Magnetic targets positioning method based on multi-strategy improved Grey Wolf optimizer
Magnetic target state estimation is a widely applied technology, but it also faces many challenges in practical applications. One of the most critical challenges is the issue of estimation accuracy. The Grey Wolf Optimizer (GWO) is one of the more successful swarm intelligence algorithms in recent y...
Gespeichert in:
| Veröffentlicht in: | Scientific reports Jg. 15; H. 1; S. 15452 - 30 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
02.05.2025
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Magnetic target state estimation is a widely applied technology, but it also faces many challenges in practical applications. One of the most critical challenges is the issue of estimation accuracy. The Grey Wolf Optimizer (GWO) is one of the more successful swarm intelligence algorithms in recent years, but its shortcomings have also been exposed when facing increasingly complex problems. Therefore, a Multi-Strategy Improved Grey Wolf Optimizer (MSIGWO) algorithm has been proposed to enhance the accuracy of magnetic target state estimation. In the initialization phase, Tent chaos mapping is introduced to enhance population diversity, prevent falling into local optima, and improve convergence speed. Multi-population fusion evolution strategies enhance population diversity, convergence accuracy, and global search ability. Nonlinear convergence factors better balance exploration and exploitation behaviors. Dynamic weight strategies increase the diversity of search samples and reduce the likelihood of falling into local optima. Adaptive dimensional learning better balances local and global searches, enhancing population diversity. Adaptive Levy flight enhances the ability to jump out of local optima and ensures convergence speed. In the CEC2018 benchmark function set of 29 benchmark function problems and magnetic target state estimation problems, the proposed MSIGWO was tested, and statistical indicators and Friedman test results show that compared with GWO and its advanced variants, the MSIGWO algorithm has superior performance. The application of this algorithm in magnetic target state estimation problems has proven its effectiveness and applicability. |
|---|---|
| AbstractList | Magnetic target state estimation is a widely applied technology, but it also faces many challenges in practical applications. One of the most critical challenges is the issue of estimation accuracy. The Grey Wolf Optimizer (GWO) is one of the more successful swarm intelligence algorithms in recent years, but its shortcomings have also been exposed when facing increasingly complex problems. Therefore, a Multi-Strategy Improved Grey Wolf Optimizer (MSIGWO) algorithm has been proposed to enhance the accuracy of magnetic target state estimation. In the initialization phase, Tent chaos mapping is introduced to enhance population diversity, prevent falling into local optima, and improve convergence speed. Multi-population fusion evolution strategies enhance population diversity, convergence accuracy, and global search ability. Nonlinear convergence factors better balance exploration and exploitation behaviors. Dynamic weight strategies increase the diversity of search samples and reduce the likelihood of falling into local optima. Adaptive dimensional learning better balances local and global searches, enhancing population diversity. Adaptive Levy flight enhances the ability to jump out of local optima and ensures convergence speed. In the CEC2018 benchmark function set of 29 benchmark function problems and magnetic target state estimation problems, the proposed MSIGWO was tested, and statistical indicators and Friedman test results show that compared with GWO and its advanced variants, the MSIGWO algorithm has superior performance. The application of this algorithm in magnetic target state estimation problems has proven its effectiveness and applicability. Magnetic target state estimation is a widely applied technology, but it also faces many challenges in practical applications. One of the most critical challenges is the issue of estimation accuracy. The Grey Wolf Optimizer (GWO) is one of the more successful swarm intelligence algorithms in recent years, but its shortcomings have also been exposed when facing increasingly complex problems. Therefore, a Multi-Strategy Improved Grey Wolf Optimizer (MSIGWO) algorithm has been proposed to enhance the accuracy of magnetic target state estimation. In the initialization phase, Tent chaos mapping is introduced to enhance population diversity, prevent falling into local optima, and improve convergence speed. Multi-population fusion evolution strategies enhance population diversity, convergence accuracy, and global search ability. Nonlinear convergence factors better balance exploration and exploitation behaviors. Dynamic weight strategies increase the diversity of search samples and reduce the likelihood of falling into local optima. Adaptive dimensional learning better balances local and global searches, enhancing population diversity. Adaptive Levy flight enhances the ability to jump out of local optima and ensures convergence speed. In the CEC2018 benchmark function set of 29 benchmark function problems and magnetic target state estimation problems, the proposed MSIGWO was tested, and statistical indicators and Friedman test results show that compared with GWO and its advanced variants, the MSIGWO algorithm has superior performance. The application of this algorithm in magnetic target state estimation problems has proven its effectiveness and applicability.Magnetic target state estimation is a widely applied technology, but it also faces many challenges in practical applications. One of the most critical challenges is the issue of estimation accuracy. The Grey Wolf Optimizer (GWO) is one of the more successful swarm intelligence algorithms in recent years, but its shortcomings have also been exposed when facing increasingly complex problems. Therefore, a Multi-Strategy Improved Grey Wolf Optimizer (MSIGWO) algorithm has been proposed to enhance the accuracy of magnetic target state estimation. In the initialization phase, Tent chaos mapping is introduced to enhance population diversity, prevent falling into local optima, and improve convergence speed. Multi-population fusion evolution strategies enhance population diversity, convergence accuracy, and global search ability. Nonlinear convergence factors better balance exploration and exploitation behaviors. Dynamic weight strategies increase the diversity of search samples and reduce the likelihood of falling into local optima. Adaptive dimensional learning better balances local and global searches, enhancing population diversity. Adaptive Levy flight enhances the ability to jump out of local optima and ensures convergence speed. In the CEC2018 benchmark function set of 29 benchmark function problems and magnetic target state estimation problems, the proposed MSIGWO was tested, and statistical indicators and Friedman test results show that compared with GWO and its advanced variants, the MSIGWO algorithm has superior performance. The application of this algorithm in magnetic target state estimation problems has proven its effectiveness and applicability. Abstract Magnetic target state estimation is a widely applied technology, but it also faces many challenges in practical applications. One of the most critical challenges is the issue of estimation accuracy. The Grey Wolf Optimizer (GWO) is one of the more successful swarm intelligence algorithms in recent years, but its shortcomings have also been exposed when facing increasingly complex problems. Therefore, a Multi-Strategy Improved Grey Wolf Optimizer (MSIGWO) algorithm has been proposed to enhance the accuracy of magnetic target state estimation. In the initialization phase, Tent chaos mapping is introduced to enhance population diversity, prevent falling into local optima, and improve convergence speed. Multi-population fusion evolution strategies enhance population diversity, convergence accuracy, and global search ability. Nonlinear convergence factors better balance exploration and exploitation behaviors. Dynamic weight strategies increase the diversity of search samples and reduce the likelihood of falling into local optima. Adaptive dimensional learning better balances local and global searches, enhancing population diversity. Adaptive Levy flight enhances the ability to jump out of local optima and ensures convergence speed. In the CEC2018 benchmark function set of 29 benchmark function problems and magnetic target state estimation problems, the proposed MSIGWO was tested, and statistical indicators and Friedman test results show that compared with GWO and its advanced variants, the MSIGWO algorithm has superior performance. The application of this algorithm in magnetic target state estimation problems has proven its effectiveness and applicability. |
| ArticleNumber | 15452 |
| Author | Li, Zongji Zhang, Xiaobing Lu, Binjie |
| Author_xml | – sequence: 1 givenname: Binjie surname: Lu fullname: Lu, Binjie organization: Naval University of Engineering, The 92279 Unit of the PLA – sequence: 2 givenname: Zongji surname: Li fullname: Li, Zongji organization: Naval University of Engineering – sequence: 3 givenname: Xiaobing surname: Zhang fullname: Zhang, Xiaobing email: professorzxb@163.com organization: Naval University of Engineering, The 92279 Unit of the PLA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40316579$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9ks1u1TAQhS1UREvpC7BAkdiwCfg3sVcIVbRUKmIDgp3lOJPUV4kdbKfS5elxm1JaFnhjy_PN8cz4PEcHPnhA6CXBbwlm8l3iRChZYypqjLkgNX2Cjmg51ZRRevDgfIhOUtrhsgRVnKhn6JBjRhrRqiP047MZPWRnq2ziCDlVS0guu-CdH6sZ8lXoq84k6Kvgq3mdsqtTjibDuK_cvMRwXULnEfbV9zANVViym90viC_Q08FMCU7u9mP07ezj19NP9eWX84vTD5e15YrnWtnG4J5ww4WVkklupWi7hvZMWU47alk7YMkHxdrOdG3Het6wRiqqhr4blGXH6GLT7YPZ6SW62cS9Dsbp24sQR21i6W8CXdSx4RhL2SneSikxCArAqSB934EpWu83rWXtZugt-NLp9Ej0ccS7Kz2Ga03KsKXgqii8uVOI4ecKKevZJQvTZDyENWlGlJJcMMoL-vofdBfW6MusNKOYMSJlgwv16mFJ97X8-cEC0A2wMaQUYbhHCNY3TtGbU3Rxir51iqYliW1JqcB-hPj37f9k_QZLjcAU |
| Cites_doi | 10.1016/j.eswa.2023.121917 10.1007/s10462-025-11118-9 10.1007/s10462-025-11192-z 10.1016/j.ndteint.2024.103043 10.1038/s41598-022-22725-9 10.1016/j.asoc.2024.111776 10.1088/1361-6501/ad73f3 10.1016/j.eswa.2022.118267 10.3390/electronics14030611 10.1109/TITS.2021.3058806 10.1007/s11227-024-06727-0 10.1016/j.knosys.2015.07.006 10.1007/s11227-025-07106-z 10.3390/s24103226 10.1016/j.asoc.2024.111710 10.1109/MHS.1995.494215 10.1109/TITS.2020.3024652 10.1109/MCI.2006.329691 10.1007/s10586-024-04716-9 10.1088/1361-6501/ad3c5c 10.1007/s00190-024-01833-6 10.1109/JIOT.2019.2937110 10.1109/TII.2022.3156663 10.1038/s41598-023-41702-4 10.1109/TEC.2024.3352577 10.1007/s10586-024-04455-x 10.1109/TMAG.2021.3062998 10.1016/j.knosys.2023.110297 10.3390/sym16030286 10.1016/j.knosys.2021.107532 10.1007/s10462-024-11023-7 10.3390/s22103810 10.1109/TSP.2013.2274639 10.1016/j.eswa.2023.121113 10.1016/j.eswa.2020.113917 10.3390/s24134083 10.1109/TNSM.2018.2861717 10.1016/j.swevo.2011.02.002 10.1016/j.cie.2021.107250 10.1002/rob.22361 10.1109/ACCESS.2022.3156080 10.34133/cbsystems.0067 10.1016/j.advengsoft.2013.12.007 10.1016/j.iot.2024.101135 10.1007/s10462-024-10716-3 10.1016/j.cma.2024.117718 10.1109/ACCESS.2020.3008483 10.1109/JSYST.2018.2879883 10.1016/j.eswa.2024.125863 10.1109/TMC.2023.3312550 10.1016/j.trb.2024.102971 10.3390/rs16030507 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-025-00451-2 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 30 |
| ExternalDocumentID | oai_doaj_org_article_3840a40088b9478880e52ee4251ddbea PMC12048549 40316579 10_1038_s41598_025_00451_2 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 12304535; 12304535; 12304535 – fundername: National Natural Science Foundation of China grantid: 12304535 |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX AFFHD CITATION PHGZM PJZUB PPXIY PQGLB NPM 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c494t-9c6a0d14a45c88384c857b62d39c42b2c37f084f937bab7b3d46368929fdbf9c3 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001480666900035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:40:50 EDT 2025 Tue Nov 04 02:03:22 EST 2025 Fri Sep 05 17:16:04 EDT 2025 Tue Oct 07 07:56:29 EDT 2025 Mon Jul 21 05:31:18 EDT 2025 Sat Nov 29 08:00:09 EST 2025 Sat May 03 01:19:06 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Magnetic target state estimation Grey Wolf optimizer Nonlinear convergence factor Dynamic weights Adaptive levy flight Adaptive dimensional learning Multi-population fusion evolution Tent chaos mapping |
| Language | English |
| License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c494t-9c6a0d14a45c88384c857b62d39c42b2c37f084f937bab7b3d46368929fdbf9c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/3203318860?pq-origsite=%requestingapplication% |
| PMID | 40316579 |
| PQID | 3203318860 |
| PQPubID | 2041939 |
| PageCount | 30 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3840a40088b9478880e52ee4251ddbea pubmedcentral_primary_oai_pubmedcentral_nih_gov_12048549 proquest_miscellaneous_3199845324 proquest_journals_3203318860 pubmed_primary_40316579 crossref_primary_10_1038_s41598_025_00451_2 springer_journals_10_1038_s41598_025_00451_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-02 |
| PublicationDateYYYYMMDD | 2025-05-02 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | J Xu (451_CR59) 2021; 233 451_CR53 J Lu (451_CR24) 2024; 185 Y Lang (451_CR33) 2025; 436 A Sheinker (451_CR1) 2021; 57 J Wang (451_CR50) 2023; 19 J Li (451_CR14) 2024; 39 B Lu (451_CR2) 2024; 35 G Sun (451_CR20) 2020; 7 B Lu (451_CR60) 2024; 35 G Zhou (451_CR16) 2022; 14 S Mirjalili (451_CR31) 2015; 89 M Batis (451_CR39) 2025; 28 G Sun (451_CR17) 2019; 13 451_CR23 S Fu (451_CR27) 2024; 57 M Kohli (451_CR43) 2018; 5 X Yu (451_CR47) 2024; 238 G Liu (451_CR12) 2024; 24 J Luo (451_CR3) 2023; 72 451_CR9 W Li (451_CR49) 2020; 8 M Luo (451_CR6) 2024; 62 L Wang (451_CR7) 2022; 10 H Tsai (451_CR46) 2024; 161 MH Nadimi-Shahraki (451_CR52) 2024; 26 Y Qin (451_CR26) 2022; 71 K Zhang (451_CR8) 2023; 12 451_CR19 X Yang (451_CR22) 2024; 23 M Dorigo (451_CR30) 2006; 1 J Guo (451_CR21) 2024; 41 451_CR57 451_CR34 X Liu (451_CR54) 2024; 160 N Wahlstrom (451_CR13) 2014; 62 Y Feng (451_CR5) 2022; 23 J Derrac (451_CR58) 2011; 1 MH Nadimi-Shahraki (451_CR44) 2021; 166 A Alkharsan (451_CR32) 2025; 14 R Ahmed (451_CR45) 2023; 264 X Yu (451_CR42) 2022; 209 J Liang (451_CR55) 2024; 237 Z Wang (451_CR15) 2023; 72 451_CR29 451_CR25 M Woloszyn (451_CR61) 2023; 13 Y Li (451_CR51) 2022; 23 L Miao (451_CR11) 2024; 24 Q ZHANG (451_CR4) 2023; 72 Z Wang (451_CR48) 2024; 27 H You (451_CR10) 2022; 12 Z Wang (451_CR56) 2025; 265 G Sun (451_CR18) 2018; 15 L Abualigah (451_CR28) 2021; 157 Y Ou (451_CR41) 2024; 16 451_CR38 451_CR37 451_CR36 S Mirjalili (451_CR40) 2014; 69 451_CR35 |
| References_xml | – volume: 238 start-page: 121917 year: 2024 ident: 451_CR47 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.121917 – ident: 451_CR57 – ident: 451_CR34 doi: 10.1007/s10462-025-11118-9 – ident: 451_CR36 doi: 10.1007/s10462-025-11192-z – ident: 451_CR23 doi: 10.1016/j.ndteint.2024.103043 – volume: 12 start-page: 17985 issue: 1 year: 2022 ident: 451_CR10 publication-title: Sci. Rep. doi: 10.1038/s41598-022-22725-9 – volume: 161 start-page: 111776 year: 2024 ident: 451_CR46 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2024.111776 – volume: 35 start-page: 126125 issue: 12 year: 2024 ident: 451_CR2 publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ad73f3 – volume: 209 start-page: 118267 year: 2022 ident: 451_CR42 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.118267 – volume: 14 start-page: 611 issue: 3 year: 2025 ident: 451_CR32 publication-title: Electronics doi: 10.3390/electronics14030611 – volume: 23 start-page: 5823 issue: 6 year: 2022 ident: 451_CR51 publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2021.3058806 – ident: 451_CR37 doi: 10.1007/s11227-024-06727-0 – volume: 89 start-page: 228 year: 2015 ident: 451_CR31 publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2015.07.006 – ident: 451_CR38 doi: 10.1007/s11227-025-07106-z – volume: 24 start-page: 3226 issue: 10 year: 2024 ident: 451_CR11 publication-title: Sens. (Basel Switzerland) doi: 10.3390/s24103226 – volume: 160 start-page: 111710 year: 2024 ident: 451_CR54 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2024.111710 – ident: 451_CR29 doi: 10.1109/MHS.1995.494215 – volume: 23 start-page: 1311 issue: 2 year: 2022 ident: 451_CR5 publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.3024652 – volume: 72 start-page: 1 year: 2023 ident: 451_CR4 publication-title: IEEE Trans. Instrum. Meas. – volume: 1 start-page: 28 issue: 4 year: 2006 ident: 451_CR30 publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2006.329691 – volume: 28 start-page: 61 issue: 1 year: 2025 ident: 451_CR39 publication-title: Cluster Comput. doi: 10.1007/s10586-024-04716-9 – volume: 14 start-page: 2103 issue: 9 year: 2022 ident: 451_CR16 publication-title: Remote Sens. (Basel Switzerland) – volume: 35 start-page: 76119 issue: 7 year: 2024 ident: 451_CR60 publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ad3c5c – ident: 451_CR19 doi: 10.1007/s00190-024-01833-6 – volume: 62 start-page: 1 year: 2024 ident: 451_CR6 publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 7 start-page: 5760 issue: 7 year: 2020 ident: 451_CR20 publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2019.2937110 – volume: 19 start-page: 2963 issue: 3 year: 2023 ident: 451_CR50 publication-title: IEEE Trans. Industr. Inf. doi: 10.1109/TII.2022.3156663 – volume: 13 start-page: 14601 issue: 1 year: 2023 ident: 451_CR61 publication-title: Sci. Rep. doi: 10.1038/s41598-023-41702-4 – volume: 39 start-page: 1034 issue: 2 year: 2024 ident: 451_CR14 publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2024.3352577 – volume: 27 start-page: 10671 issue: 8 year: 2024 ident: 451_CR48 publication-title: Cluster Comput. doi: 10.1007/s10586-024-04455-x – volume: 57 start-page: 1 issue: 5 year: 2021 ident: 451_CR1 publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2021.3062998 – volume: 72 start-page: 1 year: 2023 ident: 451_CR15 publication-title: IEEE Trans. Instrum. Meas. – volume: 264 start-page: 110297 year: 2023 ident: 451_CR45 publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2023.110297 – volume: 16 start-page: 286 issue: 3 year: 2024 ident: 451_CR41 publication-title: Symmetry (Basel) doi: 10.3390/sym16030286 – volume: 233 start-page: 107532 year: 2021 ident: 451_CR59 publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2021.107532 – ident: 451_CR35 doi: 10.1007/s10462-024-11023-7 – ident: 451_CR53 doi: 10.3390/s22103810 – volume: 62 start-page: 545 issue: 03 year: 2014 ident: 451_CR13 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2274639 – volume: 237 start-page: 121113 year: 2024 ident: 451_CR55 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.121113 – volume: 166 start-page: 113917 year: 2021 ident: 451_CR44 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113917 – volume: 24 start-page: 4083 issue: 13 year: 2024 ident: 451_CR12 publication-title: Sens. (Basel Switzerland) doi: 10.3390/s24134083 – volume: 15 start-page: 1175 issue: 3 year: 2018 ident: 451_CR18 publication-title: IEEE Trans. Netw. Serv. Manage. doi: 10.1109/TNSM.2018.2861717 – volume: 1 start-page: 3 issue: 1 year: 2011 ident: 451_CR58 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.02.002 – volume: 157 start-page: 107250 year: 2021 ident: 451_CR28 publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107250 – volume: 41 start-page: 2518 issue: 8 year: 2024 ident: 451_CR21 publication-title: J. Field Robot. doi: 10.1002/rob.22361 – volume: 10 start-page: 25025 year: 2022 ident: 451_CR7 publication-title: IEEE Access. doi: 10.1109/ACCESS.2022.3156080 – volume: 71 start-page: 1 year: 2022 ident: 451_CR26 publication-title: IEEE Trans. Instrum. Meas. – ident: 451_CR25 doi: 10.34133/cbsystems.0067 – volume: 69 start-page: 46 issue: 69 year: 2014 ident: 451_CR40 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 26 start-page: 101135 year: 2024 ident: 451_CR52 publication-title: Internet Things doi: 10.1016/j.iot.2024.101135 – volume: 57 start-page: 1 issue: 6 year: 2024 ident: 451_CR27 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-024-10716-3 – volume: 436 start-page: 117718 year: 2025 ident: 451_CR33 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2024.117718 – volume: 72 start-page: 1 year: 2023 ident: 451_CR3 publication-title: IEEE Trans. Instrum. Meas. – volume: 8 start-page: 126814 year: 2020 ident: 451_CR49 publication-title: IEEE Access. doi: 10.1109/ACCESS.2020.3008483 – volume: 13 start-page: 3877 issue: 4 year: 2019 ident: 451_CR17 publication-title: IEEE Syst. J. doi: 10.1109/JSYST.2018.2879883 – volume: 265 start-page: 125863 year: 2025 ident: 451_CR56 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2024.125863 – volume: 5 start-page: 458 issue: 4 year: 2018 ident: 451_CR43 publication-title: J. Comput. Des. Eng. – volume: 23 start-page: 5755 issue: 5 year: 2024 ident: 451_CR22 publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2023.3312550 – volume: 12 start-page: 4900 issue: 24 year: 2023 ident: 451_CR8 publication-title: Electron. (Basel) – volume: 185 start-page: 102971 year: 2024 ident: 451_CR24 publication-title: Transp. Res. Part. B: Methodological doi: 10.1016/j.trb.2024.102971 – ident: 451_CR9 doi: 10.3390/rs16030507 |
| SSID | ssj0000529419 |
| Score | 2.4600587 |
| Snippet | Magnetic target state estimation is a widely applied technology, but it also faces many challenges in practical applications. One of the most critical... Abstract Magnetic target state estimation is a widely applied technology, but it also faces many challenges in practical applications. One of the most critical... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 15452 |
| SubjectTerms | 639/166 639/166/987 639/705 Accuracy Algorithms Convergence Dynamic weights Evolution Exploratory behavior Grey Wolf optimizer Humanities and Social Sciences Magnetic target state estimation Multi-population fusion evolution multidisciplinary Nonlinear convergence factor Science Science (multidisciplinary) Tent chaos mapping |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hCiQuiJZXoCAjcQOrju0k9rEgWi5UHEDszfIrsBJN0GaLVH49Yzu7dHmIC9c4iqzvG3vG8cw3AM9slDZVcNKA7pxK5SJVwnY0RO902zesDzI3m-jOztRiod9dafWVcsKKPHAB7kjgCcSioSnldJJ6Vyw2PEY0tToEF3NoxDp95TBVVL25lrWeq2SYUEcTeqpUTcYbmjVVKN_xRFmw_09R5u_Jkr_cmGZHdHIbbs0RJDkuM9-Ha3E4gBulp-TlHVi8tZ-GVJlISpL3RDZ5Wfg1UhpGk-S7AhkHkvMJ6VQkai_JMv9iwKFTZJh8HL_0ZMQ95Xz5Pa7uwoeT1-9fvaFz-wTqpZZrqn1rWaillY1XCnH0qulcy4PQXnLHveh6pmSPAYqzrnMiJPEwhfFSH1yvvbgHe8M4xAdAPFKAgU3SgsPzSkQX1kTklrma9xoDsgqeb6A0X4tKhsm320KZArxB4E0G3vAKXia0t28mhev8AHk3M-_mX7xXcLjhyszLbjKCM4GblGpZBU-3w7hg0i2IHeJ4ge-kqkLZYCBZwf1C7XYmEre4tul0BWqH9J2p7o4My89ZlLtOCsh42K7gxcY-fs7r71g8_B9YPIKbPBt2KrY_hL316iI-huv-23o5rZ7klfEDlIcPvQ priority: 102 providerName: Directory of Open Access Journals |
| Title | Magnetic targets positioning method based on multi-strategy improved Grey Wolf optimizer |
| URI | https://link.springer.com/article/10.1038/s41598-025-00451-2 https://www.ncbi.nlm.nih.gov/pubmed/40316579 https://www.proquest.com/docview/3203318860 https://www.proquest.com/docview/3199845324 https://pubmed.ncbi.nlm.nih.gov/PMC12048549 https://doaj.org/article/3840a40088b9478880e52ee4251ddbea |
| Volume | 15 |
| WOSCitedRecordID | wos001480666900035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RLkhceLcEyspI3MBq4jiJfUIUtcBhVxECsZwiv1JWoknZbJHKr2fsJFstrwsXH-JImWTGM5N5fAPwTDmufAcntWjOKRfaUZGqglpntMzrLK4tD8MmivlcLBayHAJu3VBWOerEoKhta3yM_DBlcYryJ_L45fk36qdG-ezqMEJjBybo2SS-pGvGyk2MxWexeCKHXpk4FYcd2ivfU8YyGpBVKNuyRwG2_0--5u8lk7_kTYM5Orn9vy9yB24Njih51UvOXbjmmntwox9NeXkfFjN12vgGR9LXindkLO9Cckg_d5p4E2hJ25BQlki7Hun2kixDpAK33qCgkE_t15q0qJrOlj_c6gF8PDn-8PotHaYwUMMlX1NpchXbhCueGSFSwY3ICp0zm0rDmWYmLepY8Br9HK10oVPrMcgEul211bU06R7sNm3jHgIxsfJYNx5SDn97HFrCzKGIxDphtUS_LoLnIy-q8x5sowpJ8lRUPecq5FwVOFexCI48uzZ3eqDscKFdnVbDuauQXnwoOjpCSz8pQMQuY86hpkqs1U5FcDByqRpOb1ddsSiCp5ttPHc-maIa117gPb45kWfoj0aw38vGhhKOmjLPChmB2JKaLVK3d5rll4DtnXggZfxnj-DFKGBXdP39Wzz692s8hpssyLzvxj-A3fXqwj2B6-b7etmtprBTLIqwiilMjo7n5ftpiE1Mw3Hya4HrpHw3Kz__BM1_JVk |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoILb0qggJHgBFYTx9k4B4R4lVZtVz0UsTcTP1JWKknZbEHLj-I3MuNstlpetx64xnnYzjcP2zPfADwuvSwpg5M7NOdcKuO5SsucO29NMaiyuHIyFJvIh0M1GhX7K_Cjz4WhsMpeJwZF7RpLe-QbqYhTxJ8axC-Ov3CqGkWnq30JjQ4WO372DZds7fPtN_h_nwix-fbg9RafVxXgVhZyygs7KGOXyFJmVqlUSauy3AyESwsrhRE2zatYyQrttilNblJHnFoK3YjKmaqwKb73HJyXtBKiUEGxv9jToVMzmRTz3Jw4VRst2kfKYRMZD0wuXCzZv1Am4E--7e8hmr-c0wbzt3n1f5u4a3Bl7mizl51kXIcVX9-Ai13pzdlNGO2VhzUlcLIuFr5lffgaDp91dbUZmXjHmpqFsEvedky-MzYOOzHY9A4FgX1ojirWoOr9PP7uJ7fg_ZkM6zas1k3t7wCzcUlcPkSZh8s6j5Y-8ygCsUlEVaDfGsHT_t_r445MRIcggFTpDikakaIDUrSI4BXBY3EnEYGHC83kUM_1isb-4kfRkVOmoEoIKvaZ8B41ceKc8WUE6z0q9Fw7tfoUEhE8WjSjXqHDorL2zQneQ8mXMkN_O4K1DouLnki0BIMsLyJQSyhd6upySz3-FLjLEyKKziQ--qwH9Gm__j4Xd_89jIdwaetgb1fvbg937sFlEeSNmAfWYXU6OfH34YL9Oh23kwdBYBl8PGug_wQmTXq9 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qZREXdkqggJHgRK3xOE7iHBACykBVGM0BxNxMvKQdCZIymYKGn8av49lJphq2Ww9c4yy2873F9nvfA3hYOFH4DE5q0ZxTIbWjMi4yap3ReVomrLQiFJvIxmM5neaTDfjR58L4sMpeJwZFbWvj98gHMWcx4k-mbFB2YRGT3dHToy_UV5DyJ619OY0WIvtu-Q2Xb82TvV381484H7189-I17SoMUCNysaC5SQtmh6IQiZEylsLIJNMpt3FuBNfcxFnJpCjRhutCZzq2nl9LoktRWl3mJsb3noGzmUiZDGGDk9X-jj9BE8O8y9NhsRw0aCt9PhtPaGB1oXzNFoaSAX_yc38P1_zlzDaYwtHl_3kSr8ClzgEnz1qJuQobrroG59uSnMvrMH1bHFQ-sZO0MfIN6cPacCpIW2-beNNvSV2REI5Jm5bhd0lmYYcGm16hgJAP9aeS1KiSP8--u_kNeH8qw7oJm1VduVtADCs8x4-n0sPlnkMPIHEoGkwPeZmjPxvB4x4H6qglGVEhOCCWqkWNQtSogBrFI3juobK60xOEhwv1_EB1-kZhf_Gj6OBJnfsKCZK5hDuHGnporXZFBNs9QlSntRp1Ao8IHqyaUd_4Q6SicvUx3uOTMkWCfngEWy0uVz0RaCHSJMsjkGuIXevqeks1Owyc5kNPIJ0IfHSnB_dJv_4-F7f_PYz7cAHxrd7sjffvwEUeRM8TEmzD5mJ-7O7COfN1MWvm94LsEvh42jj_Ca5Hg44 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic+targets+positioning+method+based+on+multi-strategy+improved+Grey+Wolf+optimizer&rft.jtitle=Scientific+reports&rft.au=Lu%2C+Binjie&rft.au=Li%2C+Zongji&rft.au=Zhang%2C+Xiaobing&rft.date=2025-05-02&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-00451-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_025_00451_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |