A multi-modality ground-to-air cross-view pose estimation dataset for field robots

High-precision localization is critical for intelligent robotics in autonomous driving, smart agriculture, and military operations. While Global Navigation Satellite System (GNSS) provides global positioning, its reliability deteriorates severely in signal degraded environments like urban canyons. C...

Full description

Saved in:
Bibliographic Details
Published in:Scientific data Vol. 12; no. 1; pp. 754 - 15
Main Authors: Yuan, Xia, Wang, Kaiyang, Qin, Riyu, Xu, Jiachen
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 07.05.2025
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2052-4463, 2052-4463
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract High-precision localization is critical for intelligent robotics in autonomous driving, smart agriculture, and military operations. While Global Navigation Satellite System (GNSS) provides global positioning, its reliability deteriorates severely in signal degraded environments like urban canyons. Cross-view pose estimation using aerial-ground sensor fusion offers an economical alternative, yet current datasets lack field scenarios and high-resolution LiDAR support.This work introduces a multimodal cross-view dataset addressing these gaps. It contains 29,940 synchronized frames across 11 operational environments (6 field environments, 5 urban roads), featuring: 1) 144-channel LiDAR point clouds, 2) ground-view RGB images, and 3) aerial orthophotos. Centimeter-accurate georeferencing is ensured through GNSS fusion and post-processed kinematic positioning. The dataset uniquely integrates field environments and high-resolution LiDAR-aerial-ground data triplets, enabling rigorous evaluation of 3-DoF pose estimation algorithms for orientation alignment and coordinate transformation between perspectives.This resource supports development of robust localization systems for field robots in GNSS-denied conditions, emphasizing cross-view feature matching and multisensor fusion. Light Detection And Ranging (LiDAR)-enhanced ground truth further distinguishes its utility for complex outdoor navigation research.
AbstractList High-precision localization is critical for intelligent robotics in autonomous driving, smart agriculture, and military operations. While Global Navigation Satellite System (GNSS) provides global positioning, its reliability deteriorates severely in signal degraded environments like urban canyons. Cross-view pose estimation using aerial-ground sensor fusion offers an economical alternative, yet current datasets lack field scenarios and high-resolution LiDAR support.This work introduces a multimodal cross-view dataset addressing these gaps. It contains 29,940 synchronized frames across 11 operational environments (6 field environments, 5 urban roads), featuring: 1) 144-channel LiDAR point clouds, 2) ground-view RGB images, and 3) aerial orthophotos. Centimeter-accurate georeferencing is ensured through GNSS fusion and post-processed kinematic positioning. The dataset uniquely integrates field environments and high-resolution LiDAR-aerial-ground data triplets, enabling rigorous evaluation of 3-DoF pose estimation algorithms for orientation alignment and coordinate transformation between perspectives.This resource supports development of robust localization systems for field robots in GNSS-denied conditions, emphasizing cross-view feature matching and multisensor fusion. Light Detection And Ranging (LiDAR)-enhanced ground truth further distinguishes its utility for complex outdoor navigation research.
Abstract High-precision localization is critical for intelligent robotics in autonomous driving, smart agriculture, and military operations. While Global Navigation Satellite System (GNSS) provides global positioning, its reliability deteriorates severely in signal degraded environments like urban canyons. Cross-view pose estimation using aerial-ground sensor fusion offers an economical alternative, yet current datasets lack field scenarios and high-resolution LiDAR support.This work introduces a multimodal cross-view dataset addressing these gaps. It contains 29,940 synchronized frames across 11 operational environments (6 field environments, 5 urban roads), featuring: 1) 144-channel LiDAR point clouds, 2) ground-view RGB images, and 3) aerial orthophotos. Centimeter-accurate georeferencing is ensured through GNSS fusion and post-processed kinematic positioning. The dataset uniquely integrates field environments and high-resolution LiDAR-aerial-ground data triplets, enabling rigorous evaluation of 3-DoF pose estimation algorithms for orientation alignment and coordinate transformation between perspectives.This resource supports development of robust localization systems for field robots in GNSS-denied conditions, emphasizing cross-view feature matching and multisensor fusion. Light Detection And Ranging (LiDAR)-enhanced ground truth further distinguishes its utility for complex outdoor navigation research.
High-precision localization is critical for intelligent robotics in autonomous driving, smart agriculture, and military operations. While Global Navigation Satellite System (GNSS) provides global positioning, its reliability deteriorates severely in signal degraded environments like urban canyons. Cross-view pose estimation using aerial-ground sensor fusion offers an economical alternative, yet current datasets lack field scenarios and high-resolution LiDAR support.This work introduces a multimodal cross-view dataset addressing these gaps. It contains 29,940 synchronized frames across 11 operational environments (6 field environments, 5 urban roads), featuring: 1) 144-channel LiDAR point clouds, 2) ground-view RGB images, and 3) aerial orthophotos. Centimeter-accurate georeferencing is ensured through GNSS fusion and post-processed kinematic positioning. The dataset uniquely integrates field environments and high-resolution LiDAR-aerial-ground data triplets, enabling rigorous evaluation of 3-DoF pose estimation algorithms for orientation alignment and coordinate transformation between perspectives.This resource supports development of robust localization systems for field robots in GNSS-denied conditions, emphasizing cross-view feature matching and multisensor fusion. Light Detection And Ranging (LiDAR)-enhanced ground truth further distinguishes its utility for complex outdoor navigation research.High-precision localization is critical for intelligent robotics in autonomous driving, smart agriculture, and military operations. While Global Navigation Satellite System (GNSS) provides global positioning, its reliability deteriorates severely in signal degraded environments like urban canyons. Cross-view pose estimation using aerial-ground sensor fusion offers an economical alternative, yet current datasets lack field scenarios and high-resolution LiDAR support.This work introduces a multimodal cross-view dataset addressing these gaps. It contains 29,940 synchronized frames across 11 operational environments (6 field environments, 5 urban roads), featuring: 1) 144-channel LiDAR point clouds, 2) ground-view RGB images, and 3) aerial orthophotos. Centimeter-accurate georeferencing is ensured through GNSS fusion and post-processed kinematic positioning. The dataset uniquely integrates field environments and high-resolution LiDAR-aerial-ground data triplets, enabling rigorous evaluation of 3-DoF pose estimation algorithms for orientation alignment and coordinate transformation between perspectives.This resource supports development of robust localization systems for field robots in GNSS-denied conditions, emphasizing cross-view feature matching and multisensor fusion. Light Detection And Ranging (LiDAR)-enhanced ground truth further distinguishes its utility for complex outdoor navigation research.
ArticleNumber 754
Author Xu, Jiachen
Yuan, Xia
Qin, Riyu
Wang, Kaiyang
Author_xml – sequence: 1
  givenname: Xia
  surname: Yuan
  fullname: Yuan, Xia
  email: yuanxia@njust.edu.cn
  organization: Nanjing University of Science and Technology, School of Computer Science and Engineering
– sequence: 2
  givenname: Kaiyang
  orcidid: 0009-0003-7126-2876
  surname: Wang
  fullname: Wang, Kaiyang
  organization: Nanjing University of Science and Technology, School of Computer Science and Engineering
– sequence: 3
  givenname: Riyu
  surname: Qin
  fullname: Qin, Riyu
  organization: Nanjing University of Science and Technology, School of Computer Science and Engineering
– sequence: 4
  givenname: Jiachen
  surname: Xu
  fullname: Xu, Jiachen
  organization: Dahua Technology, Software Development Department
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40335529$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhi1UREvpH-CAInHhYpj4I05OqKpoqVQJCcHZcvyxeJXYi-0U9d_j3ZTScuBgjWU_885o5n2JjkIMFqHXLbxvgfYfMmv5IDAQjoGD4Hh4hk4IcIIZ6-jRo_sxOst5CwAtZcAFvEDHDCjlnAwn6Ot5My9T8XiORk2-3DWbFJdgcIlY-dToFHPGt97-anYx28bm4mdVfAyNUUVlWxoXU-O8nUyT4hhLfoWeOzVle3YfT9H3y0_fLj7jmy9X1xfnN1izgRWsuOmVG2yvHSdO0N6BFTBwUgMduYOOgCG6BwZqtJaAGDUQbcbO1NNqeoquV10T1VbuUu0r3cmovDw8xLSRKhWvJys115x1wrRuEGxUZuw1aEMEc4aM2tKq9XHV2i3jbI22oSQ1PRF9-hP8D7mJt7KtYx6ADVXh3b1Cij-XOiY5-6ztNKlg45IlJdAyAMH6ir79B93GJYU6qz1FO0Hqaiv15nFLD7382V0FyAocdpSse0BakHuPyNUjsnpEHjwi90l0TcoVDhub_tb-T9ZvlA-_Ow
Cites_doi 10.1109/ICCV.2015.451
10.1049/cit2.12077
10.1109/ICRA.2014.6907079
10.1177/02783649211045736
10.1109/TPAMI.2023.3346924
10.1109/ICCV.1999.790410
10.1109/CVPR42600.2020.00412
10.1109/TCSVT.2021.3061265
10.1051/e3sconf/20199401021
10.1109/TAES.2021.3069271
10.1109/CVPR.2012.6248074
10.15607/RSS.2021.XVII.003
10.1109/ROBIO.2014.7090468
10.1017/S0373463311000087
10.1109/JIOT.2023.3326971
10.1007/978-3-031-72627-9_24
10.5281/zenodo.15083001
10.1109/ICARSC.2017.7964074
10.1109/CVPR.2019.00577
10.1109/CVPR42600.2020.01164
10.1109/CVPR52688.2022.01650
10.1186/s43020-022-00068-0
10.1007/978-3-319-46448-0_30
10.1109/CVPR46437.2021.00364
10.6084/m9.figshare.28528868
10.1007/978-3-031-19842-7_6
10.1109/TIV.2022.3223131
10.1109/CVPR.2019.00895
10.1109/TITS.2021.3086804
10.1007/978-3-642-33783-3_16
10.1109/ICICCS48265.2020.9121041
10.1109/CVPR52729.2023.01652
10.1145/3570361.3592511
10.1007/11744023_34
10.1177/0278364916679498
10.1109/LRA.2020.2965907
10.1109/ACCESS.2020.2983149
10.1109/ic-ETITE47903.2020.78
10.1109/ICRA48891.2023.10161527
10.1109/TPAMI.2007.1049
10.1109/IROS45743.2020.9341176
10.3390/robotics10020052
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1038/s41597-025-05075-9
DatabaseName SpringerOpen
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database


PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2052-4463
EndPage 15
ExternalDocumentID oai_doaj_org_article_c5c5467d1f974badb8c0cd274fd2bce3
PMC12059049
40335529
10_1038_s41597_025_05075_9
Genre Journal Article
GroupedDBID 0R~
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAJSJ
AASML
ABUWG
ACGFS
ACSFO
ADBBV
ADRAZ
AFKRA
AGHDO
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EJD
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
KQ8
LK8
M1P
M7P
M~E
NAO
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
PJZUB
PPXIY
PQGLB
NPM
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c494t-a5d8af9e8cf52f738f0e709520e73b5f0620d2c8040abee207bc02cdb6ddb61c3
IEDL.DBID BENPR
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001484304800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2052-4463
IngestDate Fri Oct 03 12:37:13 EDT 2025
Tue Nov 04 02:04:20 EST 2025
Fri Sep 05 17:14:01 EDT 2025
Tue Oct 07 07:00:09 EDT 2025
Sun May 11 01:40:59 EDT 2025
Sat Nov 29 07:55:34 EST 2025
Thu May 08 05:26:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-a5d8af9e8cf52f738f0e709520e73b5f0620d2c8040abee207bc02cdb6ddb61c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0003-7126-2876
OpenAccessLink https://www.proquest.com/docview/3203672159?pq-origsite=%requestingapplication%
PMID 40335529
PQID 3203672159
PQPubID 2041912
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_c5c5467d1f974badb8c0cd274fd2bce3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12059049
proquest_miscellaneous_3201400748
proquest_journals_3203672159
pubmed_primary_40335529
crossref_primary_10_1038_s41597_025_05075_9
springer_journals_10_1038_s41597_025_05075_9
PublicationCentury 2000
PublicationDate 2025-05-07
PublicationDateYYYYMMDD 2025-05-07
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-07
  day: 07
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific data
PublicationTitleAbbrev Sci Data
PublicationTitleAlternate Sci Data
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References AJ Davison (5075_CR5) 2007; 29
Y Shi (5075_CR13) 2022; 45
S Li (5075_CR30) 2023; 8
H Andreas (5075_CR40) 2019; 94
5075_CR44
5075_CR21
5075_CR43
5075_CR24
5075_CR46
E Yurtsever (5075_CR2) 2020; 8
5075_CR23
5075_CR45
TY Tang (5075_CR34) 2021; 40
5075_CR20
5075_CR42
5075_CR8
W Chen (5075_CR39) 2024; 11
5075_CR7
5075_CR29
5075_CR6
X Li (5075_CR4) 2022; 3
5075_CR26
Y Zhan (5075_CR11) 2023; 61
5075_CR25
5075_CR28
5075_CR9
5075_CR27
TY Tang (5075_CR33) 2020; 5
H-F Ng (5075_CR41) 2021; 57
5075_CR3
R Roriz (5075_CR22) 2022; 23
PD Groves (5075_CR38) 2011; 64
W Maddern (5075_CR19) 2017; 36
L Chen (5075_CR1) 2023; 8
5075_CR10
5075_CR32
5075_CR35
5075_CR12
5075_CR18
T Wang (5075_CR31) 2021; 32
5075_CR15
5075_CR37
5075_CR14
5075_CR36
5075_CR17
5075_CR16
References_xml – ident: 5075_CR16
  doi: 10.1109/ICCV.2015.451
– volume: 8
  start-page: 166
  year: 2023
  ident: 5075_CR30
  publication-title: CAAI Transactions on Intelligence Technology
  doi: 10.1049/cit2.12077
– ident: 5075_CR26
  doi: 10.1109/ICRA.2014.6907079
– volume: 40
  start-page: 1488
  year: 2021
  ident: 5075_CR34
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/02783649211045736
– ident: 5075_CR12
  doi: 10.1109/TPAMI.2023.3346924
– ident: 5075_CR7
  doi: 10.1109/ICCV.1999.790410
– ident: 5075_CR10
– ident: 5075_CR46
  doi: 10.1109/CVPR42600.2020.00412
– volume: 32
  start-page: 867
  year: 2021
  ident: 5075_CR31
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
  doi: 10.1109/TCSVT.2021.3061265
– volume: 94
  start-page: 01021
  year: 2019
  ident: 5075_CR40
  publication-title: E3S Web of Conferences
  doi: 10.1051/e3sconf/20199401021
– volume: 57
  start-page: 3150
  year: 2021
  ident: 5075_CR41
  publication-title: IEEE Transactions on Aerospace and Electronic Systems
  doi: 10.1109/TAES.2021.3069271
– volume: 61
  start-page: 1
  year: 2023
  ident: 5075_CR11
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– ident: 5075_CR18
  doi: 10.1109/CVPR.2012.6248074
– ident: 5075_CR35
  doi: 10.15607/RSS.2021.XVII.003
– ident: 5075_CR25
  doi: 10.1109/ROBIO.2014.7090468
– volume: 64
  start-page: 417
  year: 2011
  ident: 5075_CR38
  publication-title: Journal of Navigation
  doi: 10.1017/S0373463311000087
– volume: 11
  start-page: 10252
  year: 2024
  ident: 5075_CR39
  publication-title: IEEE Internet of Things Journal
  doi: 10.1109/JIOT.2023.3326971
– ident: 5075_CR6
  doi: 10.1007/978-3-031-72627-9_24
– volume: 45
  start-page: 2682
  year: 2022
  ident: 5075_CR13
  publication-title: IEEE transactions on pattern analysis and machine intelligence
– ident: 5075_CR43
– ident: 5075_CR42
  doi: 10.5281/zenodo.15083001
– ident: 5075_CR24
  doi: 10.1109/ICARSC.2017.7964074
– ident: 5075_CR17
  doi: 10.1109/CVPR.2019.00577
– ident: 5075_CR20
  doi: 10.1109/CVPR42600.2020.01164
– ident: 5075_CR45
  doi: 10.1109/CVPR52688.2022.01650
– volume: 3
  start-page: 7
  year: 2022
  ident: 5075_CR4
  publication-title: Satellite Navigation
  doi: 10.1186/s43020-022-00068-0
– ident: 5075_CR32
  doi: 10.1007/978-3-319-46448-0_30
– ident: 5075_CR15
  doi: 10.1109/CVPR46437.2021.00364
– ident: 5075_CR23
  doi: 10.6084/m9.figshare.28528868
– ident: 5075_CR37
  doi: 10.1007/978-3-031-19842-7_6
– volume: 8
  start-page: 1046
  year: 2023
  ident: 5075_CR1
  publication-title: IEEE Transactions on Intelligent Vehicles
  doi: 10.1109/TIV.2022.3223131
– ident: 5075_CR21
  doi: 10.1109/CVPR.2019.00895
– volume: 23
  start-page: 6282
  year: 2022
  ident: 5075_CR22
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2021.3086804
– ident: 5075_CR8
  doi: 10.1007/978-3-642-33783-3_16
– ident: 5075_CR28
  doi: 10.1109/ICICCS48265.2020.9121041
– ident: 5075_CR44
  doi: 10.1109/CVPR52729.2023.01652
– ident: 5075_CR3
  doi: 10.1145/3570361.3592511
– ident: 5075_CR9
  doi: 10.1007/11744023_34
– volume: 36
  start-page: 3
  year: 2017
  ident: 5075_CR19
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/0278364916679498
– volume: 5
  start-page: 1087
  year: 2020
  ident: 5075_CR33
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2020.2965907
– volume: 8
  start-page: 58443
  year: 2020
  ident: 5075_CR2
  publication-title: IEEE access
  doi: 10.1109/ACCESS.2020.2983149
– ident: 5075_CR29
  doi: 10.1109/ic-ETITE47903.2020.78
– ident: 5075_CR14
  doi: 10.1109/ICRA48891.2023.10161527
– volume: 29
  start-page: 1052
  year: 2007
  ident: 5075_CR5
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2007.1049
– ident: 5075_CR36
  doi: 10.1109/IROS45743.2020.9341176
– ident: 5075_CR27
  doi: 10.3390/robotics10020052
SSID ssj0001340570
Score 2.3334322
Snippet High-precision localization is critical for intelligent robotics in autonomous driving, smart agriculture, and military operations. While Global Navigation...
Abstract High-precision localization is critical for intelligent robotics in autonomous driving, smart agriculture, and military operations. While Global...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 754
SubjectTerms 639/166/987
639/705/258
Algorithms
Coordinate transformations
Data Descriptor
Datasets
Humanities and Social Sciences
Lidar
Localization
multidisciplinary
Robots
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQ6oELKoXCFoqMxKGoWDj-SJwjVKAeEEKoVNwsf4o9NEGb0N_P2Mlu2QLqpYcoUhIrozcZ-U1m_IzQoecBJg5LiVKlIqKkEFLUVqQouDDKG2_zD7efl9XVlbq7q6-fbfWVesIGeeABuBMnnYRg9kUE5mthrHLUecilomfWhazzSav6WTKV_67wRETouEqGcnXSwUyVhEeZJBQ4kCT10kyUBftfY5kvmyX_qpjmiejiPVofGSQ-HSzfQCuh-YA2xhjt8JdRSPpoE92c4twvSH61PtNtnNZwNJ70LTHTGc52kVQbwA9tF3AS3BhWMuLUONqFHgOlxbnJDc9a2_bdFrq9OP_x7TsZ91AgTtSiJ0Z6ZWIdlIuSxYqrSEMFtIrBiVsZacmoZ05BLBsbAkBpHWXO29LDUTj-Ea02bRN2EFaxsMbEUFMfRelKC6lekJFDykOFi3yCvs7x1A-DVIbOJW6u9IC-BvR1Rl_XE3SWIF88mWSu8wVwvh6dr__l_AnamztMj7HXaZ5qq5DYSnjHweI2RE0qhZgmtI_5mSLtCC_UBG0P_l1YIigHEsZgtFry_JKpy3ea6X1W5i5YWssrYOjx_CP5Y9fbWHz6H1jsojU2fN2EVntotZ89hs_onfvdT7vZfg6PJytlFT4
  priority: 102
  providerName: Directory of Open Access Journals
Title A multi-modality ground-to-air cross-view pose estimation dataset for field robots
URI https://link.springer.com/article/10.1038/s41597-025-05075-9
https://www.ncbi.nlm.nih.gov/pubmed/40335529
https://www.proquest.com/docview/3203672159
https://www.proquest.com/docview/3201400748
https://pubmed.ncbi.nlm.nih.gov/PMC12059049
https://doaj.org/article/c5c5467d1f974badb8c0cd274fd2bce3
Volume 12
WOSCitedRecordID wos001484304800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2052-4463
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001340570
  issn: 2052-4463
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2052-4463
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001340570
  issn: 2052-4463
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2052-4463
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001340570
  issn: 2052-4463
  databaseCode: M7P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health Medical collection
  customDbUrl:
  eissn: 2052-4463
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001340570
  issn: 2052-4463
  databaseCode: 7X7
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2052-4463
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001340570
  issn: 2052-4463
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 2052-4463
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001340570
  issn: 2052-4463
  databaseCode: PIMPY
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQw0KItBy7Q8igL7cpIHEBg1bHzcE6oRa1AglVUAVpOVvyCPZAsScr3M3a8u9pSuHBIIvkh25kZz9NjhJ4bboFxKEqEyAVJcwokRVVBkoSntTC1UcHg9uVDMZuJ-bysosGtj2GVqz0xbNSm1d5GfsK9xwzUlax8s_xJ_K1R3rsar9DYQXs-Uxng-d7Z-ay63FhZuBdIaDwtQ7k46YFj-QSkLCMUZKGMlFscKSTuv0na_DNo8prnNDCki3v_u5R9dDeKovh0xJ0DdMs299FBJPYev4gZqV8-QJenOAQekh-tCXI79odBGkOGltSLDoeFET8qXra9xT5zx3gkEvsI1N4OGGRjHKLlcNeqdugfos8X55_eviPxMgai0zIdSJ0ZUbvSCu0y5gouHLUFyGcMPlxljuaMGqYFbAq1spbRQmnKtFG5gSfR_BHabdrGPkZYuETVtbMlNS7Nda5AZ7SZ46A70VQ7PkGvVgCRyzHnhgy-ci7kCD4J4JMBfLKcoDMPs3VLny87FLTdNxnJT-pMZ8ASTOJAf1KAgUJTbUAjd4YpbWHIoxWoZCTiXm7gNEHP1tVAft6nUje2vQptEn-1fCom6HBEkPVMUspBmmPQW2yhztZUt2uaxfeQ4jth_lBwCl1fr7BsM6-__4sn_17GU3SHjYhPaHGEdofuyh6j2_rXsOi7Kdop5kV4i2mko2kwUUx9QGwFZdX7j9XX34ACKGY
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXoDwXChgJJBBY9dp5OAeEyqNq1aWqUEG9mfgFeyBZNimIP8VvZOwku1petx44RJHiPGznm5lv7PEY4IEVDg2HZlTKTNIkYyhSTOd0PBZJKW1pdRxwez_JDw7k8XFxuAY_hrUwIaxy0IlRUdvahDHyLRFmzNBdSYvnsy807BoVZleHLTQ6WOy779_QZWue7b3C__uQ853XRy93ab-rADVJkbS0TK0sfeGk8Sn3uZCeuRyJBseT0KlnGWeWG4noLrVznOXaMG6sziweYyPwvWfgLNIIzmKo4OFyTEcE-sP6tTlMyK0G7WNId8pTypB5pbRYsX9xm4A_cdvfQzR_maeN5m_n0v_WcZfhYk-0yXYnGRuw5qorsNGrsoY86vNtP74Kb7dJDKukn2sbvRISlrpUlrY1LadzEjuShlaSWd04EvKSdAs-SYivbVxLkPmTGAtI5rWu2-YavDuVtl2H9aqu3E0g0o91WXpXMOuTzGQaPWKXeoGeIUuMFyN4MgBAzbqMIipGAgipOrgohIuKcFHFCF4EjCzuDNnA44V6_lH1ykWZ1KRo8OzYo3eoUb6kYcbyPPGWa-Pwk5sDNFSvohq1xMUI7i-KUbmEGaOycvVJvAcdcGSZcgQ3OkAuapIwgVyV49NyBaorVV0tqaafYgJzlJy0QNd0BE8HVC_r9fe-uPXvZtyD87tHbyZqsnewfxsu8E7oKMs3Yb2dn7g7cM58bafN_G6UWgIfThvtPwFn3oBb
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQYhLoUBhoYCRQAJRax07D-eAUKGsqFqtVghQbyZ-wR5ItkkK4q_x6xg7ya6W160HDlGk2E5s55uXPTNG6JHhFgSHokSIVJA4pUBSVGUkinhcCFMYFRbcPhxn06k4OclnG-jHEAvj3SoHnhgYtam0XyMfc79jBuZKko9d7xYxO5i8WJwSf4KU32kdjtPoIHJkv38D8615fngA__oxY5PX7169If0JA0THedySIjGicLkV2iXMZVw4ajNQOhjcuEocTRk1TAtAeqGsZTRTmjJtVGrgijSH915AFzMYIwtug7PV-g73qhDt43QoF-MGZKVPfcoSQkELS0i-JgvDkQF_0nN_d9f8Zc82iMLJ1f95Eq-hrV4Bx_sdxWyjDVteR9s9i2vwkz4P99Mb6O0-Du6W5EtlgrWCfQhMaUhbkWJe4zCpxI8YL6rGYp-vpAsExd7vtrEtBosABx9BXFeqapub6P25jG0HbZZVaW8jLFykisLZnBoXpzpVYCnbxHGwGGmsHR-hZwMY5KLLNCKDhwAXsoOOBOjIAB2Zj9BLj5dlTZ8lPDyo6k-yZzpSJzoBQWgiB1ajAroTmmrDstgZprSFT-4OMJE962rkCiMj9HBZDEzH7yQVpa3OQh0wzEH7FCN0qwPnsicx5aDDMmgt1mC71tX1knL-OSQ2j5gPhY6h6d6A8FW__j4Xd_49jAfoMoBcHh9Oj-6iK6yjP0KzXbTZ1mf2Hrqkv7bzpr4fCBijj-cN9p_xI4kh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-modality+ground-to-air+cross-view+pose+estimation+dataset+for+field+robots&rft.jtitle=Scientific+data&rft.au=Yuan%2C+Xia&rft.au=Wang%2C+Kaiyang&rft.au=Qin%2C+Riyu&rft.au=Xu%2C+Jiachen&rft.date=2025-05-07&rft.eissn=2052-4463&rft.volume=12&rft.issue=1&rft.spage=754&rft_id=info:doi/10.1038%2Fs41597-025-05075-9&rft_id=info%3Apmid%2F40335529&rft.externalDocID=40335529
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-4463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-4463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-4463&client=summon