A clustering algorithm based on grids for core data and adjacency relationships for edge data

Grid-based clustering algorithms have become a crucial method in the field of data mining due to their efficiency. However, they face challenges such as parameter sensitivity, poor adaptability to density variations, and misclassification of edge data. To address these issues, existing research prim...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific reports Ročník 15; číslo 1; s. 18390 - 36
Hlavní autor: He, Honglei
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 26.05.2025
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Grid-based clustering algorithms have become a crucial method in the field of data mining due to their efficiency. However, they face challenges such as parameter sensitivity, poor adaptability to density variations, and misclassification of edge data. To address these issues, existing research primarily focuses on three directions: (1) optimizing the adaptive selection of grid parameters, which struggles to handle variations in cluster density; (2) improving grid division methods (e.g., multi-granularity or dynamic grids), which have limited effectiveness on complex-shaped data; and (3) integrating other clustering techniques, which enhances accuracy but increases algorithmic complexity. This paper proposes a novel improved grid-based clustering algorithm that determines core grids based on data distribution uniformity rather than absolute density and introduces a clustering strategy for non-core grids based on adjacency relationships. This approach effectively identifies clusters with different densities and reduces dependency on initial parameters (density threshold R and grid partition parameters M ). The proposed algorithm integrates grid clustering, partitioning-based clustering, and grid splitting techniques. It employs a regional processing strategy—applying grid clustering to cluster core regions while combining grid and Partitioning techniques for edge regions—to enhance accuracy while maintaining efficiency. Experimental results demonstrate that the proposed algorithm outperforms six other benchmark algorithms on datasets with complex shapes and uneven densities, achieving a balance between efficiency and accuracy.
AbstractList Grid-based clustering algorithms have become a crucial method in the field of data mining due to their efficiency. However, they face challenges such as parameter sensitivity, poor adaptability to density variations, and misclassification of edge data. To address these issues, existing research primarily focuses on three directions: (1) optimizing the adaptive selection of grid parameters, which struggles to handle variations in cluster density; (2) improving grid division methods (e.g., multi-granularity or dynamic grids), which have limited effectiveness on complex-shaped data; and (3) integrating other clustering techniques, which enhances accuracy but increases algorithmic complexity. This paper proposes a novel improved grid-based clustering algorithm that determines core grids based on data distribution uniformity rather than absolute density and introduces a clustering strategy for non-core grids based on adjacency relationships. This approach effectively identifies clusters with different densities and reduces dependency on initial parameters (density threshold R and grid partition parameters M). The proposed algorithm integrates grid clustering, partitioning-based clustering, and grid splitting techniques. It employs a regional processing strategy-applying grid clustering to cluster core regions while combining grid and Partitioning techniques for edge regions-to enhance accuracy while maintaining efficiency. Experimental results demonstrate that the proposed algorithm outperforms six other benchmark algorithms on datasets with complex shapes and uneven densities, achieving a balance between efficiency and accuracy.Grid-based clustering algorithms have become a crucial method in the field of data mining due to their efficiency. However, they face challenges such as parameter sensitivity, poor adaptability to density variations, and misclassification of edge data. To address these issues, existing research primarily focuses on three directions: (1) optimizing the adaptive selection of grid parameters, which struggles to handle variations in cluster density; (2) improving grid division methods (e.g., multi-granularity or dynamic grids), which have limited effectiveness on complex-shaped data; and (3) integrating other clustering techniques, which enhances accuracy but increases algorithmic complexity. This paper proposes a novel improved grid-based clustering algorithm that determines core grids based on data distribution uniformity rather than absolute density and introduces a clustering strategy for non-core grids based on adjacency relationships. This approach effectively identifies clusters with different densities and reduces dependency on initial parameters (density threshold R and grid partition parameters M). The proposed algorithm integrates grid clustering, partitioning-based clustering, and grid splitting techniques. It employs a regional processing strategy-applying grid clustering to cluster core regions while combining grid and Partitioning techniques for edge regions-to enhance accuracy while maintaining efficiency. Experimental results demonstrate that the proposed algorithm outperforms six other benchmark algorithms on datasets with complex shapes and uneven densities, achieving a balance between efficiency and accuracy.
Grid-based clustering algorithms have become a crucial method in the field of data mining due to their efficiency. However, they face challenges such as parameter sensitivity, poor adaptability to density variations, and misclassification of edge data. To address these issues, existing research primarily focuses on three directions: (1) optimizing the adaptive selection of grid parameters, which struggles to handle variations in cluster density; (2) improving grid division methods (e.g., multi-granularity or dynamic grids), which have limited effectiveness on complex-shaped data; and (3) integrating other clustering techniques, which enhances accuracy but increases algorithmic complexity. This paper proposes a novel improved grid-based clustering algorithm that determines core grids based on data distribution uniformity rather than absolute density and introduces a clustering strategy for non-core grids based on adjacency relationships. This approach effectively identifies clusters with different densities and reduces dependency on initial parameters (density threshold R and grid partition parameters M ). The proposed algorithm integrates grid clustering, partitioning-based clustering, and grid splitting techniques. It employs a regional processing strategy—applying grid clustering to cluster core regions while combining grid and Partitioning techniques for edge regions—to enhance accuracy while maintaining efficiency. Experimental results demonstrate that the proposed algorithm outperforms six other benchmark algorithms on datasets with complex shapes and uneven densities, achieving a balance between efficiency and accuracy.
Grid-based clustering algorithms have become a crucial method in the field of data mining due to their efficiency. However, they face challenges such as parameter sensitivity, poor adaptability to density variations, and misclassification of edge data. To address these issues, existing research primarily focuses on three directions: (1) optimizing the adaptive selection of grid parameters, which struggles to handle variations in cluster density; (2) improving grid division methods (e.g., multi-granularity or dynamic grids), which have limited effectiveness on complex-shaped data; and (3) integrating other clustering techniques, which enhances accuracy but increases algorithmic complexity. This paper proposes a novel improved grid-based clustering algorithm that determines core grids based on data distribution uniformity rather than absolute density and introduces a clustering strategy for non-core grids based on adjacency relationships. This approach effectively identifies clusters with different densities and reduces dependency on initial parameters (density threshold R and grid partition parameters M). The proposed algorithm integrates grid clustering, partitioning-based clustering, and grid splitting techniques. It employs a regional processing strategy—applying grid clustering to cluster core regions while combining grid and Partitioning techniques for edge regions—to enhance accuracy while maintaining efficiency. Experimental results demonstrate that the proposed algorithm outperforms six other benchmark algorithms on datasets with complex shapes and uneven densities, achieving a balance between efficiency and accuracy.
Abstract Grid-based clustering algorithms have become a crucial method in the field of data mining due to their efficiency. However, they face challenges such as parameter sensitivity, poor adaptability to density variations, and misclassification of edge data. To address these issues, existing research primarily focuses on three directions: (1) optimizing the adaptive selection of grid parameters, which struggles to handle variations in cluster density; (2) improving grid division methods (e.g., multi-granularity or dynamic grids), which have limited effectiveness on complex-shaped data; and (3) integrating other clustering techniques, which enhances accuracy but increases algorithmic complexity. This paper proposes a novel improved grid-based clustering algorithm that determines core grids based on data distribution uniformity rather than absolute density and introduces a clustering strategy for non-core grids based on adjacency relationships. This approach effectively identifies clusters with different densities and reduces dependency on initial parameters (density threshold R and grid partition parameters M). The proposed algorithm integrates grid clustering, partitioning-based clustering, and grid splitting techniques. It employs a regional processing strategy—applying grid clustering to cluster core regions while combining grid and Partitioning techniques for edge regions—to enhance accuracy while maintaining efficiency. Experimental results demonstrate that the proposed algorithm outperforms six other benchmark algorithms on datasets with complex shapes and uneven densities, achieving a balance between efficiency and accuracy.
ArticleNumber 18390
Author He, Honglei
Author_xml – sequence: 1
  givenname: Honglei
  surname: He
  fullname: He, Honglei
  email: hhl@lygtc.edu.cn
  organization: School of Information Engineering, Lianyungang Technical College
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40419561$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1vFSEUhompsbX2D7gwJG7cjPI5M6xM06ht0sSNLg3h48xcbubCFeY26b-X6dR-uBASDoHnvBzgfY2OYoqA0FtKPlLC-09FUKn6hjDZECI5a9gLdMKIkA3jjB09mR-js1K2pDbJlKDqFToWpEbZ0hP06xy76VBmyCGO2ExjymHe7LA1BTxOEY85-IKHlLFLGbA3s8Ememz81jiI7hZnmMwcUiybsF9J8ONKvkEvBzMVOLuPp-jn1y8_Li6b6-_fri7OrxsnlJib3tCh50oQ6IAIK-wgraJ-oF4MzPXWc2q8VV6pzlvuW2o7x2knLAFfR8pP0dWq65PZ6n0OO5NvdTJB3y2kPGqT5-Am0FKC9U6aQRImZGt7YSQQ1ZkeWuroovV51dof7A58veOczfRM9PlODBs9phtNGSVtS3hV-HCvkNPvA5RZ70JxME0mQjoUzRldetd3FX3_D7pNhxzrWy1URZTsFsF3T0t6qOXvN1aArYDLqZQMwwNCiV7sole76GoXfWcXzWoSX5PKfvl8yI9n_yfrD-05wcs
Cites_doi 10.1145/276304.276314
10.1117/12.2686583
10.1007/s10489-022-03661-7
10.1007/978-3-031-65126-7_16
10.1109/TII.2022.3203721
10.2478/jaiscr-2021-0019
10.1109/ICCUBEA58933.2023.10392256
10.1109/ICAICA58456.2023.10405508
10.1109/ACCESS.2024.3398415
10.1109/EEBDA56825.2023.10090636
10.1109/ICPR.1996.546732
10.3390/ijgi13080286
10.1109/WICT.2012.6409084
10.1007/978-3-031-32910-4_4
10.1007/s12652-022-04428-1
10.1016/j.future.2020.06.053
10.1016/j.ins.2023.120082
10.1016/j.ins.2024.120109
10.3390/electronics13173395
10.11728/cjss2023.05.2022-0054
10.1109/IDAACS-SWS50031.2020.9297060
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-00532-2
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest)
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database (ProQuest)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 36
ExternalDocumentID oai_doaj_org_article_55ebdc5af502456b84a5e097a8e61c11
PMC12106603
40419561
10_1038_s41598_025_00532_2
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PMFND
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
PJZUB
PPXIY
PQGLB
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c494t-8a1f83940e7e04b4bf5b91df1d4f2c8bd31adb9d997db3d61b7c3174b0ed74b13
IEDL.DBID 7X7
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001496078400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Oct 14 19:06:54 EDT 2025
Tue Nov 04 02:02:49 EST 2025
Fri Sep 05 15:59:40 EDT 2025
Tue Oct 07 07:49:03 EDT 2025
Sat May 31 02:14:15 EDT 2025
Sat Nov 29 07:53:12 EST 2025
Tue May 27 01:14:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords K-means
Hybrid clustering
Grid clustering
Adjacency relationships
Georeferenced clustering
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-8a1f83940e7e04b4bf5b91df1d4f2c8bd31adb9d997db3d61b7c3174b0ed74b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3211789573?pq-origsite=%requestingapplication%
PMID 40419561
PQID 3211789573
PQPubID 2041939
PageCount 36
ParticipantIDs doaj_primary_oai_doaj_org_article_55ebdc5af502456b84a5e097a8e61c11
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12106603
proquest_miscellaneous_3212121787
proquest_journals_3211789573
pubmed_primary_40419561
crossref_primary_10_1038_s41598_025_00532_2
springer_journals_10_1038_s41598_025_00532_2
PublicationCentury 2000
PublicationDate 2025-05-26
PublicationDateYYYYMMDD 2025-05-26
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-26
  day: 26
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References M Shoaib (532_CR16) 2024; 659
C Zheng (532_CR3) 2019; 36
532_CR17
532_CR18
532_CR19
W Wang (532_CR7) 2020; 43
532_CR20
532_CR21
532_CR22
532_CR23
J Ren (532_CR29) 2024; 13
532_CR26
X Fang (532_CR25) 2022; 19
A Starczewski (532_CR5) 2021; 11
P Lin (532_CR9) 2018; 37
532_CR6
F Ma (532_CR28) 2024; 660
532_CR4
Z Gui (532_CR24) 2020; 112
S Li (532_CR1) 2020; 41
Y Zhao (532_CR2) 2023; 43
532_CR10
L Chen (532_CR27) 2023; 53
532_CR11
532_CR12
532_CR13
532_CR15
S Lee (532_CR14) 2024; 13
KK Pandey (532_CR30) 2023; 14
L Cai (532_CR8) 2023; 44
References_xml – ident: 532_CR18
– ident: 532_CR19
  doi: 10.1145/276304.276314
– ident: 532_CR26
  doi: 10.1117/12.2686583
– volume: 41
  start-page: 61
  issue: 01
  year: 2020
  ident: 532_CR1
  publication-title: J. Chin. Comput. Syst.
– ident: 532_CR22
– volume: 37
  start-page: 49
  issue: 04
  year: 2018
  ident: 532_CR9
  publication-title: Comput. Technol. Autom.
– ident: 532_CR20
– volume: 36
  start-page: 3278
  issue: 11
  year: 2019
  ident: 532_CR3
  publication-title: Appl. Res. Comput.
– volume: 53
  start-page: 2506
  issue: 3
  year: 2023
  ident: 532_CR27
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-022-03661-7
– ident: 532_CR12
  doi: 10.1007/978-3-031-65126-7_16
– volume: 43
  start-page: 102
  issue: 01
  year: 2020
  ident: 532_CR7
  publication-title: Mod. Electron. Tech.
– volume: 19
  start-page: 5476
  issue: 4
  year: 2022
  ident: 532_CR25
  publication-title: IEEE Trans. Industr. Inf.
  doi: 10.1109/TII.2022.3203721
– volume: 11
  start-page: 319
  issue: 4
  year: 2021
  ident: 532_CR5
  publication-title: J. Artif. Intell. Soft Comput. Res.
  doi: 10.2478/jaiscr-2021-0019
– volume: 44
  start-page: 731
  issue: 04
  year: 2023
  ident: 532_CR8
  publication-title: J. Chin. Comput. Syst.
– ident: 532_CR10
  doi: 10.1109/ICCUBEA58933.2023.10392256
– ident: 532_CR15
  doi: 10.1109/ICAICA58456.2023.10405508
– ident: 532_CR4
  doi: 10.1109/ACCESS.2024.3398415
– ident: 532_CR6
  doi: 10.1109/EEBDA56825.2023.10090636
– ident: 532_CR17
  doi: 10.1109/ICPR.1996.546732
– volume: 13
  start-page: 286
  issue: 8
  year: 2024
  ident: 532_CR29
  publication-title: ISPRS Int. J. Geo-Inf.
  doi: 10.3390/ijgi13080286
– ident: 532_CR21
– ident: 532_CR23
  doi: 10.1109/WICT.2012.6409084
– ident: 532_CR13
  doi: 10.1007/978-3-031-32910-4_4
– volume: 14
  start-page: 9277
  issue: 7
  year: 2023
  ident: 532_CR30
  publication-title: J. Ambient. Intell. Humaniz. Comput.
  doi: 10.1007/s12652-022-04428-1
– volume: 112
  start-page: 1038
  year: 2020
  ident: 532_CR24
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.06.053
– volume: 659
  year: 2024
  ident: 532_CR16
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2023.120082
– volume: 660
  year: 2024
  ident: 532_CR28
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2024.120109
– volume: 13
  start-page: 3395
  issue: 17
  year: 2024
  ident: 532_CR14
  publication-title: Electronics
  doi: 10.3390/electronics13173395
– volume: 43
  start-page: 927
  issue: 5
  year: 2023
  ident: 532_CR2
  publication-title: Chin. J. Space Sci.
  doi: 10.11728/cjss2023.05.2022-0054
– ident: 532_CR11
  doi: 10.1109/IDAACS-SWS50031.2020.9297060
SSID ssj0000529419
Score 2.4502923
Snippet Grid-based clustering algorithms have become a crucial method in the field of data mining due to their efficiency. However, they face challenges such as...
Abstract Grid-based clustering algorithms have become a crucial method in the field of data mining due to their efficiency. However, they face challenges such...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 18390
SubjectTerms 639/705
704/525
Accuracy
Adaptability
Adjacency relationships
Algorithms
Clustering
Data mining
Efficiency
Georeferenced clustering
Grid clustering
Humanities and Social Sciences
Hybrid clustering
K-means
multidisciplinary
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQBRIXxJulBRmJG0R1_IjtY0FUHFDFAVAvyLI9TndRm632gcS_79jOLl0e4oIi5RBPktGMHc9kZr4h5CWgkQ82lLRy0UgteOMVT00y6Et4E1kqKf9fPuiTE3N6aj9ea_WVc8IqPHAV3KFSKUBUvlc5SNgFI71KzGpvUtfGWtXLtL3mTFVUb25la8cqGSbM4RJ3qlxNxlWTJx5v-M5OVAD7_2Rl_p4s-UvEtGxEx3fJndGCpEeV83vkRhruk1u1p-SPB-TrEY3n6wx_gHdTf342R_d_ekHzdgV0PtCzxQyWFG1VmhEsaU4RpX4A6uGbj7kQky42CXLT2WWlzD_dCuVD8vn43ae375uxh0ITpZWrxvi2N7n7edKJySBDr4JtoW9B9jyaAKL1ECxYqyEI6NqgI5oUMrAEeG7FI7I3zIf0hFDg1jBUhcEvopSAvlqnIEYhpeytsGJCXm3k6S4rVIYrIW5hXJW-Q-m7In3HJ-RNFvmWMsNclwuofDcq3_1L-RNysFGYG9fe0gn0abWxSiNHL7bDuGpyKMQPab4uNPnAr9WEPK763XIimcxFlPhws6P5HVZ3R4bZtCBzZzS2rmP44tebSfKTr7_L4un_kMU-uc3L7M5Ziwdkb7VYp2fkZvy-mi0Xz8vyuAKZPBI8
  priority: 102
  providerName: Directory of Open Access Journals
Title A clustering algorithm based on grids for core data and adjacency relationships for edge data
URI https://link.springer.com/article/10.1038/s41598-025-00532-2
https://www.ncbi.nlm.nih.gov/pubmed/40419561
https://www.proquest.com/docview/3211789573
https://www.proquest.com/docview/3212121787
https://pubmed.ncbi.nlm.nih.gov/PMC12106603
https://doaj.org/article/55ebdc5af502456b84a5e097a8e61c11
Volume 15
WOSCitedRecordID wos001496078400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1db9Mw0IIVJF74HiuMyki8QbQ4dmL7CW1oE0isihCg8oAif6UtGkmXtEj8e3xO0ql8vaBI9xCfYjt3ts_3idBz64V8K3VwK6cR4zSJVJq4yAl_l1DCxC64_H96x6dTMZvJvFe4tb1b5bAnho3a1gZ05EfU31S4kCmnr1aXEVSNAutqX0LjOhpB2Wzgcz7jWx0LWLEYkX2sTEzFUevPK4gpS9II2C-Jkp3zKKTt_5Os-bvL5C9203Acnd3534ncRbd7QRQfd5xzD11z1X10sytN-eMB-nKMzcUGsij47rG6mPtPrBffMJx6FtcVnjdL22Iv8mJIhInB0xSrymJlvyoD8Zy4GfzsFstVhwm6u4D5EH08O_3w-k3Ul2KIDJNsHQlFSgFF1B13MdNMl6mWxJbEsjIxQltKlNXSSsmtpjYjmhsvmTAdO-shoftor6ord4CwTaSIrUmF31gZs_7Kl6XWGMoYKyWVdIxeDAQpVl3GjSJYyqkoOvIVnnxFIF-RjNEJ0GyLCdmyw4u6mRf94ivS1GnfoypTMDRnWjCVulhyJVxGDCFjdDiQquiXcFtc0WmMnm2b_eIDi4qqXL0JOPD4TW-MHnUMsh0JixnEYvqPix3W2Rnqbku1XIQE35DULcti3_HLgcuuxvX3f_H439N4gm4lgfHBrfEQ7a2bjXuKbpjv62XbTMLKCVBM0OjkdJq_nwQFhYfnSQ6QezjK357nn38CBtUnRQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFLbKFAQX9mWggJHgBFET20nsA0JlqTrqdDSHgtoDMt4yM6gkwyyg_il-I35OMtWw3XpAkXKILW_5_N6z34bQU-uFfCt0MCunEcspiVRKXOS4P0sobmIXTP4_9PPBgB8dieEG-tH6woBZZUsTA6G2lYE78m3qTyo5F2lOX02_RpA1CrSrbQqNGhb77vS7P7LNX_be-v_7jJDdd4dv9qImq0BkmGCLiKuk4JAP3OUuZprpItUisUViWUEM15YmymphhcitpjZLdG48k2U6dta_E-rbvYA2mQd73EGbw97B8Hh1qwN6M5aIxjsnpnx77jkkeLGRNALAk4isccCQKOBP0u3vRpq_aGoDA9y99r8t3XV0tRG18U69N26gDVfeRJfq5Junt9DHHWxOlhAnwk8Xq5ORH_Ji_AUDX7e4KvFoNrFz7IV6DKE-MdjSYlVarOxnZcBjFc9aS8LxZFrXhNvJUPM2en8uc7uDOmVVunsIWyJ4bE3KPetgzPpDbZZaYyhjrBBU0C563gJATuuYIjLYAlAua7hIDxcZ4CJJF70GjKxqQjzw8KGajWRDXmSaOu17VEUKqvRMc6ZSF4tccZclJkm6aKuFhmyI1Fye4aKLnqyKPXkBnZEqXbUMdeDxZL2L7taAXI2ExQy8TX3jfA2qa0NdLykn4xDCHMLWZVnsO37RovpsXH9fi_v_nsZjdHnv8KAv-73B_gN0hYRNB0acW6izmC3dQ3TRfFtM5rNHzb7F6NN54_0ncdSApA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLSAuvB8LBYwEJ4g2sZ3EPiDU0lZUrVYrBKgXZBzb2V1Usss-QP1r_Do8TrLV8rr1gCLlkFiJnXye8Xi-mQF4av0i38oi0MpZxHNGI51SFznhbQktTOwC5f_DUd7vi-NjOdiAH20sDNIqW5kYBLWdGNwj7zFvqeRCpjnrlQ0tYrC7_2r6NcIKUuhpbctp1BA5dKffvfk2f3mw6__1M0r39969fhM1FQYiwyVfREInpcDa4C53MS94UaaFTGyZWF5SIwrLEm0LaaXMbcFslhS58QqXF7Gz_pww_9wLsJkzb_R0YHNnrz94u9rhQR8aT2QTqRMz0Zt7bYkRbTSNEPw0omvaMBQN-NNK93fC5i9e26AM96_9z5_xOlxtluBku54zN2DDVTfhUl2U8_QWfNwm5mSJ-SP80Ik-GfouL0ZfCOp7SyYVGc7Gdk78Yp9gClCCHFuiK0u0_awNRrKSWcswHI2ndUvctQwtb8P7cxnbHehUk8rdA2KpFLE1qfAqhXPrjd0stcYwznkpmWRdeN6CQU3rXCMqcASYUDV0lIeOCtBRtAs7iJdVS8wTHi5MZkPViB2Vpq7wb9Rlii72rBBcpy6WuRYuS0ySdGGrhYlqhNdcnWGkC09Wt73YQV-SrtxkGdrg4cV9F-7W4Fz1hMcco1D9w8UabNe6un6nGo9CanNMZ5dlsX_xixbhZ_36-7e4_-9hPIbLHuTq6KB_-ACu0DD_kNu5BZ3FbOkewkXzbTGezx41U5jAp_OG-0_EJok-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+clustering+algorithm+based+on+grids+for+core+data+and+adjacency+relationships+for+edge+data&rft.jtitle=Scientific+reports&rft.date=2025-05-26&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=18390&rft_id=info:doi/10.1038%2Fs41598-025-00532-2&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon