Magnetic targets positioning method based on multi-strategy improved Grey Wolf optimizer

Magnetic target state estimation is a widely applied technology, but it also faces many challenges in practical applications. One of the most critical challenges is the issue of estimation accuracy. The Grey Wolf Optimizer (GWO) is one of the more successful swarm intelligence algorithms in recent y...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 15; H. 1; S. 15452 - 30
Hauptverfasser: Lu, Binjie, Li, Zongji, Zhang, Xiaobing
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 02.05.2025
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Magnetic target state estimation is a widely applied technology, but it also faces many challenges in practical applications. One of the most critical challenges is the issue of estimation accuracy. The Grey Wolf Optimizer (GWO) is one of the more successful swarm intelligence algorithms in recent years, but its shortcomings have also been exposed when facing increasingly complex problems. Therefore, a Multi-Strategy Improved Grey Wolf Optimizer (MSIGWO) algorithm has been proposed to enhance the accuracy of magnetic target state estimation. In the initialization phase, Tent chaos mapping is introduced to enhance population diversity, prevent falling into local optima, and improve convergence speed. Multi-population fusion evolution strategies enhance population diversity, convergence accuracy, and global search ability. Nonlinear convergence factors better balance exploration and exploitation behaviors. Dynamic weight strategies increase the diversity of search samples and reduce the likelihood of falling into local optima. Adaptive dimensional learning better balances local and global searches, enhancing population diversity. Adaptive Levy flight enhances the ability to jump out of local optima and ensures convergence speed. In the CEC2018 benchmark function set of 29 benchmark function problems and magnetic target state estimation problems, the proposed MSIGWO was tested, and statistical indicators and Friedman test results show that compared with GWO and its advanced variants, the MSIGWO algorithm has superior performance. The application of this algorithm in magnetic target state estimation problems has proven its effectiveness and applicability.
AbstractList Magnetic target state estimation is a widely applied technology, but it also faces many challenges in practical applications. One of the most critical challenges is the issue of estimation accuracy. The Grey Wolf Optimizer (GWO) is one of the more successful swarm intelligence algorithms in recent years, but its shortcomings have also been exposed when facing increasingly complex problems. Therefore, a Multi-Strategy Improved Grey Wolf Optimizer (MSIGWO) algorithm has been proposed to enhance the accuracy of magnetic target state estimation. In the initialization phase, Tent chaos mapping is introduced to enhance population diversity, prevent falling into local optima, and improve convergence speed. Multi-population fusion evolution strategies enhance population diversity, convergence accuracy, and global search ability. Nonlinear convergence factors better balance exploration and exploitation behaviors. Dynamic weight strategies increase the diversity of search samples and reduce the likelihood of falling into local optima. Adaptive dimensional learning better balances local and global searches, enhancing population diversity. Adaptive Levy flight enhances the ability to jump out of local optima and ensures convergence speed. In the CEC2018 benchmark function set of 29 benchmark function problems and magnetic target state estimation problems, the proposed MSIGWO was tested, and statistical indicators and Friedman test results show that compared with GWO and its advanced variants, the MSIGWO algorithm has superior performance. The application of this algorithm in magnetic target state estimation problems has proven its effectiveness and applicability.
Magnetic target state estimation is a widely applied technology, but it also faces many challenges in practical applications. One of the most critical challenges is the issue of estimation accuracy. The Grey Wolf Optimizer (GWO) is one of the more successful swarm intelligence algorithms in recent years, but its shortcomings have also been exposed when facing increasingly complex problems. Therefore, a Multi-Strategy Improved Grey Wolf Optimizer (MSIGWO) algorithm has been proposed to enhance the accuracy of magnetic target state estimation. In the initialization phase, Tent chaos mapping is introduced to enhance population diversity, prevent falling into local optima, and improve convergence speed. Multi-population fusion evolution strategies enhance population diversity, convergence accuracy, and global search ability. Nonlinear convergence factors better balance exploration and exploitation behaviors. Dynamic weight strategies increase the diversity of search samples and reduce the likelihood of falling into local optima. Adaptive dimensional learning better balances local and global searches, enhancing population diversity. Adaptive Levy flight enhances the ability to jump out of local optima and ensures convergence speed. In the CEC2018 benchmark function set of 29 benchmark function problems and magnetic target state estimation problems, the proposed MSIGWO was tested, and statistical indicators and Friedman test results show that compared with GWO and its advanced variants, the MSIGWO algorithm has superior performance. The application of this algorithm in magnetic target state estimation problems has proven its effectiveness and applicability.Magnetic target state estimation is a widely applied technology, but it also faces many challenges in practical applications. One of the most critical challenges is the issue of estimation accuracy. The Grey Wolf Optimizer (GWO) is one of the more successful swarm intelligence algorithms in recent years, but its shortcomings have also been exposed when facing increasingly complex problems. Therefore, a Multi-Strategy Improved Grey Wolf Optimizer (MSIGWO) algorithm has been proposed to enhance the accuracy of magnetic target state estimation. In the initialization phase, Tent chaos mapping is introduced to enhance population diversity, prevent falling into local optima, and improve convergence speed. Multi-population fusion evolution strategies enhance population diversity, convergence accuracy, and global search ability. Nonlinear convergence factors better balance exploration and exploitation behaviors. Dynamic weight strategies increase the diversity of search samples and reduce the likelihood of falling into local optima. Adaptive dimensional learning better balances local and global searches, enhancing population diversity. Adaptive Levy flight enhances the ability to jump out of local optima and ensures convergence speed. In the CEC2018 benchmark function set of 29 benchmark function problems and magnetic target state estimation problems, the proposed MSIGWO was tested, and statistical indicators and Friedman test results show that compared with GWO and its advanced variants, the MSIGWO algorithm has superior performance. The application of this algorithm in magnetic target state estimation problems has proven its effectiveness and applicability.
Abstract Magnetic target state estimation is a widely applied technology, but it also faces many challenges in practical applications. One of the most critical challenges is the issue of estimation accuracy. The Grey Wolf Optimizer (GWO) is one of the more successful swarm intelligence algorithms in recent years, but its shortcomings have also been exposed when facing increasingly complex problems. Therefore, a Multi-Strategy Improved Grey Wolf Optimizer (MSIGWO) algorithm has been proposed to enhance the accuracy of magnetic target state estimation. In the initialization phase, Tent chaos mapping is introduced to enhance population diversity, prevent falling into local optima, and improve convergence speed. Multi-population fusion evolution strategies enhance population diversity, convergence accuracy, and global search ability. Nonlinear convergence factors better balance exploration and exploitation behaviors. Dynamic weight strategies increase the diversity of search samples and reduce the likelihood of falling into local optima. Adaptive dimensional learning better balances local and global searches, enhancing population diversity. Adaptive Levy flight enhances the ability to jump out of local optima and ensures convergence speed. In the CEC2018 benchmark function set of 29 benchmark function problems and magnetic target state estimation problems, the proposed MSIGWO was tested, and statistical indicators and Friedman test results show that compared with GWO and its advanced variants, the MSIGWO algorithm has superior performance. The application of this algorithm in magnetic target state estimation problems has proven its effectiveness and applicability.
ArticleNumber 15452
Author Li, Zongji
Zhang, Xiaobing
Lu, Binjie
Author_xml – sequence: 1
  givenname: Binjie
  surname: Lu
  fullname: Lu, Binjie
  organization: Naval University of Engineering, The 92279 Unit of the PLA
– sequence: 2
  givenname: Zongji
  surname: Li
  fullname: Li, Zongji
  organization: Naval University of Engineering
– sequence: 3
  givenname: Xiaobing
  surname: Zhang
  fullname: Zhang, Xiaobing
  email: professorzxb@163.com
  organization: Naval University of Engineering, The 92279 Unit of the PLA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40316579$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1TAQhS1UREvpC7BAkdiwCfg3sVcIVbRUKmIDgp3lOJPUV4kdbKfS5elxm1JaFnhjy_PN8cz4PEcHPnhA6CXBbwlm8l3iRChZYypqjLkgNX2Cjmg51ZRRevDgfIhOUtrhsgRVnKhn6JBjRhrRqiP047MZPWRnq2ziCDlVS0guu-CdH6sZ8lXoq84k6Kvgq3mdsqtTjibDuK_cvMRwXULnEfbV9zANVViym90viC_Q08FMCU7u9mP07ezj19NP9eWX84vTD5e15YrnWtnG4J5ww4WVkklupWi7hvZMWU47alk7YMkHxdrOdG3Het6wRiqqhr4blGXH6GLT7YPZ6SW62cS9Dsbp24sQR21i6W8CXdSx4RhL2SneSikxCArAqSB934EpWu83rWXtZugt-NLp9Ej0ccS7Kz2Ga03KsKXgqii8uVOI4ecKKevZJQvTZDyENWlGlJJcMMoL-vofdBfW6MusNKOYMSJlgwv16mFJ97X8-cEC0A2wMaQUYbhHCNY3TtGbU3Rxir51iqYliW1JqcB-hPj37f9k_QZLjcAU
Cites_doi 10.1016/j.eswa.2023.121917
10.1007/s10462-025-11118-9
10.1007/s10462-025-11192-z
10.1016/j.ndteint.2024.103043
10.1038/s41598-022-22725-9
10.1016/j.asoc.2024.111776
10.1088/1361-6501/ad73f3
10.1016/j.eswa.2022.118267
10.3390/electronics14030611
10.1109/TITS.2021.3058806
10.1007/s11227-024-06727-0
10.1016/j.knosys.2015.07.006
10.1007/s11227-025-07106-z
10.3390/s24103226
10.1016/j.asoc.2024.111710
10.1109/MHS.1995.494215
10.1109/TITS.2020.3024652
10.1109/MCI.2006.329691
10.1007/s10586-024-04716-9
10.1088/1361-6501/ad3c5c
10.1007/s00190-024-01833-6
10.1109/JIOT.2019.2937110
10.1109/TII.2022.3156663
10.1038/s41598-023-41702-4
10.1109/TEC.2024.3352577
10.1007/s10586-024-04455-x
10.1109/TMAG.2021.3062998
10.1016/j.knosys.2023.110297
10.3390/sym16030286
10.1016/j.knosys.2021.107532
10.1007/s10462-024-11023-7
10.3390/s22103810
10.1109/TSP.2013.2274639
10.1016/j.eswa.2023.121113
10.1016/j.eswa.2020.113917
10.3390/s24134083
10.1109/TNSM.2018.2861717
10.1016/j.swevo.2011.02.002
10.1016/j.cie.2021.107250
10.1002/rob.22361
10.1109/ACCESS.2022.3156080
10.34133/cbsystems.0067
10.1016/j.advengsoft.2013.12.007
10.1016/j.iot.2024.101135
10.1007/s10462-024-10716-3
10.1016/j.cma.2024.117718
10.1109/ACCESS.2020.3008483
10.1109/JSYST.2018.2879883
10.1016/j.eswa.2024.125863
10.1109/TMC.2023.3312550
10.1016/j.trb.2024.102971
10.3390/rs16030507
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-00451-2
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic

PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 30
ExternalDocumentID oai_doaj_org_article_3840a40088b9478880e52ee4251ddbea
PMC12048549
40316579
10_1038_s41598_025_00451_2
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 12304535; 12304535; 12304535
– fundername: National Natural Science Foundation of China
  grantid: 12304535
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
PHGZM
PJZUB
PPXIY
PQGLB
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c494t-9c6a0d14a45c88384c857b62d39c42b2c37f084f937bab7b3d46368929fdbf9c3
IEDL.DBID M2P
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001480666900035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:40:50 EDT 2025
Tue Nov 04 02:03:22 EST 2025
Fri Sep 05 17:16:04 EDT 2025
Tue Oct 07 07:56:29 EDT 2025
Mon Jul 21 05:31:18 EDT 2025
Sat Nov 29 08:00:09 EST 2025
Sat May 03 01:19:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Magnetic target state estimation
Grey Wolf optimizer
Nonlinear convergence factor
Dynamic weights
Adaptive levy flight
Adaptive dimensional learning
Multi-population fusion evolution
Tent chaos mapping
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-9c6a0d14a45c88384c857b62d39c42b2c37f084f937bab7b3d46368929fdbf9c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3203318860?pq-origsite=%requestingapplication%
PMID 40316579
PQID 3203318860
PQPubID 2041939
PageCount 30
ParticipantIDs doaj_primary_oai_doaj_org_article_3840a40088b9478880e52ee4251ddbea
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12048549
proquest_miscellaneous_3199845324
proquest_journals_3203318860
pubmed_primary_40316579
crossref_primary_10_1038_s41598_025_00451_2
springer_journals_10_1038_s41598_025_00451_2
PublicationCentury 2000
PublicationDate 2025-05-02
PublicationDateYYYYMMDD 2025-05-02
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-02
  day: 02
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References J Xu (451_CR59) 2021; 233
451_CR53
J Lu (451_CR24) 2024; 185
Y Lang (451_CR33) 2025; 436
A Sheinker (451_CR1) 2021; 57
J Wang (451_CR50) 2023; 19
J Li (451_CR14) 2024; 39
B Lu (451_CR2) 2024; 35
G Sun (451_CR20) 2020; 7
B Lu (451_CR60) 2024; 35
G Zhou (451_CR16) 2022; 14
S Mirjalili (451_CR31) 2015; 89
M Batis (451_CR39) 2025; 28
G Sun (451_CR17) 2019; 13
451_CR23
S Fu (451_CR27) 2024; 57
M Kohli (451_CR43) 2018; 5
X Yu (451_CR47) 2024; 238
G Liu (451_CR12) 2024; 24
J Luo (451_CR3) 2023; 72
451_CR9
W Li (451_CR49) 2020; 8
M Luo (451_CR6) 2024; 62
L Wang (451_CR7) 2022; 10
H Tsai (451_CR46) 2024; 161
MH Nadimi-Shahraki (451_CR52) 2024; 26
Y Qin (451_CR26) 2022; 71
K Zhang (451_CR8) 2023; 12
451_CR19
X Yang (451_CR22) 2024; 23
M Dorigo (451_CR30) 2006; 1
J Guo (451_CR21) 2024; 41
451_CR57
451_CR34
X Liu (451_CR54) 2024; 160
N Wahlstrom (451_CR13) 2014; 62
Y Feng (451_CR5) 2022; 23
J Derrac (451_CR58) 2011; 1
MH Nadimi-Shahraki (451_CR44) 2021; 166
A Alkharsan (451_CR32) 2025; 14
R Ahmed (451_CR45) 2023; 264
X Yu (451_CR42) 2022; 209
J Liang (451_CR55) 2024; 237
Z Wang (451_CR15) 2023; 72
451_CR29
451_CR25
M Woloszyn (451_CR61) 2023; 13
Y Li (451_CR51) 2022; 23
L Miao (451_CR11) 2024; 24
Q ZHANG (451_CR4) 2023; 72
Z Wang (451_CR48) 2024; 27
H You (451_CR10) 2022; 12
Z Wang (451_CR56) 2025; 265
G Sun (451_CR18) 2018; 15
L Abualigah (451_CR28) 2021; 157
Y Ou (451_CR41) 2024; 16
451_CR38
451_CR37
451_CR36
S Mirjalili (451_CR40) 2014; 69
451_CR35
References_xml – volume: 238
  start-page: 121917
  year: 2024
  ident: 451_CR47
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.121917
– ident: 451_CR57
– ident: 451_CR34
  doi: 10.1007/s10462-025-11118-9
– ident: 451_CR36
  doi: 10.1007/s10462-025-11192-z
– ident: 451_CR23
  doi: 10.1016/j.ndteint.2024.103043
– volume: 12
  start-page: 17985
  issue: 1
  year: 2022
  ident: 451_CR10
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-22725-9
– volume: 161
  start-page: 111776
  year: 2024
  ident: 451_CR46
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2024.111776
– volume: 35
  start-page: 126125
  issue: 12
  year: 2024
  ident: 451_CR2
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ad73f3
– volume: 209
  start-page: 118267
  year: 2022
  ident: 451_CR42
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.118267
– volume: 14
  start-page: 611
  issue: 3
  year: 2025
  ident: 451_CR32
  publication-title: Electronics
  doi: 10.3390/electronics14030611
– volume: 23
  start-page: 5823
  issue: 6
  year: 2022
  ident: 451_CR51
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2021.3058806
– ident: 451_CR37
  doi: 10.1007/s11227-024-06727-0
– volume: 89
  start-page: 228
  year: 2015
  ident: 451_CR31
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2015.07.006
– ident: 451_CR38
  doi: 10.1007/s11227-025-07106-z
– volume: 24
  start-page: 3226
  issue: 10
  year: 2024
  ident: 451_CR11
  publication-title: Sens. (Basel Switzerland)
  doi: 10.3390/s24103226
– volume: 160
  start-page: 111710
  year: 2024
  ident: 451_CR54
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2024.111710
– ident: 451_CR29
  doi: 10.1109/MHS.1995.494215
– volume: 23
  start-page: 1311
  issue: 2
  year: 2022
  ident: 451_CR5
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.3024652
– volume: 72
  start-page: 1
  year: 2023
  ident: 451_CR4
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 1
  start-page: 28
  issue: 4
  year: 2006
  ident: 451_CR30
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2006.329691
– volume: 28
  start-page: 61
  issue: 1
  year: 2025
  ident: 451_CR39
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-024-04716-9
– volume: 14
  start-page: 2103
  issue: 9
  year: 2022
  ident: 451_CR16
  publication-title: Remote Sens. (Basel Switzerland)
– volume: 35
  start-page: 76119
  issue: 7
  year: 2024
  ident: 451_CR60
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ad3c5c
– ident: 451_CR19
  doi: 10.1007/s00190-024-01833-6
– volume: 62
  start-page: 1
  year: 2024
  ident: 451_CR6
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 7
  start-page: 5760
  issue: 7
  year: 2020
  ident: 451_CR20
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2019.2937110
– volume: 19
  start-page: 2963
  issue: 3
  year: 2023
  ident: 451_CR50
  publication-title: IEEE Trans. Industr. Inf.
  doi: 10.1109/TII.2022.3156663
– volume: 13
  start-page: 14601
  issue: 1
  year: 2023
  ident: 451_CR61
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-41702-4
– volume: 39
  start-page: 1034
  issue: 2
  year: 2024
  ident: 451_CR14
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2024.3352577
– volume: 27
  start-page: 10671
  issue: 8
  year: 2024
  ident: 451_CR48
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-024-04455-x
– volume: 57
  start-page: 1
  issue: 5
  year: 2021
  ident: 451_CR1
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2021.3062998
– volume: 72
  start-page: 1
  year: 2023
  ident: 451_CR15
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 264
  start-page: 110297
  year: 2023
  ident: 451_CR45
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2023.110297
– volume: 16
  start-page: 286
  issue: 3
  year: 2024
  ident: 451_CR41
  publication-title: Symmetry (Basel)
  doi: 10.3390/sym16030286
– volume: 233
  start-page: 107532
  year: 2021
  ident: 451_CR59
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2021.107532
– ident: 451_CR35
  doi: 10.1007/s10462-024-11023-7
– ident: 451_CR53
  doi: 10.3390/s22103810
– volume: 62
  start-page: 545
  issue: 03
  year: 2014
  ident: 451_CR13
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2274639
– volume: 237
  start-page: 121113
  year: 2024
  ident: 451_CR55
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.121113
– volume: 166
  start-page: 113917
  year: 2021
  ident: 451_CR44
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113917
– volume: 24
  start-page: 4083
  issue: 13
  year: 2024
  ident: 451_CR12
  publication-title: Sens. (Basel Switzerland)
  doi: 10.3390/s24134083
– volume: 15
  start-page: 1175
  issue: 3
  year: 2018
  ident: 451_CR18
  publication-title: IEEE Trans. Netw. Serv. Manage.
  doi: 10.1109/TNSM.2018.2861717
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 451_CR58
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– volume: 157
  start-page: 107250
  year: 2021
  ident: 451_CR28
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107250
– volume: 41
  start-page: 2518
  issue: 8
  year: 2024
  ident: 451_CR21
  publication-title: J. Field Robot.
  doi: 10.1002/rob.22361
– volume: 10
  start-page: 25025
  year: 2022
  ident: 451_CR7
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2022.3156080
– volume: 71
  start-page: 1
  year: 2022
  ident: 451_CR26
  publication-title: IEEE Trans. Instrum. Meas.
– ident: 451_CR25
  doi: 10.34133/cbsystems.0067
– volume: 69
  start-page: 46
  issue: 69
  year: 2014
  ident: 451_CR40
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 26
  start-page: 101135
  year: 2024
  ident: 451_CR52
  publication-title: Internet Things
  doi: 10.1016/j.iot.2024.101135
– volume: 57
  start-page: 1
  issue: 6
  year: 2024
  ident: 451_CR27
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-024-10716-3
– volume: 436
  start-page: 117718
  year: 2025
  ident: 451_CR33
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2024.117718
– volume: 72
  start-page: 1
  year: 2023
  ident: 451_CR3
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 8
  start-page: 126814
  year: 2020
  ident: 451_CR49
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2020.3008483
– volume: 13
  start-page: 3877
  issue: 4
  year: 2019
  ident: 451_CR17
  publication-title: IEEE Syst. J.
  doi: 10.1109/JSYST.2018.2879883
– volume: 265
  start-page: 125863
  year: 2025
  ident: 451_CR56
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2024.125863
– volume: 5
  start-page: 458
  issue: 4
  year: 2018
  ident: 451_CR43
  publication-title: J. Comput. Des. Eng.
– volume: 23
  start-page: 5755
  issue: 5
  year: 2024
  ident: 451_CR22
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2023.3312550
– volume: 12
  start-page: 4900
  issue: 24
  year: 2023
  ident: 451_CR8
  publication-title: Electron. (Basel)
– volume: 185
  start-page: 102971
  year: 2024
  ident: 451_CR24
  publication-title: Transp. Res. Part. B: Methodological
  doi: 10.1016/j.trb.2024.102971
– ident: 451_CR9
  doi: 10.3390/rs16030507
SSID ssj0000529419
Score 2.4600587
Snippet Magnetic target state estimation is a widely applied technology, but it also faces many challenges in practical applications. One of the most critical...
Abstract Magnetic target state estimation is a widely applied technology, but it also faces many challenges in practical applications. One of the most critical...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 15452
SubjectTerms 639/166
639/166/987
639/705
Accuracy
Algorithms
Convergence
Dynamic weights
Evolution
Exploratory behavior
Grey Wolf optimizer
Humanities and Social Sciences
Magnetic target state estimation
Multi-population fusion evolution
multidisciplinary
Nonlinear convergence factor
Science
Science (multidisciplinary)
Tent chaos mapping
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hCiQuiJZXoCAjcQOrju0k9rEgWi5UHEDszfIrsBJN0GaLVH49Yzu7dHmIC9c4iqzvG3vG8cw3AM9slDZVcNKA7pxK5SJVwnY0RO902zesDzI3m-jOztRiod9dafWVcsKKPHAB7kjgCcSioSnldJJ6Vyw2PEY0tToEF3NoxDp95TBVVL25lrWeq2SYUEcTeqpUTcYbmjVVKN_xRFmw_09R5u_Jkr_cmGZHdHIbbs0RJDkuM9-Ha3E4gBulp-TlHVi8tZ-GVJlISpL3RDZ5Wfg1UhpGk-S7AhkHkvMJ6VQkai_JMv9iwKFTZJh8HL_0ZMQ95Xz5Pa7uwoeT1-9fvaFz-wTqpZZrqn1rWaillY1XCnH0qulcy4PQXnLHveh6pmSPAYqzrnMiJPEwhfFSH1yvvbgHe8M4xAdAPFKAgU3SgsPzSkQX1kTklrma9xoDsgqeb6A0X4tKhsm320KZArxB4E0G3vAKXia0t28mhev8AHk3M-_mX7xXcLjhyszLbjKCM4GblGpZBU-3w7hg0i2IHeJ4ge-kqkLZYCBZwf1C7XYmEre4tul0BWqH9J2p7o4My89ZlLtOCsh42K7gxcY-fs7r71g8_B9YPIKbPBt2KrY_hL316iI-huv-23o5rZ7klfEDlIcPvQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Magnetic targets positioning method based on multi-strategy improved Grey Wolf optimizer
URI https://link.springer.com/article/10.1038/s41598-025-00451-2
https://www.ncbi.nlm.nih.gov/pubmed/40316579
https://www.proquest.com/docview/3203318860
https://www.proquest.com/docview/3199845324
https://pubmed.ncbi.nlm.nih.gov/PMC12048549
https://doaj.org/article/3840a40088b9478880e52ee4251ddbea
Volume 15
WOSCitedRecordID wos001480666900035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RLkhceLcEyspI3MBq4jiJfUIUtcBhVxECsZwiv1JWoknZbJHKr2fsJFstrwsXH-JImWTGM5N5fAPwTDmufAcntWjOKRfaUZGqglpntMzrLK4tD8MmivlcLBayHAJu3VBWOerEoKhta3yM_DBlcYryJ_L45fk36qdG-ezqMEJjBybo2SS-pGvGyk2MxWexeCKHXpk4FYcd2ivfU8YyGpBVKNuyRwG2_0--5u8lk7_kTYM5Orn9vy9yB24Njih51UvOXbjmmntwox9NeXkfFjN12vgGR9LXindkLO9Cckg_d5p4E2hJ25BQlki7Hun2kixDpAK33qCgkE_t15q0qJrOlj_c6gF8PDn-8PotHaYwUMMlX1NpchXbhCueGSFSwY3ICp0zm0rDmWYmLepY8Br9HK10oVPrMcgEul211bU06R7sNm3jHgIxsfJYNx5SDn97HFrCzKGIxDphtUS_LoLnIy-q8x5sowpJ8lRUPecq5FwVOFexCI48uzZ3eqDscKFdnVbDuauQXnwoOjpCSz8pQMQuY86hpkqs1U5FcDByqRpOb1ddsSiCp5ttPHc-maIa117gPb45kWfoj0aw38vGhhKOmjLPChmB2JKaLVK3d5rll4DtnXggZfxnj-DFKGBXdP39Wzz692s8hpssyLzvxj-A3fXqwj2B6-b7etmtprBTLIqwiilMjo7n5ftpiE1Mw3Hya4HrpHw3Kz__BM1_JVk
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoILb0qggJHgBFYTx9k4B4R4lVZtVz0UsTcTP1JWKknZbEHLj-I3MuNstlpetx64xnnYzjcP2zPfADwuvSwpg5M7NOdcKuO5SsucO29NMaiyuHIyFJvIh0M1GhX7K_Cjz4WhsMpeJwZF7RpLe-QbqYhTxJ8axC-Ov3CqGkWnq30JjQ4WO372DZds7fPtN_h_nwix-fbg9RafVxXgVhZyygs7KGOXyFJmVqlUSauy3AyESwsrhRE2zatYyQrttilNblJHnFoK3YjKmaqwKb73HJyXtBKiUEGxv9jToVMzmRTz3Jw4VRst2kfKYRMZD0wuXCzZv1Am4E--7e8hmr-c0wbzt3n1f5u4a3Bl7mizl51kXIcVX9-Ai13pzdlNGO2VhzUlcLIuFr5lffgaDp91dbUZmXjHmpqFsEvedky-MzYOOzHY9A4FgX1ojirWoOr9PP7uJ7fg_ZkM6zas1k3t7wCzcUlcPkSZh8s6j5Y-8ygCsUlEVaDfGsHT_t_r445MRIcggFTpDikakaIDUrSI4BXBY3EnEYGHC83kUM_1isb-4kfRkVOmoEoIKvaZ8B41ceKc8WUE6z0q9Fw7tfoUEhE8WjSjXqHDorL2zQneQ8mXMkN_O4K1DouLnki0BIMsLyJQSyhd6upySz3-FLjLEyKKziQ--qwH9Gm__j4Xd_89jIdwaetgb1fvbg937sFlEeSNmAfWYXU6OfH34YL9Oh23kwdBYBl8PGug_wQmTXq9
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qZREXdkqggJHgRK3xOE7iHBACykBVGM0BxNxMvKQdCZIymYKGn8av49lJphq2Ww9c4yy2873F9nvfA3hYOFH4DE5q0ZxTIbWjMi4yap3ReVomrLQiFJvIxmM5neaTDfjR58L4sMpeJwZFbWvj98gHMWcx4k-mbFB2YRGT3dHToy_UV5DyJ619OY0WIvtu-Q2Xb82TvV381484H7189-I17SoMUCNysaC5SQtmh6IQiZEylsLIJNMpt3FuBNfcxFnJpCjRhutCZzq2nl9LoktRWl3mJsb3noGzmUiZDGGDk9X-jj9BE8O8y9NhsRw0aCt9PhtPaGB1oXzNFoaSAX_yc38P1_zlzDaYwtHl_3kSr8ClzgEnz1qJuQobrroG59uSnMvrMH1bHFQ-sZO0MfIN6cPacCpIW2-beNNvSV2REI5Jm5bhd0lmYYcGm16hgJAP9aeS1KiSP8--u_kNeH8qw7oJm1VduVtADCs8x4-n0sPlnkMPIHEoGkwPeZmjPxvB4x4H6qglGVEhOCCWqkWNQtSogBrFI3juobK60xOEhwv1_EB1-kZhf_Gj6OBJnfsKCZK5hDuHGnporXZFBNs9QlSntRp1Ao8IHqyaUd_4Q6SicvUx3uOTMkWCfngEWy0uVz0RaCHSJMsjkGuIXevqeks1Owyc5kNPIJ0IfHSnB_dJv_4-F7f_PYz7cAHxrd7sjffvwEUeRM8TEmzD5mJ-7O7COfN1MWvm94LsEvh42jj_Ca5Hg44
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic+targets+positioning+method+based+on+multi-strategy+improved+Grey+Wolf+optimizer&rft.jtitle=Scientific+reports&rft.au=Lu%2C+Binjie&rft.au=Li%2C+Zongji&rft.au=Zhang%2C+Xiaobing&rft.date=2025-05-02&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-00451-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_025_00451_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon