The poverty implications of climate-induced crop yield changes by 2030

▶ Accumulating evidence suggests that agricultural production could be greatly affected by climate change, but there remains little quantitative understanding of how these agricultural impacts would affect economic livelihoods in poor countries. Here we consider three scenarios of agricultural impac...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Global environmental change Ročník 20; číslo 4; s. 577 - 585
Hlavní autoři: Hertel, Thomas W., Burke, Marshall B., Lobell, David B.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.10.2010
Témata:
ISSN:0959-3780, 1872-9495
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract ▶ Accumulating evidence suggests that agricultural production could be greatly affected by climate change, but there remains little quantitative understanding of how these agricultural impacts would affect economic livelihoods in poor countries. Here we consider three scenarios of agricultural impacts of climate change by 2030 (impacts resulting in low, medium, or high productivity) and evaluate the resulting changes in global commodity prices, national economic welfare, and the incidence of poverty in a set of 15 developing countries. Although the small price changes under the medium scenario are consistent with previous findings, we find the potential for much larger food price changes than reported in recent studies which have largely focused on the most likely outcomes. In our low productivity scenario, prices for major staples rise 10–60% by 2030. ▶ The poverty impacts of these price changes depend as much on where impoverished households earn their income as on the agricultural impacts themselves, with poverty rates in some non-agricultural household groups rising by 20–50% in parts of Africa and Asia under these price changes, and falling by significant amounts for agriculture-specialized households elsewhere in Asia and Latin America. ▶ The potential for such large distributional effects within and across countries emphasizes the importance of looking beyond central case climate shocks and beyond a simple focus on yields – or highly aggregated poverty impacts. Accumulating evidence suggests that agricultural production could be greatly affected by climate change, but there remains little quantitative understanding of how these agricultural impacts would affect economic livelihoods in poor countries. Here we consider three scenarios of agricultural impacts of climate change by 2030 (impacts resulting in low, medium, or high productivity) and evaluate the resulting changes in global commodity prices, national economic welfare, and the incidence of poverty in a set of 15 developing countries. Although the small price changes under the medium scenario are consistent with previous findings, we find the potential for much larger food price changes than reported in recent studies which have largely focused on the most likely outcomes. In our low-productivity scenario, prices for major staples rise 10–60% by 2030. The poverty impacts of these price changes depend as much on where impoverished households earn their income as on the agricultural impacts themselves, with poverty rates in some non-agricultural household groups rising by 20–50% in parts of Africa and Asia under these price changes, and falling by significant amounts for agriculture-specialized households elsewhere in Asia and Latin America. The potential for such large distributional effects within and across countries emphasizes the importance of looking beyond central case climate shocks and beyond a simple focus on yields – or highly aggregated poverty impacts.
AbstractList a- Accumulating evidence suggests that agricultural production could be greatly affected by climate change, but there remains little quantitative understanding of how these agricultural impacts would affect economic livelihoods in poor countries. Here we consider three scenarios of agricultural impacts of climate change by 2030 (impacts resulting in low, medium, or high productivity) and evaluate the resulting changes in global commodity prices, national economic welfare, and the incidence of poverty in a set of 15 developing countries. Although the small price changes under the medium scenario are consistent with previous findings, we find the potential for much larger food price changes than reported in recent studies which have largely focused on the most likely outcomes. In our low productivity scenario, prices for major staples rise 10-60% by 2030. a- The poverty impacts of these price changes depend as much on where impoverished households earn their income as on the agricultural impacts themselves, with poverty rates in some non-agricultural household groups rising by 20-50% in parts of Africa and Asia under these price changes, and falling by significant amounts for agriculture-specialized households elsewhere in Asia and Latin America. a- The potential for such large distributional effects within and across countries emphasizes the importance of looking beyond central case climate shocks and beyond a simple focus on yields - or highly aggregated poverty impacts. Accumulating evidence suggests that agricultural production could be greatly affected by climate change, but there remains little quantitative understanding of how these agricultural impacts would affect economic livelihoods in poor countries. Here we consider three scenarios of agricultural impacts of climate change by 2030 (impacts resulting in low, medium, or high productivity) and evaluate the resulting changes in global commodity prices, national economic welfare, and the incidence of poverty in a set of 15 developing countries. Although the small price changes under the medium scenario are consistent with previous findings, we find the potential for much larger food price changes than reported in recent studies which have largely focused on the most likely outcomes. In our low-productivity scenario, prices for major staples rise 10-60% by 2030. The poverty impacts of these price changes depend as much on where impoverished households earn their income as on the agricultural impacts themselves, with poverty rates in some non-agricultural household groups rising by 20-50% in parts of Africa and Asia under these price changes, and falling by significant amounts for agriculture-specialized households elsewhere in Asia and Latin America. The potential for such large distributional effects within and across countries emphasizes the importance of looking beyond central case climate shocks and beyond a simple focus on yields - or highly aggregated poverty impacts.
Accumulating evidence suggests that agricultural production could be greatly affected by climate change, but there remains little quantitative understanding of how these agricultural impacts would affect economic livelihoods in poor countries. Here we consider three scenarios of agricultural impacts of climate change by 2030 (impacts resulting in low, medium, or high productivity) and evaluate the resulting changes in global commodity prices, national economic welfare, and the incidence of poverty in a set of 15 developing countries. Although the small price changes under the medium scenario are consistent with previous findings, we find the potential for much larger food price changes than reported in recent studies which have largely focused on the most likely outcomes. In our low-productivity scenario, prices for major staples rise 10-60% by 2030. The poverty impacts of these price changes depend as much on where impoverished households earn their income as on the agricultural impacts themselves, with poverty rates in some non-agricultural household groups rising by 20-50% in parts of Africa and Asia under these price changes, and falling by significant amounts for agriculture-specialized households elsewhere in Asia and Latin America. The potential for such large distributional effects within and across countries emphasizes the importance of looking beyond central case climate shocks and beyond a simple focus on yields - or highly aggregated poverty impacts. All rights reserved, Elsevier
▶ Accumulating evidence suggests that agricultural production could be greatly affected by climate change, but there remains little quantitative understanding of how these agricultural impacts would affect economic livelihoods in poor countries. Here we consider three scenarios of agricultural impacts of climate change by 2030 (impacts resulting in low, medium, or high productivity) and evaluate the resulting changes in global commodity prices, national economic welfare, and the incidence of poverty in a set of 15 developing countries. Although the small price changes under the medium scenario are consistent with previous findings, we find the potential for much larger food price changes than reported in recent studies which have largely focused on the most likely outcomes. In our low productivity scenario, prices for major staples rise 10–60% by 2030. ▶ The poverty impacts of these price changes depend as much on where impoverished households earn their income as on the agricultural impacts themselves, with poverty rates in some non-agricultural household groups rising by 20–50% in parts of Africa and Asia under these price changes, and falling by significant amounts for agriculture-specialized households elsewhere in Asia and Latin America. ▶ The potential for such large distributional effects within and across countries emphasizes the importance of looking beyond central case climate shocks and beyond a simple focus on yields – or highly aggregated poverty impacts. Accumulating evidence suggests that agricultural production could be greatly affected by climate change, but there remains little quantitative understanding of how these agricultural impacts would affect economic livelihoods in poor countries. Here we consider three scenarios of agricultural impacts of climate change by 2030 (impacts resulting in low, medium, or high productivity) and evaluate the resulting changes in global commodity prices, national economic welfare, and the incidence of poverty in a set of 15 developing countries. Although the small price changes under the medium scenario are consistent with previous findings, we find the potential for much larger food price changes than reported in recent studies which have largely focused on the most likely outcomes. In our low-productivity scenario, prices for major staples rise 10–60% by 2030. The poverty impacts of these price changes depend as much on where impoverished households earn their income as on the agricultural impacts themselves, with poverty rates in some non-agricultural household groups rising by 20–50% in parts of Africa and Asia under these price changes, and falling by significant amounts for agriculture-specialized households elsewhere in Asia and Latin America. The potential for such large distributional effects within and across countries emphasizes the importance of looking beyond central case climate shocks and beyond a simple focus on yields – or highly aggregated poverty impacts.
Author Lobell, David B.
Burke, Marshall B.
Hertel, Thomas W.
Author_xml – sequence: 1
  givenname: Thomas W.
  surname: Hertel
  fullname: Hertel, Thomas W.
  organization: Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, IN, USA
– sequence: 2
  givenname: Marshall B.
  surname: Burke
  fullname: Burke, Marshall B.
  organization: Program on Food Security and the Environment, Stanford University, Stanford, CA, USA
– sequence: 3
  givenname: David B.
  surname: Lobell
  fullname: Lobell, David B.
  email: dlobell@stanford.edu
  organization: Program on Food Security and the Environment, Stanford University, Stanford, CA, USA
BookMark eNqNkD1PwzAQhi1UJMrHbyAbU8o5Tux4YECIAhISC8yW45ypqzQOdlop_x5DEQMLveVOp_c56Z5TMut9j4RcUlhQoPx6vXjvPPY7s9KLAtIWxAKAHpE5rUWRy1JWMzIHWcmciRpOyGmMa0glGZuT5esKs8HvMIxT5jZD54wene9j5m1mOrfRI-aub7cG28wEP2STwy6NK92_Y8yaKSuAwTk5trqLePHTz8jb8v717jF_fnl4urt9zk0pyzGXrCkKQwWCsAJozRjliLqotLDcUiMbEK0oeF1arDhwiVXDbWk1qwXVdc3OyNX-7hD8xxbjqDYuGuw63aPfRlUzCcB5cUCSVhWTTEBK3uyT6b0YA1pl3PgtYQzadYqC-hKt1upXtPoSrUCoJDrx4g8_hOQtTAeQt3sSk7Kdw6Cicdgn1S6gGVXr3b83PgHlNp5I
CitedBy_id crossref_primary_10_1016_j_socscimed_2022_114934
crossref_primary_10_3390_land10111243
crossref_primary_10_1007_s10113_015_0910_2
crossref_primary_10_1016_j_ijdrr_2012_11_004
crossref_primary_10_1007_s11069_019_03646_9
crossref_primary_10_1016_j_advwatres_2017_03_013
crossref_primary_10_1017_S1355770X12000241
crossref_primary_10_1080_20964129_2018_1459868
crossref_primary_10_1088_1748_9326_8_1_014054
crossref_primary_10_1007_s42106_020_00102_8
crossref_primary_10_3390_agronomy11112112
crossref_primary_10_3389_fpls_2019_00939
crossref_primary_10_17159_2413_3051_2020_v31i4a8924
crossref_primary_10_1108_CAER_08_2014_0080
crossref_primary_10_1371_journal_pone_0189594
crossref_primary_10_1111_gwat_12937
crossref_primary_10_1016_j_worlddev_2014_01_020
crossref_primary_10_1088_1748_9326_11_3_035006
crossref_primary_10_1007_s10640_022_00716_8
crossref_primary_10_1080_17565529_2023_2172315
crossref_primary_10_1111_agec_12660
crossref_primary_10_1016_j_scitotenv_2016_12_158
crossref_primary_10_1016_j_jacc_2015_07_050
crossref_primary_10_1007_s41885_021_00084_5
crossref_primary_10_1016_j_foodpol_2020_101954
crossref_primary_10_1016_j_eneco_2015_08_017
crossref_primary_10_1016_j_envsci_2014_11_009
crossref_primary_10_1038_s41598_021_96826_2
crossref_primary_10_1016_j_econmod_2017_02_005
crossref_primary_10_1175_JCLI_D_12_00703_1
crossref_primary_10_1016_j_heliyon_2021_e07436
crossref_primary_10_1016_j_oneear_2024_06_012
crossref_primary_10_1007_s00267_019_01152_z
crossref_primary_10_1016_j_envdev_2018_10_003
crossref_primary_10_2166_wcc_2023_536
crossref_primary_10_1007_s12571_013_0319_z
crossref_primary_10_1126_science_1204531
crossref_primary_10_1016_j_foodpol_2025_102896
crossref_primary_10_1016_j_gloenvcha_2012_01_003
crossref_primary_10_1093_ajae_aau084
crossref_primary_10_1002_ente_202000668
crossref_primary_10_1111_1467_8489_12541
crossref_primary_10_1146_annurev_resource_100517_022938
crossref_primary_10_1002_tqem_21893
crossref_primary_10_3390_agronomy3010200
crossref_primary_10_1016_j_gfs_2018_04_001
crossref_primary_10_1007_s10584_016_1600_x
crossref_primary_10_1016_j_eja_2015_09_002
crossref_primary_10_1177_09722629241246922
crossref_primary_10_1029_2020EF001815
crossref_primary_10_3390_su10124654
crossref_primary_10_1007_s12571_015_0440_2
crossref_primary_10_1016_j_worlddev_2021_105511
crossref_primary_10_1073_pnas_1817480116
crossref_primary_10_1108_IJCCSM_10_2021_0123
crossref_primary_10_1007_s10584_021_03273_z
crossref_primary_10_1146_annurev_environ_020411_130608
crossref_primary_10_1108_DPM_05_2018_0155
crossref_primary_10_1080_1943815X_2022_2143821
crossref_primary_10_1146_annurev_resource_100516_033533
crossref_primary_10_1016_j_jpolmod_2024_03_007
crossref_primary_10_1016_j_eap_2023_09_028
crossref_primary_10_1088_1748_9326_9_12_124018
crossref_primary_10_1016_j_eap_2014_09_005
crossref_primary_10_1088_1748_9326_8_1_014014
crossref_primary_10_1016_j_jclepro_2022_132298
crossref_primary_10_1093_erae_jby019
crossref_primary_10_1111_gcb_12413
crossref_primary_10_3390_rs5115926
crossref_primary_10_1080_03066150_2012_752357
crossref_primary_10_1088_1748_9326_aac7cb
crossref_primary_10_1108_IJCCSM_10_2021_0113
crossref_primary_10_3923_ijp_2011_765_772
crossref_primary_10_1016_j_renene_2024_121147
crossref_primary_10_1007_s11027_022_10002_z
crossref_primary_10_1038_srep33160
crossref_primary_10_1016_j_scitotenv_2025_179148
crossref_primary_10_1057_s41599_024_02941_6
crossref_primary_10_1016_j_gfs_2016_08_003
crossref_primary_10_1007_s11111_016_0266_7
crossref_primary_10_1108_IJWBR_02_2023_0008
crossref_primary_10_2139_ssrn_3795067
crossref_primary_10_1007_s11356_020_08607_5
crossref_primary_10_1080_14693062_2018_1501329
crossref_primary_10_1007_s10113_018_1380_0
crossref_primary_10_1016_j_agsy_2017_05_013
crossref_primary_10_1016_j_heliyon_2021_e06707
crossref_primary_10_1016_j_worlddev_2016_10_018
crossref_primary_10_1007_s10113_017_1105_9
crossref_primary_10_1016_j_jrurstud_2024_103343
crossref_primary_10_1186_s13007_023_01121_y
crossref_primary_10_1016_j_ecolind_2013_03_009
crossref_primary_10_1016_j_econmod_2018_05_019
crossref_primary_10_1073_pnas_2207081120
crossref_primary_10_1073_pnas_2203595119
crossref_primary_10_3389_fpsyg_2024_1401480
crossref_primary_10_1108_IJDRBE_06_2021_0060
crossref_primary_10_1007_s10661_023_11004_3
crossref_primary_10_1080_13547860_2021_1982194
crossref_primary_10_1007_s11600_023_01136_y
crossref_primary_10_1111_ecot_12351
crossref_primary_10_1093_aepp_ppx052
crossref_primary_10_1177_0974910114525697
crossref_primary_10_3390_plants14081215
crossref_primary_10_1016_j_eneco_2022_106020
crossref_primary_10_1016_j_eneco_2021_105310
crossref_primary_10_1016_j_foreco_2019_05_045
crossref_primary_10_1007_s41885_017_0005_2
crossref_primary_10_3389_fpls_2022_927535
crossref_primary_10_1093_oxrep_grv006
crossref_primary_10_12952_journal_elementa_000092
crossref_primary_10_1007_s10668_021_01466_1
crossref_primary_10_3390_agronomy11081490
crossref_primary_10_1016_j_landusepol_2016_09_007
crossref_primary_10_1007_s10113_014_0741_6
crossref_primary_10_1007_s10113_015_0768_3
crossref_primary_10_5194_hess_17_3969_2013
crossref_primary_10_1007_s12571_015_0435_z
crossref_primary_10_5018_economics_ejournal_ja_2015_10
crossref_primary_10_1111_agec_12367
crossref_primary_10_1007_s11356_022_19672_3
crossref_primary_10_1016_j_worlddev_2022_106030
crossref_primary_10_1016_j_rse_2018_08_001
crossref_primary_10_1088_1748_9326_9_7_074016
crossref_primary_10_1029_2022EF002777
crossref_primary_10_1007_s10640_014_9848_y
crossref_primary_10_1016_j_heliyon_2024_e35134
crossref_primary_10_1038_s43016_023_00913_8
crossref_primary_10_3390_agriculture11050408
crossref_primary_10_1007_s10584_020_02657_x
crossref_primary_10_1080_17565529_2014_934776
crossref_primary_10_1016_j_econmod_2017_01_014
crossref_primary_10_1061__ASCE_UP_1943_5444_0000384
crossref_primary_10_1371_journal_pone_0082714
crossref_primary_10_1016_j_tourman_2013_05_001
crossref_primary_10_1155_2019_9178136
crossref_primary_10_1038_nclimate2470
crossref_primary_10_1177_0958305X211045768
crossref_primary_10_1007_s11069_018_3181_7
crossref_primary_10_1038_ncomms13160
crossref_primary_10_1088_1748_9326_acf9b8
crossref_primary_10_1007_s10113_013_0467_x
crossref_primary_10_1007_s11524_011_9607_0
crossref_primary_10_1007_s12571_020_01113_z
crossref_primary_10_1016_j_eap_2022_12_003
crossref_primary_10_1016_j_jag_2016_03_002
crossref_primary_10_1016_j_jclepro_2020_123393
crossref_primary_10_3390_atmos12030305
crossref_primary_10_1007_s10113_015_0772_7
crossref_primary_10_1088_1748_9326_aa518a
crossref_primary_10_1007_s12145_016_0271_5
crossref_primary_10_1016_j_jrurstud_2025_103814
crossref_primary_10_1038_s41893_021_00801_8
crossref_primary_10_2478_plua_2024_0004
crossref_primary_10_1007_s10584_021_03062_8
crossref_primary_10_1007_s10708_020_10231_2
crossref_primary_10_1002_pa_2327
crossref_primary_10_1016_j_envdev_2014_07_003
crossref_primary_10_1016_j_cub_2021_08_074
crossref_primary_10_1038_s41598_020_73707_8
crossref_primary_10_3389_fcvm_2021_632131
crossref_primary_10_1017_S1355770X22000225
crossref_primary_10_1088_1748_9326_acbdb0
crossref_primary_10_1007_s00704_018_2642_y
crossref_primary_10_1016_j_gloenvcha_2010_11_004
crossref_primary_10_1007_s40641_017_0074_x
crossref_primary_10_1038_s41893_019_0286_2
crossref_primary_10_1016_j_apenergy_2017_03_006
crossref_primary_10_14358_PERS_80_5_423
crossref_primary_10_3389_fsufs_2021_691191
crossref_primary_10_3390_land7040158
crossref_primary_10_1016_j_eap_2019_04_006
crossref_primary_10_1111_j_1759_3441_2012_00185_x
crossref_primary_10_1016_j_gloenvcha_2011_10_001
crossref_primary_10_4102_jamba_v10i1_468
crossref_primary_10_1007_s10640_017_0197_5
crossref_primary_10_1016_j_jclepro_2023_139785
crossref_primary_10_1038_s41558_017_0004_x
crossref_primary_10_1002_met_1791
crossref_primary_10_1016_j_gloplacha_2013_01_006
crossref_primary_10_1016_j_gloenvcha_2014_07_010
crossref_primary_10_1007_s10113_015_0924_9
crossref_primary_10_1108_00070701311289885
crossref_primary_10_1289_EHP2916
crossref_primary_10_1002_wcc_287
crossref_primary_10_1016_j_envres_2022_113436
crossref_primary_10_1088_2515_7620_ad3128
crossref_primary_10_1002_wcc_601
crossref_primary_10_1016_j_gloenvcha_2024_102891
crossref_primary_10_1088_1748_9326_9_6_064014
crossref_primary_10_1111_j_1467_9361_2012_00671_x
crossref_primary_10_1007_s11356_024_32432_9
crossref_primary_10_1016_j_jclepro_2019_05_075
crossref_primary_10_1038_nclimate3253
crossref_primary_10_1007_s10640_025_00975_1
crossref_primary_10_1038_nclimate2834
crossref_primary_10_3390_su141811273
crossref_primary_10_3390_rs6032473
crossref_primary_10_1016_j_gloenvcha_2013_08_011
crossref_primary_10_1093_ajae_aaq189
crossref_primary_10_1186_1744_8603_8_10
crossref_primary_10_1007_s00267_022_01592_0
crossref_primary_10_1080_17565529_2017_1372267
crossref_primary_10_3389_fenvs_2021_681747
crossref_primary_10_1088_1748_9326_8_2_021002
crossref_primary_10_5194_hess_17_3219_2013
crossref_primary_10_1016_j_cosust_2011_12_004
crossref_primary_10_1007_s11356_022_23839_3
crossref_primary_10_1016_j_sste_2021_100422
crossref_primary_10_1016_j_apenergy_2024_122970
crossref_primary_10_1177_14649934211063357
crossref_primary_10_1029_2019WR024986
crossref_primary_10_3390_su15075628
crossref_primary_10_1029_2018EF000922
crossref_primary_10_1080_13547860_2018_1442149
crossref_primary_10_3390_cli6030065
crossref_primary_10_3354_cr01257
crossref_primary_10_1038_s43016_025_01135_w
crossref_primary_10_1016_j_futures_2016_04_002
crossref_primary_10_1007_s11769_023_1345_1
crossref_primary_10_1016_j_jdeveco_2024_103352
crossref_primary_10_1080_17565529_2019_1685931
crossref_primary_10_1108_JES_12_2024_0829
crossref_primary_10_1080_00036846_2020_1820445
crossref_primary_10_1016_j_envsoft_2015_10_024
crossref_primary_10_1038_nclimate2735
crossref_primary_10_1007_s43621_025_00830_9
crossref_primary_10_1108_IJCCSM_05_2020_0045
crossref_primary_10_1126_science_1239402
crossref_primary_10_2166_wcc_2022_412
crossref_primary_10_1016_j_agsy_2017_02_006
crossref_primary_10_1007_s43538_025_00479_y
crossref_primary_10_1088_1748_9326_abeb9f
crossref_primary_10_3390_agriculture10060212
crossref_primary_10_3390_atmos11090996
crossref_primary_10_1088_1755_1315_528_1_012055
crossref_primary_10_1007_s11625_022_01206_y
crossref_primary_10_3390_agronomy14030518
crossref_primary_10_1007_s10584_018_2301_4
crossref_primary_10_14201_alh201879939
crossref_primary_10_1016_j_landusepol_2017_06_003
crossref_primary_10_1007_s11111_024_00463_6
crossref_primary_10_1016_j_jenvman_2021_112790
crossref_primary_10_1007_s42976_021_00234_1
crossref_primary_10_1016_j_envsci_2011_06_004
crossref_primary_10_1007_s10113_012_0388_0
crossref_primary_10_1007_s11069_024_06704_z
crossref_primary_10_1016_j_rser_2016_11_004
crossref_primary_10_1139_cjfr_2013_0317
crossref_primary_10_1142_S2010007822400061
crossref_primary_10_1016_j_heliyon_2024_e28760
crossref_primary_10_1016_j_agsy_2017_07_007
crossref_primary_10_1088_1748_9326_8_3_035009
crossref_primary_10_1007_s10644_025_09906_y
crossref_primary_10_1088_2515_7620_abffa3
crossref_primary_10_1073_pnas_2215677121
crossref_primary_10_1007_s10113_015_0854_6
crossref_primary_10_1016_j_gloenvcha_2015_03_005
ContentType Journal Article
Copyright 2010 Elsevier Ltd
Copyright_xml – notice: 2010 Elsevier Ltd
DBID AAYXX
CITATION
7QH
7ST
7TG
7U6
7UA
C1K
F1W
H96
KL.
L.G
SOI
8BJ
FQK
JBE
DOI 10.1016/j.gloenvcha.2010.07.001
DatabaseName CrossRef
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Sustainability Science Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Sustainability Science Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
International Bibliography of the Social Sciences (IBSS)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
International Bibliography of the Social Sciences (IBSS)

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Agriculture
Environmental Sciences
EISSN 1872-9495
EndPage 585
ExternalDocumentID 10_1016_j_gloenvcha_2010_07_001
S0959378010000609
GeographicLocations Asia
Africa
Latin America
GeographicLocations_xml – name: Africa
– name: Latin America
– name: Asia
GroupedDBID --K
--M
-DZ
.~1
07C
0R~
1B1
1RT
1~.
1~5
29I
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAGJQ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABMMH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AFKWA
AFMIJ
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HMY
HVGLF
HZ~
IHE
J1W
K-O
KCYFY
KOM
LY9
M3Y
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SCC
SCU
SDF
SDG
SDP
SEN
SES
SEW
SPCBC
SSB
SSJ
SSO
SSS
SSZ
T5K
UHS
WH7
WUQ
XJT
ZMT
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ADNMO
ADVLN
AEGFY
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
7QH
7ST
7TG
7U6
7UA
C1K
F1W
H96
KL.
L.G
SOI
8BJ
FQK
JBE
ID FETCH-LOGICAL-c494t-93b22c17e07f70183316eea25a7f6f1c9b07d72684fe56069e5b6f4fa3871a883
ISICitedReferencesCount 310
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000284436800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0959-3780
IngestDate Sun Sep 28 09:34:56 EDT 2025
Tue Oct 07 09:46:46 EDT 2025
Sat Nov 29 03:35:47 EST 2025
Tue Nov 18 22:02:53 EST 2025
Fri Feb 23 02:28:15 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Hunger
Vulnerability
Agriculture
Food security
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c494t-93b22c17e07f70183316eea25a7f6f1c9b07d72684fe56069e5b6f4fa3871a883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink http://ageconsearch.umn.edu/record/283477
PQID 815539370
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_839006628
proquest_miscellaneous_815539370
crossref_citationtrail_10_1016_j_gloenvcha_2010_07_001
crossref_primary_10_1016_j_gloenvcha_2010_07_001
elsevier_sciencedirect_doi_10_1016_j_gloenvcha_2010_07_001
PublicationCentury 2000
PublicationDate 2010-10-01
PublicationDateYYYYMMDD 2010-10-01
PublicationDate_xml – month: 10
  year: 2010
  text: 2010-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Global environmental change
PublicationYear 2010
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hertel, Rosch (bib15) 2010; 1
Jones, Thornton (bib17) 2003; 13
Hertel, Keeney, Winters (bib14) 2007; 22
Schlenker, W., Roberts, M.J., 2008. Estimating the Impact of Climate Change on Crop Yields: The Importance of Nonlinear Temperature Effects. NBER Working Paper 13799.
Long, Ainsworth, Leakey, Nosberger, Ort (bib22) 2006; 312
Matthews, Kropff, Bachelet, Van Laar (bib23) 1995
Valenzuela, Hertel, Keeney, Reimer (bib32) 2007; 89
(bib16) 2006
Chien, Ravallion (bib4) 2001; 47
Tebaldi, Lobell (bib31) 2008; 35
(bib11) 1997
Lobell (bib20) 2008; 319
Lin (bib19) 2005; 360
Cline (bib6) 2007
Christensen (bib5) 2007
Schlenker, Roberts (bib28) 2009; 106
Brockmeier, M., 2001. A Graphical Exposition of the GTAP Model. GTAP Technical Paper, 8.
Funk (bib10) 2008; 105
Rosenzweig, Parry (bib26) 1994; 367
Ainsworth, Leakey, Ort, Long (bib1) 2008; 179
Parry, Rosenzweig, Iglesias, Fischer, Livermore (bib24) 1999; 9
Hertel, T.W., 2011. The Global Supply and Demand for Land in 2050: A Perfect Storm? American Journal of Agricultural Economics, (forthcoming).
Keeney, Hertel (bib18) 2005
Lobell, Field (bib21) 2007; 2
Easterling (bib8) 2007
Parry, Canziani, Palutikof, Van der Linden, Hanson (bib25) 2007
Alcamo, Dronin, Endejan, Golubev, Kirilenko (bib2) 2007; 17
Solomon (bib30) 2007
Schmidhuber, Tubiello (bib29) 2007; 104
Hertel, Ivanic, Preckel, Cranfield (bib13) 2004; 18
Xiong, Lin, Ju, Xu (bib33) 2007; 81
Fischer, Shah, Tubiello, van Velhuizen (bib9) 2005; 360
(bib7) 2006
References_xml – year: 2006
  ident: bib16
  publication-title: Poverty and the WTO: Impacts of the Doha Development Agenda
– volume: 319
  start-page: 607
  year: 2008
  end-page: 610
  ident: bib20
  article-title: Prioritizing climate change adaptation needs for food security in 2030
  publication-title: Science
– volume: 17
  start-page: 429
  year: 2007
  end-page: 444
  ident: bib2
  article-title: A new assessment of climate change impacts on food production shortfalls and water availability in Russia
  publication-title: Global Environmental Change
– volume: 105
  start-page: 11081
  year: 2008
  end-page: 11086
  ident: bib10
  article-title: Warming of the Indian Ocean threatens eastern and southern African food security but could be mitigated by agricultural development
  publication-title: Proceedings of the National Academy of Sciences
– year: 1997
  ident: bib11
  publication-title: Global Trade Analysis: Models and Applications
– volume: 104
  start-page: 19703
  year: 2007
  ident: bib29
  article-title: Global food security under climate change
  publication-title: Proceedings of the National Academy of Sciences
– volume: 89
  start-page: 383
  year: 2007
  end-page: 397
  ident: bib32
  article-title: Assessing global computable general equilibrium model validity using agricultural price volatility
  publication-title: American Journal of Agricultural Economics
– volume: 367
  start-page: 133
  year: 1994
  end-page: 138
  ident: bib26
  article-title: Potential impact of climate-change on world food-supply
  publication-title: Nature
– volume: 106
  start-page: 15594
  year: 2009
  end-page: 15598
  ident: bib28
  article-title: Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change
  publication-title: Proceedings of the National Academy of Sciences
– volume: 2
  year: 2007
  ident: bib21
  article-title: Global scale climate-crop yield relationships and the impacts of recent warming
  publication-title: Environmental Research Letters
– volume: 35
  start-page: L08705
  year: 2008
  ident: bib31
  article-title: Towards probabilistic projections of climate change impacts on global crop yields
  publication-title: Geophysical Research Letters
– year: 2007
  ident: bib5
  article-title: Regional climate projections
  publication-title: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
– reference: Hertel, T.W., 2011. The Global Supply and Demand for Land in 2050: A Perfect Storm? American Journal of Agricultural Economics, (forthcoming).
– volume: 9
  start-page: S51
  year: 1999
  end-page: S67
  ident: bib24
  article-title: Climate change and world food security: a new assessment
  publication-title: Global Environmental Change-Human and Policy Dimensions
– year: 2005
  ident: bib18
  article-title: GTAP-AGR: A Framework for Assessing the Implications of Multilateral Changes in Agricultural Policies
– volume: 312
  start-page: 1918
  year: 2006
  end-page: 1921
  ident: bib22
  article-title: Food for thought: lower-than-expected crop yield stimulation with rising CO
  publication-title: Science
– volume: 360
  start-page: 2149
  year: 2005
  end-page: 2154
  ident: bib19
  article-title: Climate change impacts on crop yield and quality with CO
  publication-title: Philosophical Transactions: Biological Sciences
– start-page: 273
  year: 2007
  end-page: 313
  ident: bib8
  article-title: Chapter 5: food, fibre, and forest products
  publication-title: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
– year: 2007
  ident: bib25
  article-title: Climate Change 2007: Impacts Adaptation and Vulnerability: Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
– volume: 18
  start-page: 205
  year: 2004
  end-page: 236
  ident: bib13
  article-title: The earnings effects of multilateral trade liberalization: implications for poverty
  publication-title: The World Bank Economic Review
– year: 1995
  ident: bib23
  article-title: Modeling the Impact of Climate Change on Rice Production in Asia
– year: 2006
  ident: bib7
  publication-title: Global Trade Assistance and Protection: The GTAP 6 Data base Centre for Global Trade Analysis
– volume: 179
  start-page: 5
  year: 2008
  end-page: 9
  ident: bib1
  article-title: FACE-ing the facts: inconsistencies and interdependence among field, chamber and modeling studies of elevated CO
  publication-title: New Phytologist
– volume: 360
  start-page: 2067
  year: 2005
  end-page: 2083
  ident: bib9
  article-title: Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990–2080
  publication-title: Philosophical Transactions: Biological Sciences
– year: 2007
  ident: bib30
  article-title: IPCC, climate change 2007: the physical science basis
  publication-title: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
– volume: 47
  start-page: 283
  year: 2001
  end-page: 300
  ident: bib4
  article-title: How did the world's poorest fare in the 1990s?
  publication-title: The Review of Income and Wealth
– reference: Schlenker, W., Roberts, M.J., 2008. Estimating the Impact of Climate Change on Crop Yields: The Importance of Nonlinear Temperature Effects. NBER Working Paper 13799.
– year: 2007
  ident: bib6
  article-title: Global Warming and Agriculture: Impact Estimates by Country
– reference: Brockmeier, M., 2001. A Graphical Exposition of the GTAP Model. GTAP Technical Paper, 8.
– volume: 1
  year: 2010
  ident: bib15
  article-title: Climate Change, Agriculture and Poverty
  publication-title: Applied Economic Perspectives and Policy
– volume: 22
  start-page: 289
  year: 2007
  end-page: 337
  ident: bib14
  article-title: Distributional effects of WTO agricultural reforms in rich and poor countries
  publication-title: Economic Policy
– volume: 13
  start-page: 51
  year: 2003
  end-page: 59
  ident: bib17
  article-title: The potential impacts of climate change on maize production in Africa and LatinAmerica in 2055
  publication-title: Global Environmental Change-Human and Policy Dimensions
– volume: 81
  start-page: 205
  year: 2007
  end-page: 221
  ident: bib33
  article-title: Climate change and critical thresholds in China's food security
  publication-title: Climatic Change
SSID ssj0000933
Score 2.4910693
Snippet ▶ Accumulating evidence suggests that agricultural production could be greatly affected by climate change, but there remains little quantitative understanding...
a- Accumulating evidence suggests that agricultural production could be greatly affected by climate change, but there remains little quantitative understanding...
Accumulating evidence suggests that agricultural production could be greatly affected by climate change, but there remains little quantitative understanding of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 577
SubjectTerms Africa
Agriculture
Asia
Climate
Climate change
Commodity prices
Environment
Food security
Hunger
Poverty
Vulnerability
Welfare
Title The poverty implications of climate-induced crop yield changes by 2030
URI https://dx.doi.org/10.1016/j.gloenvcha.2010.07.001
https://www.proquest.com/docview/815539370
https://www.proquest.com/docview/839006628
Volume 20
WOSCitedRecordID wos000284436800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1872-9495
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000933
  issn: 0959-3780
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZgFwk4ICisdnnJB8RlFeTEThxzK9AK0FI4dKXerCS1V62qtDQt2v33zNR2G5ZH4cAliiy7lT1fxuOZ8XyEvOBxrCprxpGoiiQS1rIIesKHV5RpLGEDTIQjm5CDQT4aqS-eFbXZ0AnIus4vL9Xiv4oa2kDYeHX2H8S9_VFogHcQOjxB7PD8a8EvMDETzOtJO18cE8hnE7BQTQQH8TUG_pG_6_QKk9j8DeAGzdGE-SDGtM0L0L4Th0VFwrUE70pdrly8f3i69dq8WfvUn09tbucQ6XjnG73LAdM3WHA57HyHXDoKpqBGE9aCi2jpxNTztLjtNXUMPT9pbudEmL66mM1hOjAHn3aHFSbj3WYVAvSDz7p_fnamh73R8OXia4Q0Yhhu95wqN8lhIlMFau6w-6E3-rjbnBXnrvyim8EPKX-__O_fGSzXtu6NPTK8T-75gwTtOgA8IDdM3SF3uxdLX0zFdMjtcOu86ZCjXlt61Kv05iHpA16oxwtt44XOLb2GF4p4oRu8UI8XWl5RxMsjct7vDd--jzy5RlQJJVaR4mWSVLE0TFrJQLHzODOmSNJC2szGlSqZHEusBWQNWMWZMmmZWWELDkfsIs_5ETmo57U5JlSKclylhtuUGyESUaaWK2tUkVshsyo9IVlYQV35yvNIgDLTIcVwqrdLr3HpNcOsiPiEsO3AhSu-sn_I6yAi7W1IZxtqANr-wTQIVYOWxdBZUZv5utE50muBJc_-0IWrDZ1C_nh_lyfkzu67ekoOVsu1eUZuVd9Wk2b53GP2OxLVqj4
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+poverty+implications+of+climate-induced+crop+yield+changes+by+2030&rft.jtitle=Global+environmental+change&rft.au=Hertel%2C+T+W&rft.au=Burke%2C+M+B&rft.au=Lobell%2C+D+B&rft.date=2010-10-01&rft.issn=0959-3780&rft.volume=20&rft.issue=4&rft.spage=577&rft.epage=585&rft_id=info:doi/10.1016%2Fj.gloenvcha.2010.07.001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-3780&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-3780&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-3780&client=summon