Pathway level metabolomics analysis identifies carbon metabolism as a key factor of incident hypertension in the Estonian Biobank
The purpose of this study was to find metabolic changes associated with incident hypertension in the volunteer-based Estonian Biobank. We used a subcohort of the Estonian Biobank where metabolite levels had been measured by mass-spectrometry (LC-MS, Metabolon platform). We divided annotated metaboli...
Uloženo v:
| Vydáno v: | Scientific reports Ročník 15; číslo 1; s. 8470 - 13 |
|---|---|
| Hlavní autoři: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
12.03.2025
Nature Publishing Group Nature Portfolio |
| Témata: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The purpose of this study was to find metabolic changes associated with incident hypertension in the volunteer-based Estonian Biobank. We used a subcohort of the Estonian Biobank where metabolite levels had been measured by mass-spectrometry (LC-MS, Metabolon platform). We divided annotated metabolites of 989 individuals into KEGG pathways, followed by principal component analysis of metabolites in each pathway, resulting in a dataset of 91 pathway components. Next, we defined incident hypertension cases and controls based on electronic health records, resulting in a dataset of 101 incident hypertension cases and 450 controls. We used Cox proportional hazards models and replicated the results in a separate cohort of the Estonian Biobank, assayed with LC-MS dataset of the Broad platform and including 582 individuals. Our results show that body mass index and a component of the carbon metabolism KEGG pathway are associated with incident hypertension in both discovery and replication cohorts. We demonstrate that a high-dimensional dataset can be meaningfully reduced into informative pathway components that can subsequently be analysed in an interpretable way, and replicated in a metabolomics dataset from a different platform. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2045-2322 2045-2322 |
| DOI: | 10.1038/s41598-025-92840-w |