Hyperspectral Super-Resolution of Locally Low Rank Images From Complementary Multisource Data
Remote sensing hyperspectral images (HSIs) are quite often low rank, in the sense that the data belong to a low dimensional subspace/manifold. This has been recently exploited for the fusion of low spatial resolution HSI with high spatial resolution multispectral images in order to obtain super-reso...
Uloženo v:
| Vydáno v: | IEEE transactions on image processing Ročník 25; číslo 1; s. 274 - 288 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.01.2016
Institute of Electrical and Electronics Engineers |
| Témata: | |
| ISSN: | 1057-7149, 1941-0042 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Remote sensing hyperspectral images (HSIs) are quite often low rank, in the sense that the data belong to a low dimensional subspace/manifold. This has been recently exploited for the fusion of low spatial resolution HSI with high spatial resolution multispectral images in order to obtain super-resolution HSI. Most approaches adopt an unmixing or a matrix factorization perspective. The derived methods have led to state-of-the-art results when the spectral information lies in a low-dimensional subspace/manifold. However, if the subspace/manifold dimensionality spanned by the complete data set is large, i.e., larger than the number of multispectral bands, the performance of these methods mainly decreases because the underlying sparse regression problem is severely ill-posed. In this paper, we propose a local approach to cope with this difficulty. Fundamentally, we exploit the fact that real world HSIs are locally low rank, that is, pixels acquired from a given spatial neighborhood span a very low-dimensional subspace/manifold, i.e., lower or equal than the number of multispectral bands. Thus, we propose to partition the image into patches and solve the data fusion problem independently for each patch. This way, in each patch the subspace/manifold dimensionality is low enough, such that the problem is not ill-posed anymore. We propose two alternative approaches to define the hyperspectral super-resolution through local dictionary learning using endmember induction algorithms. We also explore two alternatives to define the local regions, using sliding windows and binary partition trees. The effectiveness of the proposed approaches is illustrated with synthetic and semi real data. |
|---|---|
| AbstractList | Remote sensing hyperspectral images (HSIs) are quite often low rank, in the sense that the data belong to a low dimensional subspace/manifold. This has been recently exploited for the fusion of low spatial resolution HSI with high spatial resolution multispectral images in order to obtain super-resolution HSI. Most approaches adopt an unmixing or a matrix factorization perspective. The derived methods have led to state-of-the-art results when the spectral information lies in a low-dimensional subspace/manifold. However, if the subspace/manifold dimensionality spanned by the complete data set is large, i.e., larger than the number of multispectral bands, the performance of these methods mainly decreases because the underlying sparse regression problem is severely ill-posed. In this paper, we propose a local approach to cope with this difficulty. Fundamentally, we exploit the fact that real world HSIs are locally low rank, that is, pixels acquired from a given spatial neighborhood span a very low-dimensional subspace/manifold, i.e., lower or equal than the number of multispectral bands. Thus, we propose to partition the image into patches and solve the data fusion problem independently for each patch. This way, in each patch the subspace/manifold dimensionality is low enough, such that the problem is not ill-posed anymore. We propose two alternative approaches to define the hyperspectral super-resolution through local dictionary learning using endmember induction algorithms. We also explore two alternatives to define the local regions, using sliding windows and binary partition trees. The effectiveness of the proposed approaches is illustrated with synthetic and semi real data. Remote sensing hyperspectral images (HSI) are quite often low rank, in the sense that the data belong to a low dimensional subspace/manifold. This has been recently exploited for the fusion of low spatial resolution HSI with high spatial resolution multispectral images (MSI) in order to obtain super-resolution HSI. Most approaches adopt an unmixing or a matrix factorization perspective. The derived methods have led to state-of-the-art results when the spectral information lies in a low dimensional subspace/manifold. However, if the subspace/manifold dimensionality spanned by the complete data set is large, i.e., larger than the number of multispectral bands, the performance of these methods decrease mainly because the underlying sparse regression problem is severely ill-posed. In this paper, we propose a local approach to cope with this difficulty. Fundamentally, we exploit the fact that real world HSI are locally low rank, that is, pixels acquired from a given spatial neighborhood span a very low dimensional subspace/manifold, i.e., lower or equal than the number of multispectral bands. Thus, we propose to partition the image into patches and solve the data fusion problem independently for each patch. This way, in each patch the subspace/manifold dimensionality is low enough such that the problem is not ill-posed anymore. We propose two alternative approaches to define the hyperspectral super-resolution via local dictionary learning using endmember induction algorithms (HSR-LDL-EIA). We also explore two alternatives to define the local regions, using sliding windows and binary partition trees. The effectiveness of the proposed approaches is illustrated with synthetic and semi real data. |
| Author | Bioucas-Dias, Jose M. Chanussot, Jocelyn Veganzones, Miguel A. Simoes, Miguel Yokoya, Naoto Licciardi, Giorgio |
| Author_xml | – sequence: 1 givenname: Miguel A. surname: Veganzones fullname: Veganzones, Miguel A. email: miguel-angel.veganzones@gipsa-lab.fr organization: Dept. of Image & Signal, Grenoble Images Parole Signal Autom. Lab., St. Martin d'Hères, France – sequence: 2 givenname: Miguel surname: Simoes fullname: Simoes, Miguel email: miguel.simoes@gipsa-lab.fr organization: Dept. of Image & Signal, Grenoble Images Parole Signal Autom. Lab., St. Martin d'Hères, France – sequence: 3 givenname: Giorgio surname: Licciardi fullname: Licciardi, Giorgio email: giorgio.licciardi@gipsa-lab.fr organization: Dept. of Image & Signal, Grenoble Images Parole Signal Autom. Lab., St. Martin d'Hères, France – sequence: 4 givenname: Naoto surname: Yokoya fullname: Yokoya, Naoto email: yokoya@sal.rcast.u-tokyo.ac.jp organization: Dept. of Adv. Interdiscipl. Studies, Univ. of Tokyo, Tokyo, Japan – sequence: 5 givenname: Jose M. surname: Bioucas-Dias fullname: Bioucas-Dias, Jose M. email: bioucas@lx.it.pt organization: Inst. de Telecomun., Univ. de Lisboa, Lisbon, Portugal – sequence: 6 givenname: Jocelyn surname: Chanussot fullname: Chanussot, Jocelyn email: jocelyn.chanussot@gipsa-lab.fr organization: Dept. of Image & Signal, Grenoble Images Parole Signal Autom. Lab., St. Martin d'Hères, France |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26540685$$D View this record in MEDLINE/PubMed https://hal.science/hal-01117253$$DView record in HAL |
| BookMark | eNqNkUtv1DAUhS1URB-wR0JCXsIiU78dL6uBMiMNKupjiSzHvYaAE6dxApp_j0cz7YIFYnUf-s7V1Tmn6KhPPSD0mpIFpcSc366_LBihcsGEUUzxZ-iEGkErQgQ7Kj2RutJUmGN0mvMPQqiQVL1Ax0xJQVQtT9DX1XaAMQ_gp9FFfDOXqbqGnOI8tanHKeBN8i7Gbam_8bXrf-J1575Bxpdj6vAydUOEDvrJjVv8eY5Tm9M8esAf3OReoufBxQyvDvUM3V1-vF2uqs3Vp_XyYlN5YcRUOc2V8Fwo3XgjQSvnpdMQfGhUIN4oaWTgtYfAfOPrEKgA4eBeyKYRxDf8DL3f3_3uoh3GtivP2ORau7rY2N2OUEo1k_wXL-y7PTuM6WGGPNmuzR5idD2kOVuqdU2oMYz9D8pqzqUhBX17QOemg_unJx6dLoDaA35MOY8QrG8nt_O4GN9GS4ndRWpLpHYXqT1EWoTkL-Hj7X9I3uwlLQA84ZpTZkzN_wChAqua |
| CODEN | IIPRE4 |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2020_2981690 crossref_primary_10_1109_TGRS_2017_2718728 crossref_primary_10_1016_j_sigpro_2024_109718 crossref_primary_10_1109_TGRS_2021_3063105 crossref_primary_10_1109_JSTSP_2022_3180896 crossref_primary_10_3390_rs15184610 crossref_primary_10_1109_TGRS_2018_2885506 crossref_primary_10_1109_MGRS_2017_2762087 crossref_primary_10_1109_JSTARS_2023_3345411 crossref_primary_10_3389_fninf_2022_880301 crossref_primary_10_1109_ACCESS_2020_2982494 crossref_primary_10_1109_ACCESS_2020_3009263 crossref_primary_10_1016_j_patcog_2021_108280 crossref_primary_10_1109_TGRS_2023_3273118 crossref_primary_10_3390_rs8030172 crossref_primary_10_3390_rs9111196 crossref_primary_10_1109_MGRS_2021_3075491 crossref_primary_10_1109_TGRS_2019_2918932 crossref_primary_10_1109_TGRS_2020_2979908 crossref_primary_10_1109_JSTARS_2021_3108233 crossref_primary_10_1109_LGRS_2021_3112038 crossref_primary_10_1109_TIP_2019_2916734 crossref_primary_10_1007_s11042_020_09952_w crossref_primary_10_1109_TGRS_2018_2828612 crossref_primary_10_1109_JSTARS_2016_2569480 crossref_primary_10_1109_TGRS_2018_2866054 crossref_primary_10_1080_01431161_2020_1782507 crossref_primary_10_1109_MGRS_2016_2637824 crossref_primary_10_1109_TGRS_2020_2973370 crossref_primary_10_1109_ACCESS_2019_2944577 crossref_primary_10_3390_rs11232809 crossref_primary_10_1109_TGRS_2021_3079518 crossref_primary_10_1109_TGRS_2023_3308936 crossref_primary_10_1109_LGRS_2017_2701805 crossref_primary_10_1109_TGRS_2024_3449073 crossref_primary_10_1109_TCYB_2020_2983102 crossref_primary_10_1016_j_jag_2023_103381 crossref_primary_10_1109_TCI_2020_2996075 crossref_primary_10_1109_TGRS_2025_3590066 crossref_primary_10_12677_mos_2024_133292 crossref_primary_10_1109_JSTARS_2025_3569410 crossref_primary_10_1016_j_inffus_2022_08_032 crossref_primary_10_1109_JSTARS_2022_3140211 crossref_primary_10_1007_s11431_021_1978_6 crossref_primary_10_1080_01431161_2020_1800129 crossref_primary_10_1016_j_knosys_2023_110362 crossref_primary_10_1016_j_cviu_2022_103603 crossref_primary_10_1080_01431161_2022_2132123 crossref_primary_10_1109_TIP_2019_2928895 crossref_primary_10_1109_TGRS_2018_2843525 crossref_primary_10_1109_TGRS_2022_3143156 crossref_primary_10_1016_j_sigpro_2024_109449 crossref_primary_10_3390_jimaging4100118 crossref_primary_10_1109_TGRS_2019_2936486 crossref_primary_10_1016_j_neunet_2021_06_005 crossref_primary_10_1109_TGRS_2020_3049014 crossref_primary_10_1007_s42979_023_01868_0 crossref_primary_10_1016_j_inffus_2023_101907 crossref_primary_10_3390_rs15112853 crossref_primary_10_1109_JSTARS_2021_3099242 crossref_primary_10_1109_TNNLS_2019_2957527 crossref_primary_10_1109_TGRS_2023_3263362 crossref_primary_10_1109_LGRS_2023_3248069 crossref_primary_10_1007_s11432_022_3609_4 crossref_primary_10_1109_TGRS_2023_3335975 crossref_primary_10_1109_JSTARS_2023_3242053 crossref_primary_10_1109_MGRS_2021_3135954 crossref_primary_10_3390_rs14215306 crossref_primary_10_1007_s00500_022_07562_2 crossref_primary_10_1109_JSTARS_2023_3242048 crossref_primary_10_1109_TGRS_2022_3173532 crossref_primary_10_3233_JIFS_210441 crossref_primary_10_3390_rs12152424 crossref_primary_10_1007_s40314_022_01950_y crossref_primary_10_1109_TIP_2018_2814210 crossref_primary_10_1109_TGRS_2019_2946803 crossref_primary_10_3390_rs9060541 crossref_primary_10_1109_TGRS_2022_3229439 crossref_primary_10_1016_j_inffus_2020_08_013 crossref_primary_10_3390_rs15184370 crossref_primary_10_3390_s20051276 crossref_primary_10_1109_JSTARS_2021_3102579 crossref_primary_10_1109_TGRS_2022_3232705 crossref_primary_10_1109_TGRS_2020_2994968 crossref_primary_10_3390_rs14081944 crossref_primary_10_1016_j_neunet_2021_11_014 crossref_primary_10_3390_rs10101574 crossref_primary_10_1109_TIP_2020_3009830 crossref_primary_10_1007_s00500_022_07723_3 crossref_primary_10_1080_01431161_2022_2041762 crossref_primary_10_1109_TGRS_2020_3043252 crossref_primary_10_3390_rs11212578 crossref_primary_10_1109_TGRS_2021_3090410 crossref_primary_10_1016_j_chemolab_2020_104097 crossref_primary_10_1109_TSP_2019_2907264 crossref_primary_10_1109_TGRS_2022_3217061 crossref_primary_10_1109_TGRS_2016_2598784 crossref_primary_10_3390_rs9040316 crossref_primary_10_1109_TNNLS_2021_3084682 crossref_primary_10_3390_rs15102574 crossref_primary_10_1016_j_infrared_2021_103631 crossref_primary_10_1109_TGRS_2025_3563847 crossref_primary_10_3390_rs13152930 crossref_primary_10_1109_TSP_2018_2876362 crossref_primary_10_1007_s11042_019_7188_1 crossref_primary_10_1109_TGRS_2016_2623626 crossref_primary_10_1109_TGRS_2022_3176266 crossref_primary_10_1109_TIP_2018_2836307 crossref_primary_10_1109_TGRS_2019_2897139 crossref_primary_10_1016_j_eswa_2023_121299 crossref_primary_10_1016_j_ins_2020_12_066 crossref_primary_10_1109_TNNLS_2020_2980398 crossref_primary_10_1016_j_patcog_2016_10_019 crossref_primary_10_1109_TGRS_2023_3300043 crossref_primary_10_1109_JSTARS_2023_3272370 crossref_primary_10_1109_TIP_2022_3141251 crossref_primary_10_1093_comjnl_bxaa106 crossref_primary_10_1016_j_isprsjprs_2024_07_003 crossref_primary_10_1016_j_sigpro_2020_107585 crossref_primary_10_1016_j_image_2022_116884 crossref_primary_10_1080_01431161_2016_1264027 crossref_primary_10_3390_rs15235570 crossref_primary_10_1007_s11042_019_08259_9 crossref_primary_10_1109_JSTARS_2017_2785411 crossref_primary_10_1109_JSTARS_2019_2902847 crossref_primary_10_1109_JSTARS_2021_3132135 crossref_primary_10_1109_TGRS_2023_3260030 crossref_primary_10_3390_rs10060817 |
| Cites_doi | 10.1109/83.841934 10.1109/TGRS.2011.2161320 10.1109/MGRS.2013.2244672 10.1109/TGRS.2013.2253612 10.1088/0266-5611/26/1/015003 10.1109/JSTSP.2011.2149497 10.1109/TGRS.2010.2098413 10.1109/JSTARS.2012.2208449 10.1109/WHISPERS.2010.5594963 10.1016/j.inffus.2013.08.005 10.1109/TIP.2011.2162739 10.1117/12.366289 10.1109/TIP.2012.2231687 10.1109/TGRS.2009.2017737 10.1109/TIP.2014.2329767 10.1109/TGRS.2014.2375320 10.1109/ICIP.2010.5652595 10.1007/978-3-642-56294-5 10.1109/JSTARS.2012.2194696 10.1109/TIP.2010.2076294 10.1109/JSTARS.2013.2249496 10.1109/TGRS.2008.918089 10.1109/ICASSP.2014.6854186 10.1109/CVPR.2011.5995457 10.1109/TGRS.2005.844293 10.1109/MSP.2007.4286571 10.1109/97.995823 10.1109/TIT.2008.929920 10.1109/LGRS.2008.919685 10.1109/MSP.2013.2279731 |
| ContentType | Journal Article |
| Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 7SC 7SP 8FD F28 FR3 JQ2 L7M L~C L~D 1XC VOOES |
| DOI | 10.1109/TIP.2015.2496263 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef PubMed MEDLINE - Academic Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | MEDLINE - Academic Technology Research Database PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Computer Science |
| EISSN | 1941-0042 |
| EndPage | 288 |
| ExternalDocumentID | oai:HAL:hal-01117253v3 26540685 10_1109_TIP_2015_2496263 7312998 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: French National Research Agency through the XIMRI Project grantid: ANR-BLAN-SIMI2-LS-101019-6-01 – fundername: European Research Council (Programme FP7/20072013) through the DECODA Project grantid: 2012-ERC-AdG-320594 funderid: 10.13039/501100000781 – fundername: Portuguese Science and Technology Foundation grantid: SFRH/BD/87693/2012 – fundername: Portuguese Science and Technology Foundation grantid: PTDC/EEIPRO/1470/2012; UID/EEA/50008/2013 – fundername: European Research Council through the CHESS Project grantid: 2012-ERC-AdG-320684 funderid: 10.13039/501100000781 |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION NPM RIG 7X8 7SC 7SP 8FD F28 FR3 JQ2 L7M L~C L~D 1XC VOOES |
| ID | FETCH-LOGICAL-c494t-a7364c3467bc95e76ac5a7efcfb6f0c96595f38cef2cbc8ff14e4aed45bb40cb3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 154 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000366558900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1057-7149 |
| IngestDate | Tue Oct 14 20:53:32 EDT 2025 Mon Sep 29 05:52:39 EDT 2025 Sun Sep 28 10:29:34 EDT 2025 Mon Jul 21 06:02:44 EDT 2025 Tue Nov 18 22:26:23 EST 2025 Sat Nov 29 03:20:59 EST 2025 Tue Aug 26 16:43:03 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | data fusion spectral unmixing Hyperspectral imagery super-resolution multispectral imagery binary partition tree dictionary learning spectral un-mixing |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c494t-a7364c3467bc95e76ac5a7efcfb6f0c96595f38cef2cbc8ff14e4aed45bb40cb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-4259-919X 0000-0003-4817-2875 0000-0002-7321-4590 0000-0001-5789-2669 |
| OpenAccessLink | https://hal.science/hal-01117253 |
| PMID | 26540685 |
| PQID | 1772833590 |
| PQPubID | 23479 |
| PageCount | 15 |
| ParticipantIDs | pubmed_primary_26540685 crossref_citationtrail_10_1109_TIP_2015_2496263 ieee_primary_7312998 proquest_miscellaneous_1772833590 crossref_primary_10_1109_TIP_2015_2496263 hal_primary_oai_HAL_hal_01117253v3 proquest_miscellaneous_1778019922 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-01-01 |
| PublicationDateYYYYMMDD | 2016-01-01 |
| PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transactions on image processing |
| PublicationTitleAbbrev | TIP |
| PublicationTitleAlternate | IEEE Trans Image Process |
| PublicationYear | 2016 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
| References | ref13 ref12 ref15 ref14 ref30 ref11 ref32 ref10 winter (ref27) 1999; 3753 ref2 ref1 ref17 ref16 ref19 ref18 wald (ref31) 2000 wald (ref24) 1997; 63 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref17 doi: 10.1109/83.841934 – ident: ref8 doi: 10.1109/TGRS.2011.2161320 – ident: ref2 doi: 10.1109/MGRS.2013.2244672 – ident: ref7 doi: 10.1109/TGRS.2013.2253612 – ident: ref14 doi: 10.1088/0266-5611/26/1/015003 – volume: 63 start-page: 691 year: 1997 ident: ref24 article-title: Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images publication-title: Photogramm Eng Remote Sens – ident: ref6 doi: 10.1109/JSTSP.2011.2149497 – ident: ref10 doi: 10.1109/TGRS.2010.2098413 – ident: ref15 doi: 10.1109/JSTARS.2012.2208449 – ident: ref28 doi: 10.1109/WHISPERS.2010.5594963 – ident: ref1 doi: 10.1016/j.inffus.2013.08.005 – ident: ref12 doi: 10.1109/TIP.2011.2162739 – volume: 3753 start-page: 266 year: 1999 ident: ref27 article-title: N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data publication-title: Proc SPIE doi: 10.1117/12.366289 – ident: ref18 doi: 10.1109/TIP.2012.2231687 – ident: ref11 doi: 10.1109/TGRS.2009.2017737 – ident: ref19 doi: 10.1109/TIP.2014.2329767 – ident: ref16 doi: 10.1109/TGRS.2014.2375320 – ident: ref23 doi: 10.1109/ICIP.2010.5652595 – ident: ref30 doi: 10.1007/978-3-642-56294-5 – ident: ref3 doi: 10.1109/JSTARS.2012.2194696 – ident: ref29 doi: 10.1109/TIP.2010.2076294 – ident: ref25 doi: 10.1109/JSTARS.2013.2249496 – ident: ref26 doi: 10.1109/TGRS.2008.918089 – ident: ref13 doi: 10.1109/ICASSP.2014.6854186 – ident: ref5 doi: 10.1109/CVPR.2011.5995457 – ident: ref22 doi: 10.1109/TGRS.2005.844293 – start-page: 99 year: 2000 ident: ref31 article-title: Quality of high resolution synthesised images: Is there a simple criterion? publication-title: Proc 3rd Conf Fusion Earth Data Merging Point Meas Raster Maps Remotely Sensed Images (SEE/URISCA) – ident: ref9 doi: 10.1109/MSP.2007.4286571 – ident: ref32 doi: 10.1109/97.995823 – ident: ref21 doi: 10.1109/TIT.2008.929920 – ident: ref4 doi: 10.1109/LGRS.2008.919685 – ident: ref20 doi: 10.1109/MSP.2013.2279731 |
| SSID | ssj0014516 |
| Score | 2.5728025 |
| Snippet | Remote sensing hyperspectral images (HSIs) are quite often low rank, in the sense that the data belong to a low dimensional subspace/manifold. This has been... Remote sensing hyperspectral images (HSI) are quite often low rank, in the sense that the data belong to a low dimensional subspace/manifold. This has been... |
| SourceID | hal proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 274 |
| SubjectTerms | Algorithms Bands binary partition tree Computer Science data fusion dictionary learning Hyperspectral imagery Hyperspectral imaging Ill posed problems Manifolds multispectral imagery Partitions Sensors Signal and Image Processing Signal resolution Spatial resolution spectral unmixing Subspaces super-resolution |
| Title | Hyperspectral Super-Resolution of Locally Low Rank Images From Complementary Multisource Data |
| URI | https://ieeexplore.ieee.org/document/7312998 https://www.ncbi.nlm.nih.gov/pubmed/26540685 https://www.proquest.com/docview/1772833590 https://www.proquest.com/docview/1778019922 https://hal.science/hal-01117253 |
| Volume | 25 |
| WOSCitedRecordID | wos000366558900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1941-0042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014516 issn: 1057-7149 databaseCode: RIE dateStart: 19920101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED6asoftYd3a_ci2Fm3sZTA1bixZ1mNpF1IIpWwd5GUYSZEYrLWHk3T0v9-drJg-bIU--QdnnPCddZ90uu8APgbkBFZmhksvMi6UDxxJveNIHYJ0GABFJ5I0U-fn5XyuL7bgc18L472Pm8_8IZ3GXP6icWtaKhupHKOTLgcwUKroarX6jAE1nI2ZTam4Qtq_SUlmenR5dkF7uOQhTjVIfIUEgAtkKgU1UL4TjQY_aS9kbLLyf74Z485k52G_-Bk8TfySHXcO8Ry2fL0LO4lrsvQlL3fhyR0hwj34McXpaFd12eLT39Z4xWllv_NL1gQ2o6B3dYvHP-yrqX-xs2scipZs0jbXjEaVtA-9vWWxqLfLCrBTszIv4Pvky-XJlKfGC9wJLVbcqLwQLscx1DotvSqMkwZhdMEWIXNRgzDkpfNh7KwrQzgSXhi_ENJakTmbv4Ttuqn9a2BBy3GZGWVJh06PLXVQsHmxkLleuNLqIYw2AFQuqZJTc4yrKs5OMl0hehWhVyX0hvCpf-J3p8hxj-0HxLQ3Iynt6fGsons4riF3k_kNGu0RcL1VwmwI7zcuUOEnR3kUU_tmvayOcEZCtWo6u9cGYz-J_g7hVec__Qs2zvfm3y9-C4_xP6R1nnewvWrXfh8euRuErj1A35-XB9H3_wILPf08 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED5tA4nxwGDjR_lpEC9IZM0aO4kfJ6BqRagmKNJekGW7tpC2JShth_bfc-e40R5gEk9pqovS6jv7Pvt83wG89cgJjEh1IhxPE144nyCptwlSBy8sBkDeiSRVxWxWnp7Kky1439fCOOfC4TN3SB9DLn_R2DVtlQ2LDKOTLLfhluB8lHbVWn3OgFrOhtymKJICif8mKZnK4Xx6Qqe4xCEuNkh-hSSAc-QqObVQvhaPtn_SacjQZuXfjDNEnvHe__3m-3AvMkx23LnEA9hy9T7sRbbJ4lhe7sPda1KEB_BjggvSru6yxae_rfEuob39zjNZ41lFYe_8Cq-_2Vddn7HpBU5GSzZumwtG80o8id5esVDW2-UF2Ee90g_h-_jT_MMkia0XEsslXyW6yHJuM5xFjZXCFbm2QiOQ1pvcpzaoEPqstM6PrLGl90fcce0WXBjDU2uyR7BTN7V7AsxLMSpTXRhSopMjQz0UTJYvRCYXtjRyAMMNAMpGXXJqj3GuwvoklQrRU4SeiugN4F3_xK9Ok-MG2zeIaW9GYtqT40rRdzizIXsT2SUaHRBwvVXEbACvNy6gcNBRJkXXrlkv1RGuSahaTaY32mD0J9nfATzu_Kd_wcb5nv79xa_gzmT-pVLVdPb5Gezi_4m7Ps9hZ9Wu3Qu4bS8RxvZlGAF_AGDL_5s |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperspectral+Super-Resolution+of+Locally+Low+Rank+Images+From+Complementary+Multisource+Data&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Veganzones%2C+Miguel+A.&rft.au=Simoes%2C+Miguel&rft.au=Licciardi%2C+Giorgio&rft.au=Yokoya%2C+Naoto&rft.date=2016-01-01&rft.pub=IEEE&rft.issn=1057-7149&rft.volume=25&rft.issue=1&rft.spage=274&rft.epage=288&rft_id=info:doi/10.1109%2FTIP.2015.2496263&rft_id=info%3Apmid%2F26540685&rft.externalDocID=7312998 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |