A multi-modality ground-to-air cross-view pose estimation dataset for field robots
High-precision localization is critical for intelligent robotics in autonomous driving, smart agriculture, and military operations. While Global Navigation Satellite System (GNSS) provides global positioning, its reliability deteriorates severely in signal degraded environments like urban canyons. C...
Gespeichert in:
| Veröffentlicht in: | Scientific data Jg. 12; H. 1; S. 754 - 15 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
07.05.2025
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2052-4463, 2052-4463 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | High-precision localization is critical for intelligent robotics in autonomous driving, smart agriculture, and military operations. While Global Navigation Satellite System (GNSS) provides global positioning, its reliability deteriorates severely in signal degraded environments like urban canyons. Cross-view pose estimation using aerial-ground sensor fusion offers an economical alternative, yet current datasets lack field scenarios and high-resolution LiDAR support.This work introduces a multimodal cross-view dataset addressing these gaps. It contains 29,940 synchronized frames across 11 operational environments (6 field environments, 5 urban roads), featuring: 1) 144-channel LiDAR point clouds, 2) ground-view RGB images, and 3) aerial orthophotos. Centimeter-accurate georeferencing is ensured through GNSS fusion and post-processed kinematic positioning. The dataset uniquely integrates field environments and high-resolution LiDAR-aerial-ground data triplets, enabling rigorous evaluation of 3-DoF pose estimation algorithms for orientation alignment and coordinate transformation between perspectives.This resource supports development of robust localization systems for field robots in GNSS-denied conditions, emphasizing cross-view feature matching and multisensor fusion. Light Detection And Ranging (LiDAR)-enhanced ground truth further distinguishes its utility for complex outdoor navigation research. |
|---|---|
| AbstractList | High-precision localization is critical for intelligent robotics in autonomous driving, smart agriculture, and military operations. While Global Navigation Satellite System (GNSS) provides global positioning, its reliability deteriorates severely in signal degraded environments like urban canyons. Cross-view pose estimation using aerial-ground sensor fusion offers an economical alternative, yet current datasets lack field scenarios and high-resolution LiDAR support.This work introduces a multimodal cross-view dataset addressing these gaps. It contains 29,940 synchronized frames across 11 operational environments (6 field environments, 5 urban roads), featuring: 1) 144-channel LiDAR point clouds, 2) ground-view RGB images, and 3) aerial orthophotos. Centimeter-accurate georeferencing is ensured through GNSS fusion and post-processed kinematic positioning. The dataset uniquely integrates field environments and high-resolution LiDAR-aerial-ground data triplets, enabling rigorous evaluation of 3-DoF pose estimation algorithms for orientation alignment and coordinate transformation between perspectives.This resource supports development of robust localization systems for field robots in GNSS-denied conditions, emphasizing cross-view feature matching and multisensor fusion. Light Detection And Ranging (LiDAR)-enhanced ground truth further distinguishes its utility for complex outdoor navigation research. Abstract High-precision localization is critical for intelligent robotics in autonomous driving, smart agriculture, and military operations. While Global Navigation Satellite System (GNSS) provides global positioning, its reliability deteriorates severely in signal degraded environments like urban canyons. Cross-view pose estimation using aerial-ground sensor fusion offers an economical alternative, yet current datasets lack field scenarios and high-resolution LiDAR support.This work introduces a multimodal cross-view dataset addressing these gaps. It contains 29,940 synchronized frames across 11 operational environments (6 field environments, 5 urban roads), featuring: 1) 144-channel LiDAR point clouds, 2) ground-view RGB images, and 3) aerial orthophotos. Centimeter-accurate georeferencing is ensured through GNSS fusion and post-processed kinematic positioning. The dataset uniquely integrates field environments and high-resolution LiDAR-aerial-ground data triplets, enabling rigorous evaluation of 3-DoF pose estimation algorithms for orientation alignment and coordinate transformation between perspectives.This resource supports development of robust localization systems for field robots in GNSS-denied conditions, emphasizing cross-view feature matching and multisensor fusion. Light Detection And Ranging (LiDAR)-enhanced ground truth further distinguishes its utility for complex outdoor navigation research. High-precision localization is critical for intelligent robotics in autonomous driving, smart agriculture, and military operations. While Global Navigation Satellite System (GNSS) provides global positioning, its reliability deteriorates severely in signal degraded environments like urban canyons. Cross-view pose estimation using aerial-ground sensor fusion offers an economical alternative, yet current datasets lack field scenarios and high-resolution LiDAR support.This work introduces a multimodal cross-view dataset addressing these gaps. It contains 29,940 synchronized frames across 11 operational environments (6 field environments, 5 urban roads), featuring: 1) 144-channel LiDAR point clouds, 2) ground-view RGB images, and 3) aerial orthophotos. Centimeter-accurate georeferencing is ensured through GNSS fusion and post-processed kinematic positioning. The dataset uniquely integrates field environments and high-resolution LiDAR-aerial-ground data triplets, enabling rigorous evaluation of 3-DoF pose estimation algorithms for orientation alignment and coordinate transformation between perspectives.This resource supports development of robust localization systems for field robots in GNSS-denied conditions, emphasizing cross-view feature matching and multisensor fusion. Light Detection And Ranging (LiDAR)-enhanced ground truth further distinguishes its utility for complex outdoor navigation research.High-precision localization is critical for intelligent robotics in autonomous driving, smart agriculture, and military operations. While Global Navigation Satellite System (GNSS) provides global positioning, its reliability deteriorates severely in signal degraded environments like urban canyons. Cross-view pose estimation using aerial-ground sensor fusion offers an economical alternative, yet current datasets lack field scenarios and high-resolution LiDAR support.This work introduces a multimodal cross-view dataset addressing these gaps. It contains 29,940 synchronized frames across 11 operational environments (6 field environments, 5 urban roads), featuring: 1) 144-channel LiDAR point clouds, 2) ground-view RGB images, and 3) aerial orthophotos. Centimeter-accurate georeferencing is ensured through GNSS fusion and post-processed kinematic positioning. The dataset uniquely integrates field environments and high-resolution LiDAR-aerial-ground data triplets, enabling rigorous evaluation of 3-DoF pose estimation algorithms for orientation alignment and coordinate transformation between perspectives.This resource supports development of robust localization systems for field robots in GNSS-denied conditions, emphasizing cross-view feature matching and multisensor fusion. Light Detection And Ranging (LiDAR)-enhanced ground truth further distinguishes its utility for complex outdoor navigation research. |
| ArticleNumber | 754 |
| Author | Xu, Jiachen Yuan, Xia Qin, Riyu Wang, Kaiyang |
| Author_xml | – sequence: 1 givenname: Xia surname: Yuan fullname: Yuan, Xia email: yuanxia@njust.edu.cn organization: Nanjing University of Science and Technology, School of Computer Science and Engineering – sequence: 2 givenname: Kaiyang orcidid: 0009-0003-7126-2876 surname: Wang fullname: Wang, Kaiyang organization: Nanjing University of Science and Technology, School of Computer Science and Engineering – sequence: 3 givenname: Riyu surname: Qin fullname: Qin, Riyu organization: Nanjing University of Science and Technology, School of Computer Science and Engineering – sequence: 4 givenname: Jiachen surname: Xu fullname: Xu, Jiachen organization: Dahua Technology, Software Development Department |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40335529$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kk1v1DAQhi1UREvpH-CAInHhYpj4I05OqKpoqVQJCcHZcvyxeJXYi-0U9d_j3ZTScuBgjWU_885o5n2JjkIMFqHXLbxvgfYfMmv5IDAQjoGD4Hh4hk4IcIIZ6-jRo_sxOst5CwAtZcAFvEDHDCjlnAwn6Ot5My9T8XiORk2-3DWbFJdgcIlY-dToFHPGt97-anYx28bm4mdVfAyNUUVlWxoXU-O8nUyT4hhLfoWeOzVle3YfT9H3y0_fLj7jmy9X1xfnN1izgRWsuOmVG2yvHSdO0N6BFTBwUgMduYOOgCG6BwZqtJaAGDUQbcbO1NNqeoquV10T1VbuUu0r3cmovDw8xLSRKhWvJys115x1wrRuEGxUZuw1aEMEc4aM2tKq9XHV2i3jbI22oSQ1PRF9-hP8D7mJt7KtYx6ADVXh3b1Cij-XOiY5-6ztNKlg45IlJdAyAMH6ir79B93GJYU6qz1FO0Hqaiv15nFLD7382V0FyAocdpSse0BakHuPyNUjsnpEHjwi90l0TcoVDhub_tb-T9ZvlA-_Ow |
| Cites_doi | 10.1109/ICCV.2015.451 10.1049/cit2.12077 10.1109/ICRA.2014.6907079 10.1177/02783649211045736 10.1109/TPAMI.2023.3346924 10.1109/ICCV.1999.790410 10.1109/CVPR42600.2020.00412 10.1109/TCSVT.2021.3061265 10.1051/e3sconf/20199401021 10.1109/TAES.2021.3069271 10.1109/CVPR.2012.6248074 10.15607/RSS.2021.XVII.003 10.1109/ROBIO.2014.7090468 10.1017/S0373463311000087 10.1109/JIOT.2023.3326971 10.1007/978-3-031-72627-9_24 10.5281/zenodo.15083001 10.1109/ICARSC.2017.7964074 10.1109/CVPR.2019.00577 10.1109/CVPR42600.2020.01164 10.1109/CVPR52688.2022.01650 10.1186/s43020-022-00068-0 10.1007/978-3-319-46448-0_30 10.1109/CVPR46437.2021.00364 10.6084/m9.figshare.28528868 10.1007/978-3-031-19842-7_6 10.1109/TIV.2022.3223131 10.1109/CVPR.2019.00895 10.1109/TITS.2021.3086804 10.1007/978-3-642-33783-3_16 10.1109/ICICCS48265.2020.9121041 10.1109/CVPR52729.2023.01652 10.1145/3570361.3592511 10.1007/11744023_34 10.1177/0278364916679498 10.1109/LRA.2020.2965907 10.1109/ACCESS.2020.2983149 10.1109/ic-ETITE47903.2020.78 10.1109/ICRA48891.2023.10161527 10.1109/TPAMI.2007.1049 10.1109/IROS45743.2020.9341176 10.3390/robotics10020052 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.1038/s41597-025-05075-9 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection (subscription) ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2052-4463 |
| EndPage | 15 |
| ExternalDocumentID | oai_doaj_org_article_c5c5467d1f974badb8c0cd274fd2bce3 PMC12059049 40335529 10_1038_s41597_025_05075_9 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAJSJ AASML ABUWG ACGFS ACSFO ADBBV ADRAZ AFKRA AGHDO ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EJD FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE KQ8 LK8 M1P M7P M~E NAO OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX AFFHD CITATION PJZUB PPXIY PQGLB NPM 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. M48 PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c494t-a5d8af9e8cf52f738f0e709520e73b5f0620d2c8040abee207bc02cdb6ddb61c3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001484304800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2052-4463 |
| IngestDate | Fri Oct 03 12:37:13 EDT 2025 Tue Nov 04 02:04:20 EST 2025 Fri Sep 05 17:14:01 EDT 2025 Tue Oct 07 07:00:09 EDT 2025 Sun May 11 01:40:59 EDT 2025 Sat Nov 29 07:55:34 EST 2025 Thu May 08 05:26:58 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c494t-a5d8af9e8cf52f738f0e709520e73b5f0620d2c8040abee207bc02cdb6ddb61c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0009-0003-7126-2876 |
| OpenAccessLink | https://www.proquest.com/docview/3203672159?pq-origsite=%requestingapplication% |
| PMID | 40335529 |
| PQID | 3203672159 |
| PQPubID | 2041912 |
| PageCount | 15 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c5c5467d1f974badb8c0cd274fd2bce3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12059049 proquest_miscellaneous_3201400748 proquest_journals_3203672159 pubmed_primary_40335529 crossref_primary_10_1038_s41597_025_05075_9 springer_journals_10_1038_s41597_025_05075_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-07 |
| PublicationDateYYYYMMDD | 2025-05-07 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-07 day: 07 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific data |
| PublicationTitleAbbrev | Sci Data |
| PublicationTitleAlternate | Sci Data |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | AJ Davison (5075_CR5) 2007; 29 Y Shi (5075_CR13) 2022; 45 S Li (5075_CR30) 2023; 8 H Andreas (5075_CR40) 2019; 94 5075_CR44 5075_CR21 5075_CR43 5075_CR24 5075_CR46 E Yurtsever (5075_CR2) 2020; 8 5075_CR23 5075_CR45 TY Tang (5075_CR34) 2021; 40 5075_CR20 5075_CR42 5075_CR8 W Chen (5075_CR39) 2024; 11 5075_CR7 5075_CR29 5075_CR6 X Li (5075_CR4) 2022; 3 5075_CR26 Y Zhan (5075_CR11) 2023; 61 5075_CR25 5075_CR28 5075_CR9 5075_CR27 TY Tang (5075_CR33) 2020; 5 H-F Ng (5075_CR41) 2021; 57 5075_CR3 R Roriz (5075_CR22) 2022; 23 PD Groves (5075_CR38) 2011; 64 W Maddern (5075_CR19) 2017; 36 L Chen (5075_CR1) 2023; 8 5075_CR10 5075_CR32 5075_CR35 5075_CR12 5075_CR18 T Wang (5075_CR31) 2021; 32 5075_CR15 5075_CR37 5075_CR14 5075_CR36 5075_CR17 5075_CR16 |
| References_xml | – ident: 5075_CR16 doi: 10.1109/ICCV.2015.451 – volume: 8 start-page: 166 year: 2023 ident: 5075_CR30 publication-title: CAAI Transactions on Intelligence Technology doi: 10.1049/cit2.12077 – ident: 5075_CR26 doi: 10.1109/ICRA.2014.6907079 – volume: 40 start-page: 1488 year: 2021 ident: 5075_CR34 publication-title: The International Journal of Robotics Research doi: 10.1177/02783649211045736 – ident: 5075_CR12 doi: 10.1109/TPAMI.2023.3346924 – ident: 5075_CR7 doi: 10.1109/ICCV.1999.790410 – ident: 5075_CR10 – ident: 5075_CR46 doi: 10.1109/CVPR42600.2020.00412 – volume: 32 start-page: 867 year: 2021 ident: 5075_CR31 publication-title: IEEE Transactions on Circuits and Systems for Video Technology doi: 10.1109/TCSVT.2021.3061265 – volume: 94 start-page: 01021 year: 2019 ident: 5075_CR40 publication-title: E3S Web of Conferences doi: 10.1051/e3sconf/20199401021 – volume: 57 start-page: 3150 year: 2021 ident: 5075_CR41 publication-title: IEEE Transactions on Aerospace and Electronic Systems doi: 10.1109/TAES.2021.3069271 – volume: 61 start-page: 1 year: 2023 ident: 5075_CR11 publication-title: IEEE Transactions on Geoscience and Remote Sensing – ident: 5075_CR18 doi: 10.1109/CVPR.2012.6248074 – ident: 5075_CR35 doi: 10.15607/RSS.2021.XVII.003 – ident: 5075_CR25 doi: 10.1109/ROBIO.2014.7090468 – volume: 64 start-page: 417 year: 2011 ident: 5075_CR38 publication-title: Journal of Navigation doi: 10.1017/S0373463311000087 – volume: 11 start-page: 10252 year: 2024 ident: 5075_CR39 publication-title: IEEE Internet of Things Journal doi: 10.1109/JIOT.2023.3326971 – ident: 5075_CR6 doi: 10.1007/978-3-031-72627-9_24 – volume: 45 start-page: 2682 year: 2022 ident: 5075_CR13 publication-title: IEEE transactions on pattern analysis and machine intelligence – ident: 5075_CR43 – ident: 5075_CR42 doi: 10.5281/zenodo.15083001 – ident: 5075_CR24 doi: 10.1109/ICARSC.2017.7964074 – ident: 5075_CR17 doi: 10.1109/CVPR.2019.00577 – ident: 5075_CR20 doi: 10.1109/CVPR42600.2020.01164 – ident: 5075_CR45 doi: 10.1109/CVPR52688.2022.01650 – volume: 3 start-page: 7 year: 2022 ident: 5075_CR4 publication-title: Satellite Navigation doi: 10.1186/s43020-022-00068-0 – ident: 5075_CR32 doi: 10.1007/978-3-319-46448-0_30 – ident: 5075_CR15 doi: 10.1109/CVPR46437.2021.00364 – ident: 5075_CR23 doi: 10.6084/m9.figshare.28528868 – ident: 5075_CR37 doi: 10.1007/978-3-031-19842-7_6 – volume: 8 start-page: 1046 year: 2023 ident: 5075_CR1 publication-title: IEEE Transactions on Intelligent Vehicles doi: 10.1109/TIV.2022.3223131 – ident: 5075_CR21 doi: 10.1109/CVPR.2019.00895 – volume: 23 start-page: 6282 year: 2022 ident: 5075_CR22 publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2021.3086804 – ident: 5075_CR8 doi: 10.1007/978-3-642-33783-3_16 – ident: 5075_CR28 doi: 10.1109/ICICCS48265.2020.9121041 – ident: 5075_CR44 doi: 10.1109/CVPR52729.2023.01652 – ident: 5075_CR3 doi: 10.1145/3570361.3592511 – ident: 5075_CR9 doi: 10.1007/11744023_34 – volume: 36 start-page: 3 year: 2017 ident: 5075_CR19 publication-title: The International Journal of Robotics Research doi: 10.1177/0278364916679498 – volume: 5 start-page: 1087 year: 2020 ident: 5075_CR33 publication-title: IEEE Robotics and Automation Letters doi: 10.1109/LRA.2020.2965907 – volume: 8 start-page: 58443 year: 2020 ident: 5075_CR2 publication-title: IEEE access doi: 10.1109/ACCESS.2020.2983149 – ident: 5075_CR29 doi: 10.1109/ic-ETITE47903.2020.78 – ident: 5075_CR14 doi: 10.1109/ICRA48891.2023.10161527 – volume: 29 start-page: 1052 year: 2007 ident: 5075_CR5 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2007.1049 – ident: 5075_CR36 doi: 10.1109/IROS45743.2020.9341176 – ident: 5075_CR27 doi: 10.3390/robotics10020052 |
| SSID | ssj0001340570 |
| Score | 2.3334322 |
| Snippet | High-precision localization is critical for intelligent robotics in autonomous driving, smart agriculture, and military operations. While Global Navigation... Abstract High-precision localization is critical for intelligent robotics in autonomous driving, smart agriculture, and military operations. While Global... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 754 |
| SubjectTerms | 639/166/987 639/705/258 Algorithms Coordinate transformations Data Descriptor Datasets Humanities and Social Sciences Lidar Localization multidisciplinary Robots Science Science (multidisciplinary) |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqxKGXikdpt4XKSD0UUQvHj41zpBWoB4QQKoibZY8ddQ8kq03o7-_YyS4sbdVLD1GkPJTRN5n4m8z4MyEfBUzBG6OZqqRiylf4HRQhMie0UBBAQV6S5faivLw0d3fV1ZOlvlJP2CAPPAB3Aho0BnMoamS-3gVvgEPAXKoOwkPMOp-8rJ4kU_nvikxEhI-zZLg0Jx2OVEl4VGjGkQNpVq2NRFmw_08s8_dmyWcV0zwQnW-RVyODpKeD5dvkRWx2yPYYox39NApJH-2S61Oa-wXZfRsy3aZpDkcTWN8yN1vQbBdLtQE6b7tIk-DGMJORpsbRLvYUKS3NTW500fq2716Tm_Oz71-_sXENBQaqUj1zOhhXV9FArUVdSlPzWCKtEriTXtd8KngQYDCWnY8RofTABQQ_DbgVIPfIRtM28S2hmFmZ0jgA0F4lZbfSYe7Go3RFEqaTE3K8xNPOB6kMm0vc0tgBfYvo24y-rSbkS4J8dWWSuc4H0Pl2dL79l_MnZH_pMDvGXmdlqq1iYqvxGYer0xg1qRTimtg-5GuKtCK8MhPyZvDvyhLFJZIwgXebNc-vmbp-ppn9yMrchUhzeRXe-nn5kjza9Xcs3v0PLN6Tl2J4uxkv98lGv3iIB2QTfvazbvEhh8cvk0IUdA priority: 102 providerName: Directory of Open Access Journals |
| Title | A multi-modality ground-to-air cross-view pose estimation dataset for field robots |
| URI | https://link.springer.com/article/10.1038/s41597-025-05075-9 https://www.ncbi.nlm.nih.gov/pubmed/40335529 https://www.proquest.com/docview/3203672159 https://www.proquest.com/docview/3201400748 https://pubmed.ncbi.nlm.nih.gov/PMC12059049 https://doaj.org/article/c5c5467d1f974badb8c0cd274fd2bce3 |
| Volume | 12 |
| WOSCitedRecordID | wos001484304800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2052-4463 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340570 issn: 2052-4463 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2052-4463 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340570 issn: 2052-4463 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2052-4463 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340570 issn: 2052-4463 databaseCode: M7P dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2052-4463 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340570 issn: 2052-4463 databaseCode: 7X7 dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2052-4463 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340570 issn: 2052-4463 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2052-4463 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340570 issn: 2052-4463 databaseCode: PIMPY dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbYXQ5cgOWxFJbKSBxAYK3jR-Oc0C7aFUhQVStA5RTFYwd6IClNlt_P2HFbldeFQxIpsWU7M2PPeMbfEPJUwASsMZqpQiqmbIHzoHCeVUILBQ4UxJQsn97l06mZz4tZ2nDrUljlek6ME7VrIeyRn8jgMUNzRRevlt9ZyBoVvKsphcYeOQhIZcjnB2fn09nldpdFBoWEp9MyXJqTDlesAEAqNOOoC2lW7KxIEbj_T9rm70GTv3hO44J0cet_h3Kb3EyqKD0deOeQXPPNHXKYhL2jzxIi9fO75PKUxsBD9q11UW-n4TBI41jfsmqxonFgLLRKl23naUDuGI5E0hCB2vmeom5MY7QcXbW27bt75OPF-YfXb1hKxsBAFapnlXamqgtvoNaizqWpuc9RPxP4kFbXfCK4E2BwUqis94LnFrgAZycOrwzkfbLftI1_QCiaaCY3FQBoqwJEXF6hEci9rLKAcCdH5MWaIOVywNwoo69cmnIgX4nkKyP5ymJEzgLNNiUDXnZ80a6-lEn8StCgcUlwWY32k62cNcDBoUVeO2HBY5PHa1KVSYi7ckunEXmy-YziF3wqVePbq1gmC6nllRmRo4FBNj1RXKI2J7C22WGdna7ufmkWXyPEdybCoWCFVV-uuWzbr7__i4f_HsYjckMMjM94fkz2-9WVf0yuw49-0a3GZC-f5_FuxkmOxnGLYhwCYmf4bvb2_ezzTwkHJ5w |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQaIXoDwXChgJJBBY9drxxjkgVB5Vqy6rChXUm4nHTtkDybJJQfwpfiNjJ9nV8rr1wCGKFOdhO59nvrHHM4Q8FDACq7ViSSYTltgM5aBwnuVCiQQcJBBTsnwYp5OJPj7ODtfIj34vTHCr7GViFNSugjBHvi3DihmaKyp7MfvCQtaosLrap9BoYXHgv39Dk61-vv8a_-8jIXbfHL3aY11WAQZJljQsV07nReY1FEoUqdQF9ykSDYEnaVXBR4I7ARrRnVvvBU8tcAHOjhweQ5D43nPkPNIIwaOr4OFyTkcG-sO7vTlc6u0a9WMIdyoU48i8FMtW9F9ME_Anbvu7i-Yv67RR_e1e_t867gq51BFtutOOjE2y5surZLMTZTV93MXbfnKNvNuh0a2Sfa5ctEpo2OpSOtZULJ_OaexIFlpJZ1XtaYhL0m74pMG_tvYNReZPoy8gnVe2aurr5P2ZtO0GWS-r0t8iFA1QneocAJRNQgC8NEcTl3uZD0P8PjkgT3sAmFkbUcRETwCpTQsXg3AxES4mG5CXASOLO0M08Hihmp-YTrgYUKBQ4blhgdahzZ3VwMGJNCmcsODxk1s9NEwnomqzxMWAPFgUo3AJK0Z56avTeA8a4Mgy9YDcbAG5qEnCJXJVgU_rFaiuVHW1pJx-igHMceSoDE3TAXnWo3pZr7_3xe1_N-M-ubh39HZsxvuTgztkQ7SDjvF0i6w381N_l1yAr820nt-Lo5aSj2eN9p8PL3-R |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jj9MwFLaGASEuwLAWBjASSCCw6nppnANCA0PFaEZVhQDNzXgL9EBSmgyIv8av49lJWpXtNgcOUaTYTmzn81vstyD0gLmxs0pJInIuiLA50EHmAzFMMuG8Ey6lZHl_lE2n6vg4n22hH70vTDSr7GliItS-cnGPfMjjiRmoKzIfFp1ZxGx_8nzxhcQMUvGktU-n0ULkMHz_Bupb_exgH_71Q8Ymr96-fE26DAPEiVw0xEivTJEH5QrJioyrgoYMhA4GN25lQceMeuYUIN3YEBjNrKPMeTv2cI0ch_eeQWczMaYsmQ3O1vs7PIpCtPPToVwNa-CVMfQpk4SCFCZJvsELU8qAP8m5v5tr_nJmm1jh5NL_PImX0cVOAMd77YrZQVuhvIJ2OhJX40ddHO7HV9GbPZzMLcnnyidtBUcXmNKTpiJmvsRpUkkcMV5UdcAxXknrCIqj3W0dGgwaAU42gnhZ2aqpr6F3pzK262i7rMpwE2FQTFWmjHNOWhED42UGVF8auBnFuH58gJ70YNCLNtKIThYCXOkWOhqgoxN0dD5ALyJeVjVjlPD0oFp-1B3R0U46CYzQjwrQGq3xVjnqPMtE4Zl1AT6528NEd6Sr1muMDND9VTEQnXiSZMpQnaQ6oJiD9KkG6EYLzlVPBOUgwzJorTZgu9HVzZJy_ikFNh-x6AotoOnTHuHrfv19Lm79exj30HkAuT46mB7eRhdYu_4IzXbRdrM8CXfQOfe1mdfLu2kBY_ThtMH-E6MWiFc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-modality+ground-to-air+cross-view+pose+estimation+dataset+for+field+robots&rft.jtitle=Scientific+data&rft.au=Yuan%2C+Xia&rft.au=Wang%2C+Kaiyang&rft.au=Qin%2C+Riyu&rft.au=Xu%2C+Jiachen&rft.date=2025-05-07&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2052-4463&rft.volume=12&rft_id=info:doi/10.1038%2Fs41597-025-05075-9&rft_id=info%3Apmid%2F40335529&rft.externalDocID=PMC12059049 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-4463&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-4463&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-4463&client=summon |