Microgrid anti islanding protection scheme based on deep neural network algorithm and unscented Kalman filtering

Microgrid anti-islanding protection (MAIP) is an indispensable challenge in ensuring the safe and reliable operation of microgrids. This research article proposes the unscented Kalman filtering (UKF) and deep neural network algorithm (DNN) as an innovative approach to detect and prevent islanding ev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 15; H. 1; S. 28726 - 23
Hauptverfasser: Chauhdary, Sohaib Tahir, Khan, Taha Saeed, Arif, Saad, Ahmad, Ayaz, Shah, Munam Ali, Baili, Jamel
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 06.08.2025
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Microgrid anti-islanding protection (MAIP) is an indispensable challenge in ensuring the safe and reliable operation of microgrids. This research article proposes the unscented Kalman filtering (UKF) and deep neural network algorithm (DNN) as an innovative approach to detect and prevent islanding events in microgrids. Initially, the UKF works as a stage-one state observer to analyze the voltage signals at the distributed generation (DG) terminal or point of common coupling (PCC). Then, the UKF-estimated voltage signal is provided to DNN for calculating the DNN residuals (DNNR) index by simply taking the vector subtraction of the UKF-estimated voltage from the measured PCC voltage. Then, the DNNR index is continually monitored on the DG terminal or PCC, and if the DNNR is more than the prespecified threshold value, the presented MAIP scheme works successfully to detect the islanding event. The presented MAIP method is proven through massive simulations on standard IEEE UL174 test beds via MATLAB/Simulink software. Results reveal that the suggested MAIP method effectively detects the islanding events in unbalanced/ balanced load generation situations. In addition, the presented MAIP scheme can discriminate between islanding/non-islanding events. The method has a very low computational burden, a very decreased non-detection zone, prompt operation, and a high accuracy of 98.5%.
AbstractList Microgrid anti-islanding protection (MAIP) is an indispensable challenge in ensuring the safe and reliable operation of microgrids. This research article proposes the unscented Kalman filtering (UKF) and deep neural network algorithm (DNN) as an innovative approach to detect and prevent islanding events in microgrids. Initially, the UKF works as a stage-one state observer to analyze the voltage signals at the distributed generation (DG) terminal or point of common coupling (PCC). Then, the UKF-estimated voltage signal is provided to DNN for calculating the DNN residuals (DNNR) index by simply taking the vector subtraction of the UKF-estimated voltage from the measured PCC voltage. Then, the DNNR index is continually monitored on the DG terminal or PCC, and if the DNNR is more than the prespecified threshold value, the presented MAIP scheme works successfully to detect the islanding event. The presented MAIP method is proven through massive simulations on standard IEEE UL174 test beds via MATLAB/Simulink software. Results reveal that the suggested MAIP method effectively detects the islanding events in unbalanced/ balanced load generation situations. In addition, the presented MAIP scheme can discriminate between islanding/non-islanding events. The method has a very low computational burden, a very decreased non-detection zone, prompt operation, and a high accuracy of 98.5%.
Microgrid anti-islanding protection (MAIP) is an indispensable challenge in ensuring the safe and reliable operation of microgrids. This research article proposes the unscented Kalman filtering (UKF) and deep neural network algorithm (DNN) as an innovative approach to detect and prevent islanding events in microgrids. Initially, the UKF works as a stage-one state observer to analyze the voltage signals at the distributed generation (DG) terminal or point of common coupling (PCC). Then, the UKF-estimated voltage signal is provided to DNN for calculating the DNN residuals (DNNR) index by simply taking the vector subtraction of the UKF-estimated voltage from the measured PCC voltage. Then, the DNNR index is continually monitored on the DG terminal or PCC, and if the DNNR is more than the prespecified threshold value, the presented MAIP scheme works successfully to detect the islanding event. The presented MAIP method is proven through massive simulations on standard IEEE UL174 test beds via MATLAB/Simulink software. Results reveal that the suggested MAIP method effectively detects the islanding events in unbalanced/ balanced load generation situations. In addition, the presented MAIP scheme can discriminate between islanding/non-islanding events. The method has a very low computational burden, a very decreased non-detection zone, prompt operation, and a high accuracy of 98.5%.Microgrid anti-islanding protection (MAIP) is an indispensable challenge in ensuring the safe and reliable operation of microgrids. This research article proposes the unscented Kalman filtering (UKF) and deep neural network algorithm (DNN) as an innovative approach to detect and prevent islanding events in microgrids. Initially, the UKF works as a stage-one state observer to analyze the voltage signals at the distributed generation (DG) terminal or point of common coupling (PCC). Then, the UKF-estimated voltage signal is provided to DNN for calculating the DNN residuals (DNNR) index by simply taking the vector subtraction of the UKF-estimated voltage from the measured PCC voltage. Then, the DNNR index is continually monitored on the DG terminal or PCC, and if the DNNR is more than the prespecified threshold value, the presented MAIP scheme works successfully to detect the islanding event. The presented MAIP method is proven through massive simulations on standard IEEE UL174 test beds via MATLAB/Simulink software. Results reveal that the suggested MAIP method effectively detects the islanding events in unbalanced/ balanced load generation situations. In addition, the presented MAIP scheme can discriminate between islanding/non-islanding events. The method has a very low computational burden, a very decreased non-detection zone, prompt operation, and a high accuracy of 98.5%.
Abstract Microgrid anti-islanding protection (MAIP) is an indispensable challenge in ensuring the safe and reliable operation of microgrids. This research article proposes the unscented Kalman filtering (UKF) and deep neural network algorithm (DNN) as an innovative approach to detect and prevent islanding events in microgrids. Initially, the UKF works as a stage-one state observer to analyze the voltage signals at the distributed generation (DG) terminal or point of common coupling (PCC). Then, the UKF-estimated voltage signal is provided to DNN for calculating the DNN residuals (DNNR) index by simply taking the vector subtraction of the UKF-estimated voltage from the measured PCC voltage. Then, the DNNR index is continually monitored on the DG terminal or PCC, and if the DNNR is more than the prespecified threshold value, the presented MAIP scheme works successfully to detect the islanding event. The presented MAIP method is proven through massive simulations on standard IEEE UL174 test beds via MATLAB/Simulink software. Results reveal that the suggested MAIP method effectively detects the islanding events in unbalanced/ balanced load generation situations. In addition, the presented MAIP scheme can discriminate between islanding/non-islanding events. The method has a very low computational burden, a very decreased non-detection zone, prompt operation, and a high accuracy of 98.5%.
ArticleNumber 28726
Author Baili, Jamel
Chauhdary, Sohaib Tahir
Shah, Munam Ali
Ahmad, Ayaz
Khan, Taha Saeed
Arif, Saad
Author_xml – sequence: 1
  givenname: Sohaib Tahir
  surname: Chauhdary
  fullname: Chauhdary, Sohaib Tahir
  email: sohaibchauhdary@hotmail.com
  organization: Department of Electrical and Computer Engineering, College of Engineering, Dhofar University, Sultanate of Oman
– sequence: 2
  givenname: Taha Saeed
  surname: Khan
  fullname: Khan, Taha Saeed
  organization: School of Electrical and Computer Engineering, Oklahoma State University
– sequence: 3
  givenname: Saad
  surname: Arif
  fullname: Arif, Saad
  email: sarif@kfu.edu.sa
  organization: Department of Mechanical Engineering, College of Engineering, King Faisal University
– sequence: 4
  givenname: Ayaz
  surname: Ahmad
  fullname: Ahmad, Ayaz
  organization: Department of Electrical Engineering, College of Engineering, King Faisal University
– sequence: 5
  givenname: Munam Ali
  surname: Shah
  fullname: Shah, Munam Ali
  organization: Department of Computer Networks and Communication, College of Computer Science and Information Technology, King Faisal University
– sequence: 6
  givenname: Jamel
  surname: Baili
  fullname: Baili, Jamel
  organization: Department of Computer Engineering, College of Computer Science, King Khalid University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40770003$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1DAUtVARLUN_gAWKxIZNwM84WSFU8agoYgNry4_rGZfEDnYC4u_xzJTSssCyZF_73HNf5zE6iSkCQk8Jfkkw618VTsTQt5iKlmCJu1Y-QGcUc9FSRunJnfspOi_lGtcl6MDJ8AidcixltdkZmj8Fm9M2B9fouIQmlFFHF-K2mXNawC4hxabYHUzQGF3ANdV2AHMTYc16rMfyM-VvjR63KYdlN1Ue16yxWIhLhX_U46Rj48O4QK68T9BDr8cC5zfnBn199_bLxYf26vP7y4s3V63lA1_azmBqB9f1QMAZaQY3SNtTGMzQccc72Xkw4BiV1tAee2cExr0zuDNCe23ZBl0eeV3S12rOYdL5l0o6qMNDylul8xLsCMpLCdxyTin1nPfCgBHEekOY4OC5r1yvj1zzaiZw-8pq6fdI7__EsFPb9EOR2v9eSFYZXtww5PR9hbKoKdQOjbXZkNaiGGWyhu4ortDn_0Cv05pj7dUBRYhgdW_Qs7sp3ebyZ7IVQI-AOt5SMvhbCMFqryB1VJCqClIHBSlZndjRqcz7WUH-G_s_Xr8B9__Kog
Cites_doi 10.1016/j.epsr.2023.109378
10.1016/j.ref.2022.08.001
10.1007/s13369-023-08103-1
10.1049/rpg2.12708
10.1109/TSG.2023.3236790
10.1016/j.epsr.2022.108909
10.1016/j.ref.2024.100572
10.1016/j.robot.2022.104305
10.1109/STPEC59253.2023.10430679
10.1109/JESTIE.2021.3099395
10.3390/en15228512
10.1016/j.ijepes.2012.03.038
10.1109/ACCESS.2024.3381519
10.1109/JESTPE.2019.2916621
10.1109/ACCESS.2021.3123382
10.1007/s12652-019-01443-7
10.1016/j.ijepes.2021.107657
10.1016/j.ijepes.2023.108946
10.1109/TIA.2014.2305802
10.1109/TIE.2019.2931231
10.1109/TPWRD.2009.2036016
10.1016/j.apenergy.2017.08.014
10.1109/JESTIE.2023.3281254
10.1016/j.ijepes.2020.106032
10.1109/TPWRS.2016.2617344
10.1109/FIT.2017.00051
10.1016/j.ijepes.2020.106599
10.3390/engproc2023046040
10.1016/j.epsr.2024.110227
10.1109/ACCESS.2023.3272373
10.1016/j.epsr.2024.110288
10.1109/TAC.2018.2867325
10.3390/en16165880
10.1109/TPEL.2018.2886930
10.1186/s41601-022-00240-3
10.1016/j.ijepes.2014.04.052
10.1049/iet-rpg.2018.5381
10.1016/j.enbuild.2023.112823
10.1109/TPWRD.2013.2271837
10.1109/TIM.2022.3169527
10.3390/su15010164
10.1007/s42835-019-00237-3
10.1016/j.rser.2015.12.227
10.1016/j.epsr.2023.109807
10.1016/j.epsr.2020.106964
10.1109/ACCESS.2024.3354790
10.1007/s11042-024-19778-5
10.1016/j.epsr.2025.111858
10.3390/su15054456
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-10706-7
DatabaseName Springer_OA刊
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest_Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
Publicly Available Content Database
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database (subscription)
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 23
ExternalDocumentID oai_doaj_org_article_f77e4c44222f4485beb51cfb1354ef4f
PMC12328573
40770003
10_1038_s41598_025_10706_7
Genre Journal Article
GrantInformation_xml – fundername: This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia
  grantid: [Grant No. KFU250944].
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AARCD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c494t-6b02c9d68e1edb7b9d97c82e9b964d4676febed327cb280fdb5008db06b5afac3
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001546347400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Mon Nov 10 04:35:23 EST 2025
Tue Nov 04 02:03:18 EST 2025
Fri Sep 05 15:21:16 EDT 2025
Tue Oct 07 07:47:35 EDT 2025
Sun Aug 10 01:32:20 EDT 2025
Sat Nov 29 07:33:46 EST 2025
Thu Aug 07 05:58:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep neural network
Kalman filtering
Anti-islanding
Passive methods
Microgrid operation
Hybrid microgrid
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-6b02c9d68e1edb7b9d97c82e9b964d4676febed327cb280fdb5008db06b5afac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/f77e4c44222f4485beb51cfb1354ef4f
PMID 40770003
PQID 3237115315
PQPubID 2041939
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_f77e4c44222f4485beb51cfb1354ef4f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12328573
proquest_miscellaneous_3237448620
proquest_journals_3237115315
pubmed_primary_40770003
crossref_primary_10_1038_s41598_025_10706_7
springer_journals_10_1038_s41598_025_10706_7
PublicationCentury 2000
PublicationDate 2025-08-06
PublicationDateYYYYMMDD 2025-08-06
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-06
  day: 06
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References 10706_CR10
AK Dubey (10706_CR25) 2023; 4
F Barkat (10706_CR13) 2023
WJ Chiang (10706_CR23) 2012; 42
F Briz (10706_CR24) 2014; 50
10706_CR18
10706_CR16
F Mumtaz (10706_CR48) 2023; 17
10706_CR15
D Sivadas (10706_CR21) 2020; 67
X Kong (10706_CR32) 2018; 210
M Bakhshi (10706_CR45) 2013; 28
10706_CR14
S Yousaf (10706_CR2) 2019; 10
10706_CR12
F Mumtaz (10706_CR5) 2023; 15
10706_CR11
SVR Reddy (10706_CR20) 2023; 48
10706_CR42
F Mumtaz (10706_CR36) 2024; 12
10706_CR41
10706_CR40
J Xing (10706_CR17) 2023; 14
X Chen (10706_CR26) 2019; 34
10706_CR7
10706_CR4
10706_CR3
10706_CR1
10706_CR46
10706_CR8
10706_CR9
10706_CR30
SD Kermany (10706_CR29) 2017; 32
F Mumtaz (10706_CR35) 2024; 12
B Bahrani (10706_CR22) 2011; 26
R Haider (10706_CR47) 2019; 14
10706_CR39
10706_CR38
YA Elshrief (10706_CR28) 2022; 15
10706_CR37
R Kumar (10706_CR6) 2024
AG Abd-Elkader (10706_CR19) 2014; 62
10706_CR34
10706_CR33
HR Baghaee (10706_CR49) 2020; 8
DW Seo (10706_CR44) 2023; 11
K Gottapu (10706_CR31) 2022; 43
10706_CR27
T Knudsen (10706_CR43) 2019; 64
VR Reddy (10706_CR50) 2021; 3
References_xml – ident: 10706_CR15
  doi: 10.1016/j.epsr.2023.109378
– volume: 43
  start-page: 1
  year: 2022
  ident: 10706_CR31
  publication-title: Renew. Energy Focus
  doi: 10.1016/j.ref.2022.08.001
– volume: 48
  start-page: 15435
  year: 2023
  ident: 10706_CR20
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-023-08103-1
– volume: 17
  start-page: 1731
  year: 2023
  ident: 10706_CR48
  publication-title: IET Renew. Power Gener.
  doi: 10.1049/rpg2.12708
– volume: 14
  start-page: 3696
  year: 2023
  ident: 10706_CR17
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2023.3236790
– year: 2023
  ident: 10706_CR13
  publication-title: Electr. Power Syst. Res. Vol
  doi: 10.1016/j.epsr.2022.108909
– ident: 10706_CR4
  doi: 10.1016/j.ref.2024.100572
– ident: 10706_CR42
  doi: 10.1016/j.robot.2022.104305
– ident: 10706_CR38
  doi: 10.1109/STPEC59253.2023.10430679
– volume: 3
  start-page: 777
  year: 2021
  ident: 10706_CR50
  publication-title: IEEE J. Emerg. Sel. Top. Industrial Electron.
  doi: 10.1109/JESTIE.2021.3099395
– ident: 10706_CR11
  doi: 10.3390/en15228512
– volume: 42
  start-page: 158
  year: 2012
  ident: 10706_CR23
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2012.03.038
– volume: 12
  start-page: 45796
  year: 2024
  ident: 10706_CR36
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2024.3381519
– volume: 8
  start-page: 2385
  year: 2020
  ident: 10706_CR49
  publication-title: IEEE J. Emerg. Sel. Top. Power Electron.
  doi: 10.1109/JESTPE.2019.2916621
– ident: 10706_CR8
  doi: 10.1109/ACCESS.2021.3123382
– volume: 10
  start-page: 4071
  year: 2019
  ident: 10706_CR2
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-019-01443-7
– ident: 10706_CR16
  doi: 10.1016/j.ijepes.2021.107657
– ident: 10706_CR18
  doi: 10.1016/j.ijepes.2023.108946
– volume: 15
  start-page: 129
  year: 2022
  ident: 10706_CR28
  publication-title: J. Radiat. Res. Appl. Sci.
– volume: 50
  start-page: 3476
  year: 2014
  ident: 10706_CR24
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2014.2305802
– volume: 67
  start-page: 5554
  year: 2020
  ident: 10706_CR21
  publication-title: IEEE Trans. Industr. Electron.
  doi: 10.1109/TIE.2019.2931231
– volume: 26
  start-page: 517
  year: 2011
  ident: 10706_CR22
  publication-title: IEEE Trans. Power Delivery
  doi: 10.1109/TPWRD.2009.2036016
– volume: 210
  start-page: 776
  year: 2018
  ident: 10706_CR32
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.08.014
– volume: 4
  start-page: 1213
  year: 2023
  ident: 10706_CR25
  publication-title: IEEE J. Emerg. Sel. Top. Industrial Electron.
  doi: 10.1109/JESTIE.2023.3281254
– ident: 10706_CR39
  doi: 10.1016/j.ijepes.2020.106032
– volume: 32
  start-page: 2640
  year: 2017
  ident: 10706_CR29
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2016.2617344
– ident: 10706_CR9
  doi: 10.1109/FIT.2017.00051
– ident: 10706_CR34
  doi: 10.1016/j.ijepes.2020.106599
– ident: 10706_CR3
  doi: 10.3390/engproc2023046040
– ident: 10706_CR40
  doi: 10.1016/j.epsr.2024.110227
– volume: 11
  start-page: 43720
  year: 2023
  ident: 10706_CR44
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2023.3272373
– ident: 10706_CR7
  doi: 10.1016/j.epsr.2024.110288
– volume: 64
  start-page: 2198
  year: 2019
  ident: 10706_CR43
  publication-title: IEEE Trans. Automat Contr
  doi: 10.1109/TAC.2018.2867325
– ident: 10706_CR14
  doi: 10.3390/en16165880
– volume: 34
  start-page: 9342
  year: 2019
  ident: 10706_CR26
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2018.2886930
– ident: 10706_CR37
  doi: 10.1186/s41601-022-00240-3
– volume: 62
  start-page: 335
  year: 2014
  ident: 10706_CR19
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2014.04.052
– ident: 10706_CR46
  doi: 10.1049/iet-rpg.2018.5381
– ident: 10706_CR12
  doi: 10.1016/j.enbuild.2023.112823
– volume: 28
  start-page: 2185
  year: 2013
  ident: 10706_CR45
  publication-title: IEEE Trans. Power Delivery
  doi: 10.1109/TPWRD.2013.2271837
– ident: 10706_CR27
  doi: 10.1109/TIM.2022.3169527
– volume: 15
  start-page: 164
  issue: 1
  year: 2023
  ident: 10706_CR5
  publication-title: Sustainability
  doi: 10.3390/su15010164
– volume: 14
  start-page: 1907
  year: 2019
  ident: 10706_CR47
  publication-title: J. Electr. Eng. Technol.
  doi: 10.1007/s42835-019-00237-3
– ident: 10706_CR10
  doi: 10.1016/j.rser.2015.12.227
– ident: 10706_CR30
  doi: 10.1016/j.epsr.2023.109807
– ident: 10706_CR33
  doi: 10.1016/j.epsr.2020.106964
– volume: 12
  start-page: 12446
  year: 2024
  ident: 10706_CR35
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2024.3354790
– year: 2024
  ident: 10706_CR6
  publication-title: Multimed Tools Appl.
  doi: 10.1007/s11042-024-19778-5
– ident: 10706_CR41
  doi: 10.1016/j.epsr.2025.111858
– ident: 10706_CR1
  doi: 10.3390/su15054456
SSID ssj0000529419
Score 2.4618819
Snippet Microgrid anti-islanding protection (MAIP) is an indispensable challenge in ensuring the safe and reliable operation of microgrids. This research article...
Abstract Microgrid anti-islanding protection (MAIP) is an indispensable challenge in ensuring the safe and reliable operation of microgrids. This research...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 28726
SubjectTerms 639/166
639/4077
Algorithms
Anti-islanding
Deep neural network
Fourier transforms
Humanities and Social Sciences
Hybrid microgrid
Kalman filtering
Methods
Microgrid operation
multidisciplinary
Neural networks
Passive methods
Science
Science (multidisciplinary)
Signal processing
Simulation
Systems stability
Voltage
SummonAdditionalLinks – databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELagCxIX3o_AgozEDaLGjp8nBIgVCO2qB5CWk-VXupHatPSBxL9nnLhdldeJYxNn6mRmPDOe8TcIvfCUiAiWpoy1YCULVpZWRF1aySMJ4M5ZEvpmE_LsTJ2f60k-Hr3OZZW7NbFfqAe051S3DYvwOCx82jEf17SW4MvUhL9efitTD6mUa80NNa6iowS8VY3Q0eTj6eTrfs8lZbUY0fnsTFWr8RrsVzpjRhMcp4TgWh7Ypx7G_0--5-8llL_kUXvzdHLr_77YbXQzu6n4zSBXd9CV2N1F14fGlT_uoeVpquObrtqAgTMtbtez4XgMzrgPwG0McXOcR5zsZMDwO8S4xAk_Ewh3Q_U5trMp_PvmYg50At52PbYUDP9kZ3Pb4aZNyXygex99OXn_-d2HMvduKD3TbFMKV1Gvg1CRxOCk00FLr2jUTgsWYHUWDYhPqKn0jqqqCY6DNxJcJRy3jfX1AzTqFl18hLAlXtDAgZSXTATitLRSiRCk58oJWqCXO46Z5QDRYfrUeq3MwF8D_DU9f40s0NvE1P3IBK_dX1ispiZrq2mkjMyztD3WQPzKXXSc-MaRmrPYsKZAxztemqzza3PJugI9398GbU0pGNvFxXYYAwQFrQr0cJCg_UwgtJYpRC2QOpCtg6ke3unaix4RPPnFikt49NVODC_n9fdv8fjfr_EE3aBJM1KBjDhGo81qG5-ia_77pl2vnmXl-gk-ADav
  priority: 102
  providerName: ProQuest
Title Microgrid anti islanding protection scheme based on deep neural network algorithm and unscented Kalman filtering
URI https://link.springer.com/article/10.1038/s41598-025-10706-7
https://www.ncbi.nlm.nih.gov/pubmed/40770003
https://www.proquest.com/docview/3237115315
https://www.proquest.com/docview/3237448620
https://pubmed.ncbi.nlm.nih.gov/PMC12328573
https://doaj.org/article/f77e4c44222f4485beb51cfb1354ef4f
Volume 15
WOSCitedRecordID wos001546347400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central - New (Subscription)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database (subscription)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA96p-CL-G31XCL4puXaNM0kj57cocguRRTWp5Kv3hV2u8t-CP73TprueusHvvgSaJMOw8wkM9NMfiHklWW58OhpUl8InnKnIdXCq1RD6XOH4ZzOXX_ZBEwmcjpV1bWrvkJNWIQHjoI7bQA8tzz8qWgwlSiNN2VuG5MXJfcNb8Lqm4G6lkxFVG-meK6GUzJZIU_X6KnCaTIWgDcB02g48EQ9YP-foszfiyV_2THtHdHFPXJ3iCDp28j5fXLDdw_I7Xin5PeHZDkOJXaXq9ZRFFpL2_UsnlyhAyQDKoJiSuvnngYX5ig-O--XNEBbIuEuFoZTPbtcrNrN1RzpOLrtetgnHP5Rz-a6o00b9tmR7iPy5eL887v36XCtQmq54ptUmIxZ5YT0uXcGjHIKrGReGSW4w4VTNKhZVzCwhsmscabEQMGZTJhSN9oWj8lRt-j8U0J1bgVzJZKywIXLjQINUjgHtpRGsIS83om4Xkb0jLrf9S5kHRVSo0LqXiE1JOQsaGE_MiBf9y_QHurBHup_2UNCTnY6rIfpuK4LVgCGvkVeJuTlvhsnUtgd0Z1fbOMYJChYlpAnUeV7TjDrhZA9JkQeGMMBq4c9XXvVg3WHkFWWgJ--2dnNT77-Lotn_0MWz8kdFgw-VLiIE3K0WW39C3LLftu069WI3IQp9K0ckeOz80n1adTPImzHrAotYHtcfRhXX38Ap-cjUg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70eggJHgBFETx7GTA0K8qlbbVj0UqTfjV7aRdrPLPkD9U_xGxk6y1fK69cAxsTPyOJ_nYY9nAF4YmnKHmiZ2GWcxs0rEirsyViJ3qUVzTqU2FJsQh4fFyUl5tAE_-rswPqyyl4lBUNuJ8Xvk2xnNBFovWZq_nX6NfdUof7ral9BoYTFwZ9_RZZu_2fuI__clpTufjj_sxl1Vgdiwki1irhNqSssLlzqrhS5tKUxBXalLzizKDV4hYzajwmhaJJXVOepJqxOuc1UpkyHdS3AZzQiahFDBo9Wejj81Y2nZ3c1JsmJ7jvrR32GjPt2nQOddrOm_UCbgT7bt7yGav5zTBvW3c_N_m7hbcKMztMm7dmXchg3X3IGrbenNs7swPfCRiMNZbQliqyb1fNRe8CFd5grEK0HP340d8ZreEny2zk2JzwCKhJs2fp6o0RC5XZyOkY4lyyZkx8LuAzUaq4ZUtQ9HQLr34POFsHsfNptJ4x4CUanh1OZIygjGbapLoUTBrRUmLzSnEbzqMSGnbZIRGYIDskK2CJKIIBkQJEUE7z1sVj19gvDwYjIbyk7eyEoIxwzzG3wVeuC5djpPTaXTLGeuYlUEWz1aZCe15vIcKhE8XzWjvPGHSKpxk2XbBwlymkTwoMXoaiQsEcI72REUa-hdG-p6S1Ofhpzm3rIvcoGfvu6Bfj6uv8_Fo3-z8Qyu7R4f7Mv9vcPBY7hO_Tr04T58CzYXs6V7AlfMt0U9nz0NC5nAl4teAD8BOfGJ8g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4ty0NceD8CCxgJThA1cRw7OSAELCtWhaoHkPbm9SvdSG1amha0f41fxziPrsrrtgeOiZ2R7XyeGdufZwCeGRpzh5YmdAlnIbNKhIq7PFQidbFFd07Ftkk2IUaj7OgoH-_Aj_4ujKdV9jqxUdR2bvwe-SChiUDvJYnTQdHRIsb7B68XX0OfQcqftPbpNFqIDN3pd1y-1a8O9_FfP6f04P3ndx_CLsNAaFjOViHXETW55ZmLndVC5zYXJqMu1zlnFnUIL7CTNqHCaJpFhdUp2kyrI65TVSiToNwLcFH4qFieNkjHm_0df4LG4ry7pxMl2aBGW-nvs1Ef-lPgQl5s2cImZcCf_Nzf6Zq_nNk2pvDg-v88iDfgWueAkzftjLkJO666BZfblJynt2HxyTMUJ8vSEsRcScp62l78IV1EC8QxqRHpM0e8B2AJPlvnFsRHBkXBVcurJ2o6wd6uTmYox5J11UTNwupDNZ2pihSlpymg3Dvw5Vy6exd2q3nl7gNRseHUpijKCMZtrHOhRMatFSbNNKcBvOjxIRdt8BHZkAaSTLZokogm2aBJigDeeghtavrA4c2L-XIiOz0kCyEcM8xv_BW4Mk-102lsCh0nKXMFKwLY65EjO21WyzPYBPB0U4x6yB8uqcrN120dFMhpFMC9Fq-blrBICL_4DiDbQvJWU7dLqvKkiXXuPf4sFfjpyx70Z-36-1g8-Hc3nsAVxL38eDgaPoSr1E9JzwLie7C7Wq7dI7hkvq3Kevm4mdMEjs8b_z8BhaaStg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microgrid+anti+islanding+protection+scheme+based+on+deep+neural+network+algorithm+and+unscented+Kalman+filtering&rft.jtitle=Scientific+reports&rft.au=Chauhdary%2C+Sohaib+Tahir&rft.au=Khan%2C+Taha+Saeed&rft.au=Arif%2C+Saad&rft.au=Ahmad%2C+Ayaz&rft.date=2025-08-06&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=28726&rft_id=info:doi/10.1038%2Fs41598-025-10706-7&rft_id=info%3Apmid%2F40770003&rft.externalDocID=40770003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon