_880301
crossref_primary_10_1109_ACCESS_2020_2982494
crossref_primary_10_1109_ACCESS_2020_3009263
crossref_primary_10_1016_j_patcog_2021_108280
crossref_primary_10_1109_TGRS_2023_3273118
crossref_primary_10_3390_rs8030172
crossref_primary_10_3390_rs9111196
crossref_primary_10_1109_MGRS_2021_3075491
crossref_primary_10_1109_TGRS_2019_2918932
crossref_primary_10_1109_TGRS_2020_2979908
crossref_primary_10_1109_JSTARS_2021_3108233
crossref_primary_10_1109_LGRS_2021_3112038
crossref_primary_10_1109_TIP_2019_2916734
crossref_primary_10_1007_s11042_020_09952_w
crossref_primary_10_1109_TGRS_2018_2828612
crossref_primary_10_1109_JSTARS_2016_2569480
crossref_primary_10_1109_TGRS_2018_2866054
crossref_primary_10_1080_01431161_2020_1782507
crossref_primary_10_1109_MGRS_2016_2637824
crossref_primary_10_1109_TGRS_2020_2973370
crossref_primary_10_1109_ACCESS_2019_2944577
crossref_primary_10_3390_rs11232809
crossref_primary_10_1109_TGRS_2021_3079518
crossref_primary_10_1109_TGRS_2023_3308936
crossref_primary_10_1109_LGRS_2017_2701805
crossref_primary_10_1109_TGRS_2024_3449073
crossref_primary_10_1109_TCYB_2020_2983102
crossref_primary_10_1016_j_jag_2023_103381
crossref_primary_10_1109_TCI_2020_2996075
crossref_primary_10_1109_TGRS_2025_3590066
crossref_primary_10_12677_mos_2024_133292
crossref_primary_10_1109_JSTARS_2025_3569410
crossref_primary_10_1016_j_inffus_2022_08_032
crossref_primary_10_1109_JSTARS_2022_3140211
crossref_primary_10_1007_s11431_021_1978_6
crossref_primary_10_1080_01431161_2020_1800129
crossref_primary_10_1016_j_knosys_2023_110362
crossref_primary_10_1016_j_cviu_2022_103603
crossref_primary_10_1080_01431161_2022_2132123
crossref_primary_10_1109_TIP_2019_2928895
crossref_primary_10_1109_TGRS_2018_2843525
crossref_primary_10_1109_TGRS_2022_3143156
crossref_primary_10_1016_j_sigpro_2024_109449
crossref_primary_10_3390_jimaging4100118
crossref_primary_10_1109_TGRS_2019_2936486
crossref_primary_10_1016_j_neunet_2021_06_005
crossref_primary_10_1109_TGRS_2020_3049014
crossref_primary_10_1007_s42979_023_01868_0
crossref_primary_10_1016_j_inffus_2023_101907
crossref_primary_10_3390_rs15112853
crossref_primary_10_1109_JSTARS_2021_3099242
crossref_primary_10_1109_TNNLS_2019_2957527
crossref_primary_10_1109_TGRS_2023_3263362
crossref_primary_10_1109_LGRS_2023_3248069
crossref_primary_10_1007_s11432_022_3609_4
crossref_primary_10_1109_TGRS_2023_3335975
crossref_primary_10_1109_JSTARS_2023_3242053
crossref_primary_10_1109_MGRS_2021_3135954
crossref_primary_10_3390_rs14215306
crossref_primary_10_1007_s00500_022_07562_2
crossref_primary_10_1109_JSTARS_2023_3242048
crossref_primary_10_1109_TGRS_2022_3173532
crossref_primary_10_3233_JIFS_210441
crossref_primary_10_3390_rs12152424
crossref_primary_10_1007_s40314_022_01950_y
crossref_primary_10_1109_TIP_2018_2814210
crossref_primary_10_1109_TGRS_2019_2946803
crossref_primary_10_3390_rs9060541
crossref_primary_10_1109_TGRS_2022_3229439
crossref_primary_10_1016_j_inffus_2020_08_013
crossref_primary_10_3390_rs15184370
crossref_primary_10_3390_s20051276
crossref_primary_10_1109_JSTARS_2021_3102579
crossref_primary_10_1109_TGRS_2022_3232705
crossref_primary_10_1109_TGRS_2020_2994968
crossref_primary_10_3390_rs14081944
crossref_primary_10_1016_j_neunet_2021_11_014
crossref_primary_10_3390_rs10101574
crossref_primary_10_1109_TIP_2020_3009830
crossref_primary_10_1007_s00500_022_07723_3
crossref_primary_10_1080_01431161_2022_2041762
crossref_primary_10_1109_TGRS_2020_3043252
crossref_primary_10_3390_rs11212578
crossref_primary_10_1109_TGRS_2021_3090410
crossref_primary_10_1016_j_chemolab_2020_104097
crossref_primary_10_1109_TSP_2019_2907264
crossref_primary_10_1109_TGRS_2022_3217061
crossref_primary_10_1109_TGRS_2016_2598784
crossref_primary_10_3390_rs9040316
crossref_primary_10_1109_TNNLS_2021_3084682
crossref_primary_10_3390_rs15102574
crossref_primary_10_1016_j_infrared_2021_103631
crossref_primary_10_1109_TGRS_2025_3563847
crossref_primary_10_3390_rs13152930
crossref_primary_10_1109_TSP_2018_2876362
crossref_primary_10_1007_s11042_019_7188_1
crossref_primary_10_1109_TGRS_2016_2623626
crossref_primary_10_1109_TGRS_2022_3176266
crossref_primary_10_1109_TIP_2018_2836307
crossref_primary_10_1109_TGRS_2019_2897139
crossref_primary_10_1016_j_eswa_2023_121299
crossref_primary_10_1016_j_ins_2020_12_066
crossref_primary_10_1109_TNNLS_2020_2980398
crossref_primary_10_1016_j_patcog_2016_10_019
crossref_primary_10_1109_TGRS_2023_3300043
crossref_primary_10_1109_JSTARS_2023_3272370
crossref_primary_10_1109_TIP_2022_3141251
crossref_primary_10_1093_comjnl_bxaa106
crossref_primary_10_1016_j_isprsjprs_2024_07_003
crossref_primary_10_1016_j_sigpro_2020_107585
crossref_primary_10_1016_j_image_2022_116884
crossref_primary_10_1080_01431161_2016_1264027
crossref_primary_10_3390_rs15235570
crossref_primary_10_1007_s11042_019_08259_9
crossref_primary_10_1109_JSTARS_2017_2785411
crossref_primary_10_1109_JSTARS_2019_2902847
crossref_primary_10_1109_JSTARS_2021_3132135
crossref_primary_10_1109_TGRS_2023_3260030
crossref_primary_10_3390_rs10060817
Cites_doi 10.1109/83.841934
10.1109/TGRS.2011.2161320
10.1109/MGRS.2013.2244672
10.1109/TGRS.2013.2253612
10.1088/0266-5611/26/1/015003
10.1109/JSTSP.2011.2149497
10.1109/TGRS.2010.2098413
10.1109/JSTARS.2012.2208449
10.1109/WHISPERS.2010.5594963
10.1016/j.inffus.2013.08.005
10.1109/TIP.2011.2162739
10.1117/12.366289
10.1109/TIP.2012.2231687
10.1109/TGRS.2009.2017737
10.1109/TIP.2014.2329767
10.1109/TGRS.2014.2375320
10.1109/ICIP.2010.5652595
10.1007/978-3-642-56294-5
10.1109/JSTARS.2012.2194696
10.1109/TIP.2010.2076294
10.1109/JSTARS.2013.2249496
10.1109/TGRS.2008.918089
10.1109/ICASSP.2014.6854186
10.1109/CVPR.2011.5995457
10.1109/TGRS.2005.844293
10.1109/MSP.2007.4286571
10.1109/97.995823
10.1109/TIT.2008.929920
10.1109/LGRS.2008.919685
10.1109/MSP.2013.2279731
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
7SC
7SP
8FD
F28
FR3
JQ2
L7M
L~C
L~D
1XC
VOOES
DOI 10.1109/TIP.2015.2496263
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList MEDLINE - Academic

Technology Research Database
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1941-0042
EndPage 288
ExternalDocumentID oai:HAL:hal-01117253v3
26540685
10_1109_TIP_2015_2496263
7312998
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: French National Research Agency through the XIMRI Project
  grantid: ANR-BLAN-SIMI2-LS-101019-6-01
– fundername: European Research Council (Programme FP7/20072013) through the DECODA Project
  grantid: 2012-ERC-AdG-320594
  funderid: 10.13039/501100000781
– fundername: Portuguese Science and Technology Foundation
  grantid: SFRH/BD/87693/2012
– fundername: Portuguese Science and Technology Foundation
  grantid: PTDC/EEIPRO/1470/2012; UID/EEA/50008/2013
– fundername: European Research Council through the CHESS Project
  grantid: 2012-ERC-AdG-320684
  funderid: 10.13039/501100000781
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
NPM
RIG
7X8
7SC
7SP
8FD
F28
FR3
JQ2
L7M
L~C
L~D
1XC
VOOES
ID FETCH-LOGICAL-c494t-a7364c3467bc95e76ac5a7efcfb6f0c96595f38cef2cbc8ff14e4aed45bb40cb3
IEDL.DBID RIE
ISICitedReferencesCount 154
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000366558900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
IngestDate Tue Oct 14 20:53:32 EDT 2025
Mon Sep 29 05:52:39 EDT 2025
Sun Sep 28 10:29:34 EDT 2025
Mon Jul 21 06:02:44 EDT 2025
Tue Nov 18 22:26:23 EST 2025
Sat Nov 29 03:20:59 EST 2025
Tue Aug 26 16:43:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords data fusion
spectral unmixing
Hyperspectral imagery
super-resolution
multispectral imagery
binary partition tree
dictionary learning
spectral un-mixing
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-a7364c3467bc95e76ac5a7efcfb6f0c96595f38cef2cbc8ff14e4aed45bb40cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4259-919X
0000-0003-4817-2875
0000-0002-7321-4590
0000-0001-5789-2669
OpenAccessLink https://hal.science/hal-01117253
PMID 26540685
PQID 1772833590
PQPubID 23479
PageCount 15
ParticipantIDs pubmed_primary_26540685
crossref_citationtrail_10_1109_TIP_2015_2496263
ieee_primary_7312998
proquest_miscellaneous_1772833590
crossref_primary_10_1109_TIP_2015_2496263
hal_primary_oai_HAL_hal_01117253v3
proquest_miscellaneous_1778019922
PublicationCentury 2000
PublicationDate 2016-01-01
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2016
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref13
ref12
ref15
ref14
ref30
ref11
ref32
ref10
winter (ref27) 1999; 3753
ref2
ref1
ref17
ref16
ref19
ref18
wald (ref31) 2000
wald (ref24) 1997; 63
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref17
  doi: 10.1109/83.841934
– ident: ref8
  doi: 10.1109/TGRS.2011.2161320
– ident: ref2
  doi: 10.1109/MGRS.2013.2244672
– ident: ref7
  doi: 10.1109/TGRS.2013.2253612
– ident: ref14
  doi: 10.1088/0266-5611/26/1/015003
– volume: 63
  start-page: 691
  year: 1997
  ident: ref24
  article-title: Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images
  publication-title: Photogramm Eng Remote Sens
– ident: ref6
  doi: 10.1109/JSTSP.2011.2149497
– ident: ref10
  doi: 10.1109/TGRS.2010.2098413
– ident: ref15
  doi: 10.1109/JSTARS.2012.2208449
– ident: ref28
  doi: 10.1109/WHISPERS.2010.5594963
– ident: ref1
  doi: 10.1016/j.inffus.2013.08.005
– ident: ref12
  doi: 10.1109/TIP.2011.2162739
– volume: 3753
  start-page: 266
  year: 1999
  ident: ref27
  article-title: N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data
  publication-title: Proc SPIE
  doi: 10.1117/12.366289
– ident: ref18
  doi: 10.1109/TIP.2012.2231687
– ident: ref11
  doi: 10.1109/TGRS.2009.2017737
– ident: ref19
  doi: 10.1109/TIP.2014.2329767
– ident: ref16
  doi: 10.1109/TGRS.2014.2375320
– ident: ref23
  doi: 10.1109/ICIP.2010.5652595
– ident: ref30
  doi: 10.1007/978-3-642-56294-5
– ident: ref3
  doi: 10.1109/JSTARS.2012.2194696
– ident: ref29
  doi: 10.1109/TIP.2010.2076294
– ident: ref25
  doi: 10.1109/JSTARS.2013.2249496
– ident: ref26
  doi: 10.1109/TGRS.2008.918089
– ident: ref13
  doi: 10.1109/ICASSP.2014.6854186
– ident: ref5
  doi: 10.1109/CVPR.2011.5995457
– ident: ref22
  doi: 10.1109/TGRS.2005.844293
– start-page: 99
  year: 2000
  ident: ref31
  article-title: Quality of high resolution synthesised images: Is there a simple criterion?
  publication-title: Proc 3rd Conf Fusion Earth Data Merging Point Meas Raster Maps Remotely Sensed Images (SEE/URISCA)
– ident: ref9
  doi: 10.1109/MSP.2007.4286571
– ident: ref32
  doi: 10.1109/97.995823
– ident: ref21
  doi: 10.1109/TIT.2008.929920
– ident: ref4
  doi: 10.1109/LGRS.2008.919685
– ident: ref20
  doi: 10.1109/MSP.2013.2279731
SSID ssj0014516
Score 2.5728025
Snippet Remote sensing hyperspectral images (HSIs) are quite often low rank, in the sense that the data belong to a low dimensional subspace/manifold. This has been...
Remote sensing hyperspectral images (HSI) are quite often low rank, in the sense that the data belong to a low dimensional subspace/manifold. This has been...
SourceID hal
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 274
SubjectTerms Algorithms
Bands
binary partition tree
Computer Science
data fusion
dictionary learning
Hyperspectral imagery
Hyperspectral imaging
Ill posed problems
Manifolds
multispectral imagery
Partitions
Sensors
Signal and Image Processing
Signal resolution
Spatial resolution
spectral unmixing
Subspaces
super-resolution
Title Hyperspectral Super-Resolution of Locally Low Rank Images From Complementary Multisource Data
URI https://ieeexplore.ieee.org/document/7312998
https://www.ncbi.nlm.nih.gov/pubmed/26540685
https://www.proquest.com/docview/1772833590
https://www.proquest.com/docview/1778019922
https://hal.science/hal-01117253
Volume 25
WOSCitedRecordID wos000366558900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLd2Ew_wwGCDccCmgHhBortszUfzODFON-k0TTDQvaAqyaWatK1Fvbuh_ffYaa7aA0ziqR9ym1Z2Yju2fwb4YIOR6HWZDB0gnwmdu8wEMc8CyofSQnIR0fl_TPXZWTGbmfMN-NTXwoQQYvJZOKDTGMufN35FW2UjnaN2MsUABlqrrlarjxhQw9kY2ZQaxxVmHZLkZnRxek45XPIAXQ0CXyEAYIWWiqIGyve00eCSciFjk5V_25tR74y3_u-Ln8HTZF-y404gnsNGqLdhK9maLM3kxTY8uQdEuAM_J-iOdlWXLT79bYVXGe3sd3LJmopNSeld3-HxN_tq6yt2eoNL0YKN2-aG0aqS8tDbOxaLeruoADuxS_sCvo-_XHyeZKnxQuaFEcvM6lwJn-Ma6ryRQSvrpdWh8pVTFfcRg7DKCx-qI-98UVWHIggb5kI6J7h3-UvYrJs6vAImpcVXWqVskMLxIzdHE8UFNHOM5dzrIYzWDCh9QiWn5hjXZfROuCmReyVxr0zcG8LH_olfHSLHA7Tvkac9GUFpT46nJd3DdQ1tN5nfItEOMa6nSjwbwru1CJQ45SiOYuvQrBblIXokVKtm-IM0qPsJ9HcIu5389AOshe_13wd-A4_xH9I-z1vYXLarsAeP_C2yrt1H2Z8V-1H2_wABkP0V
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9tAwl4YLDxUTbAIF6QyOo1dlI_ToOqFaGaoKC9TJbtOkJiS1DaDu2_585xoz2MSTzlQ5c40Z19d7673wG8M15J9LpUgg6QS0Se2kR5MU88ykeWC8lFQOf_UeTT6fD0VJ1swIeuFsZ7H5LP_AGdhlj-vHYr2irr5ylqJzXchDtSiAFvq7W6mAG1nA2xTZnjyEKtg5Jc9WeTE8rikgfobBD8CkEAZ2irZNRC-Zo-2vxJ2ZChzcq_Lc6geUbb__fNj-BhtDDZUSsSj2HDVzuwHa1NFufyYgceXIMi3IWzMTqkbd1lg09_W-FVQnv7rWSyumQFqb3zKzz-YV9N9YtNLnAxWrBRU18wWldiJnpzxUJZbxsXYB_N0jyB76NPs-NxElsvJE4osUxMnmbCpbiKWqekzzPjpMl96UqbldwFFMIyHTpfDpx1w7I8FF4YPxfSWsGdTZ_CVlVX_jkwKQ2-0mSZ8VJYPrBzNFKsR0NHGc5d3oP-mgHaRVxyao9xroN_wpVG7mnino7c68H77onfLSbHLbRvkacdGYFpj48KTfdwZUPrTaaXSLRLjOuoIs968GYtAhonHUVSTOXr1UIfok9C1WqK30qD2p9gf3vwrJWfboC18L24eeDXcG88-1LoYjL9vAf38X_irs8-bC2blX8Jd90lsrF5FWbAX1Vc_3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperspectral+Super-Resolution+of+Locally+Low+Rank+Images+From+Complementary+Multisource+Data&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Veganzones%2C+Miguel+A&rft.au=Simoes%2C+Miguel&rft.au=Licciardi%2C+Giorgio&rft.au=Yokoya%2C+Naoto&rft.date=2016-01-01&rft.eissn=1941-0042&rft.volume=25&rft.issue=1&rft.spage=274&rft_id=info:doi/10.1109%2FTIP.2015.2496263&rft_id=info%3Apmid%2F26540685&rft.externalDocID=26540685
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon