Neural transmission in the wired brain, new insights into an encoding-decoding-based neuronal communication model

Brain activity is known to be rife with oscillatory activity in different frequencies, which are suggested to be associated with intra-brain communication. However, the specific role of frequencies in neuronal information transfer is still an open question. To this end, we utilized EEG resting state...

Full description

Saved in:
Bibliographic Details
Published in:Translational psychiatry Vol. 15; no. 1; pp. 288 - 11
Main Author: Kinreich, Sivan
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 16.08.2025
Nature Publishing Group
Subjects:
ISSN:2158-3188, 2158-3188
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Brain activity is known to be rife with oscillatory activity in different frequencies, which are suggested to be associated with intra-brain communication. However, the specific role of frequencies in neuronal information transfer is still an open question. To this end, we utilized EEG resting state recordings from 5 public datasets. Overall, data from 1668 participants, including people with MDD, ADHD, OCD, Parkinson’s, Schizophrenia, and healthy controls aged 5–89, were part of the study. We conducted a running window of Spearman correlation between the two frontal hemispheres’ Alpha envelopes. The results of this analysis revealed a unique pattern of correlation states alternating between fully synchronized and desynchronized several times per second, likely due to the interference pattern between two signals of slightly different frequencies, also named “Beating”. Subsequent analysis showed this unique pattern in every pair of ipsilateral/contralateral, across frequencies, either in eyes closed or open, and across all ages, underscoring its inherent significance. Biomarker analysis revealed significantly lower synchronization and higher desynchronization for people older than 50 compared to younger ones and lower ADHD desynchronization compared to age-matched controls. Importantly, we propose a new brain communication model in which frequency modulation creates a binary message encoded and decoded by brain regions for information transfer. We suggest that the binary-like pattern allows the neural information to be coded according to certain physiological and biological rules known to both the sender and recipient. This digital-like scheme has the potential to be exploited in brain-computer interaction and applied technologies such as robotics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2158-3188
2158-3188
DOI:10.1038/s41398-025-03506-0