Development and validation to predict visual acuity and keratometry two years after corneal crosslinking with progressive keratoconus by machine learning

To explore and validate the utility of machine learning (ML) methods using a limited sample size to predict changes in visual acuity and keratometry 2 years following corneal crosslinking (CXL) for progressive keratoconus. The study included all consecutive patients with progressive keratoconus who...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in medicine Jg. 10; S. 1146529
Hauptverfasser: Liu, Yu, Shen, Dan, Wang, Hao-yu, Qi, Meng-ying, Zeng, Qing-yan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland Frontiers Media SA 03.07.2023
Frontiers Media S.A
Schlagworte:
ISSN:2296-858X, 2296-858X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract To explore and validate the utility of machine learning (ML) methods using a limited sample size to predict changes in visual acuity and keratometry 2 years following corneal crosslinking (CXL) for progressive keratoconus. The study included all consecutive patients with progressive keratoconus who underwent CXL from July 2014 to December 2020, with a 2 year follow-up period before July 2022 to develop the model. Variables collected included patient demographics, visual acuity, spherical equivalence, and Pentacam parameters. Available case data were divided into training and testing data sets. Three ML models were evaluated based on their performance in predicting case corrected distance visual acuity (CDVA) and maximum keratometry (K ) changes compared to actual values, as indicated by average root mean squared error (RMSE) and R-squared ( ) values. Patients followed from July 2022 to December 2022 were included in the validation set. A total of 277 eyes from 195 patients were included in training and testing sets and 43 eyes from 35 patients were included in the validation set. The baseline CDVA (26.7%) and the ratio of steep keratometry to flat keratometry (K /K ; 13.8%) were closely associated with case CDVA changes. The baseline ratio of K to mean keratometry (K /K ; 20.9%) was closely associated with case K changes. Using these metrics, the best-performing ML model was XGBoost, which produced predicted values closest to the actual values for both CDVA and K changes in testing set (  = 0.9993 and 0.9888) and validation set (  = 0.8956 and 0.8382). Application of a ML approach using XGBoost, and incorporation of identifiable parameters, considerably improved variation prediction accuracy of both CDVA and K 2 years after CXL for treatment of progressive keratoconus.
AbstractList To explore and validate the utility of machine learning (ML) methods using a limited sample size to predict changes in visual acuity and keratometry 2 years following corneal crosslinking (CXL) for progressive keratoconus. The study included all consecutive patients with progressive keratoconus who underwent CXL from July 2014 to December 2020, with a 2 year follow-up period before July 2022 to develop the model. Variables collected included patient demographics, visual acuity, spherical equivalence, and Pentacam parameters. Available case data were divided into training and testing data sets. Three ML models were evaluated based on their performance in predicting case corrected distance visual acuity (CDVA) and maximum keratometry (K ) changes compared to actual values, as indicated by average root mean squared error (RMSE) and R-squared ( ) values. Patients followed from July 2022 to December 2022 were included in the validation set. A total of 277 eyes from 195 patients were included in training and testing sets and 43 eyes from 35 patients were included in the validation set. The baseline CDVA (26.7%) and the ratio of steep keratometry to flat keratometry (K /K ; 13.8%) were closely associated with case CDVA changes. The baseline ratio of K to mean keratometry (K /K ; 20.9%) was closely associated with case K changes. Using these metrics, the best-performing ML model was XGBoost, which produced predicted values closest to the actual values for both CDVA and K changes in testing set (  = 0.9993 and 0.9888) and validation set (  = 0.8956 and 0.8382). Application of a ML approach using XGBoost, and incorporation of identifiable parameters, considerably improved variation prediction accuracy of both CDVA and K 2 years after CXL for treatment of progressive keratoconus.
PurposeTo explore and validate the utility of machine learning (ML) methods using a limited sample size to predict changes in visual acuity and keratometry 2 years following corneal crosslinking (CXL) for progressive keratoconus.MethodsThe study included all consecutive patients with progressive keratoconus who underwent CXL from July 2014 to December 2020, with a 2 year follow-up period before July 2022 to develop the model. Variables collected included patient demographics, visual acuity, spherical equivalence, and Pentacam parameters. Available case data were divided into training and testing data sets. Three ML models were evaluated based on their performance in predicting case corrected distance visual acuity (CDVA) and maximum keratometry (Kmax) changes compared to actual values, as indicated by average root mean squared error (RMSE) and R-squared ( R 2) values. Patients followed from July 2022 to December 2022 were included in the validation set.ResultsA total of 277 eyes from 195 patients were included in training and testing sets and 43 eyes from 35 patients were included in the validation set. The baseline CDVA (26.7%) and the ratio of steep keratometry to flat keratometry (K2/K1; 13.8%) were closely associated with case CDVA changes. The baseline ratio of Kmax to mean keratometry (Kmax/Kmean; 20.9%) was closely associated with case Kmax changes. Using these metrics, the best-performing ML model was XGBoost, which produced predicted values closest to the actual values for both CDVA and Kmax changes in testing set ( R 2 = 0.9993 and 0.9888) and validation set ( R 2 = 0.8956 and 0.8382).ConclusionApplication of a ML approach using XGBoost, and incorporation of identifiable parameters, considerably improved variation prediction accuracy of both CDVA and Kmax 2 years after CXL for treatment of progressive keratoconus.
To explore and validate the utility of machine learning (ML) methods using a limited sample size to predict changes in visual acuity and keratometry 2 years following corneal crosslinking (CXL) for progressive keratoconus.PurposeTo explore and validate the utility of machine learning (ML) methods using a limited sample size to predict changes in visual acuity and keratometry 2 years following corneal crosslinking (CXL) for progressive keratoconus.The study included all consecutive patients with progressive keratoconus who underwent CXL from July 2014 to December 2020, with a 2 year follow-up period before July 2022 to develop the model. Variables collected included patient demographics, visual acuity, spherical equivalence, and Pentacam parameters. Available case data were divided into training and testing data sets. Three ML models were evaluated based on their performance in predicting case corrected distance visual acuity (CDVA) and maximum keratometry (Kmax) changes compared to actual values, as indicated by average root mean squared error (RMSE) and R-squared (R2) values. Patients followed from July 2022 to December 2022 were included in the validation set.MethodsThe study included all consecutive patients with progressive keratoconus who underwent CXL from July 2014 to December 2020, with a 2 year follow-up period before July 2022 to develop the model. Variables collected included patient demographics, visual acuity, spherical equivalence, and Pentacam parameters. Available case data were divided into training and testing data sets. Three ML models were evaluated based on their performance in predicting case corrected distance visual acuity (CDVA) and maximum keratometry (Kmax) changes compared to actual values, as indicated by average root mean squared error (RMSE) and R-squared (R2) values. Patients followed from July 2022 to December 2022 were included in the validation set.A total of 277 eyes from 195 patients were included in training and testing sets and 43 eyes from 35 patients were included in the validation set. The baseline CDVA (26.7%) and the ratio of steep keratometry to flat keratometry (K2/K1; 13.8%) were closely associated with case CDVA changes. The baseline ratio of Kmax to mean keratometry (Kmax/Kmean; 20.9%) was closely associated with case Kmax changes. Using these metrics, the best-performing ML model was XGBoost, which produced predicted values closest to the actual values for both CDVA and Kmax changes in testing set (R2 = 0.9993 and 0.9888) and validation set (R2 = 0.8956 and 0.8382).ResultsA total of 277 eyes from 195 patients were included in training and testing sets and 43 eyes from 35 patients were included in the validation set. The baseline CDVA (26.7%) and the ratio of steep keratometry to flat keratometry (K2/K1; 13.8%) were closely associated with case CDVA changes. The baseline ratio of Kmax to mean keratometry (Kmax/Kmean; 20.9%) was closely associated with case Kmax changes. Using these metrics, the best-performing ML model was XGBoost, which produced predicted values closest to the actual values for both CDVA and Kmax changes in testing set (R2 = 0.9993 and 0.9888) and validation set (R2 = 0.8956 and 0.8382).Application of a ML approach using XGBoost, and incorporation of identifiable parameters, considerably improved variation prediction accuracy of both CDVA and Kmax 2 years after CXL for treatment of progressive keratoconus.ConclusionApplication of a ML approach using XGBoost, and incorporation of identifiable parameters, considerably improved variation prediction accuracy of both CDVA and Kmax 2 years after CXL for treatment of progressive keratoconus.
PurposeTo explore and validate the utility of machine learning (ML) methods using a limited sample size to predict changes in visual acuity and keratometry 2 years following corneal crosslinking (CXL) for progressive keratoconus.MethodsThe study included all consecutive patients with progressive keratoconus who underwent CXL from July 2014 to December 2020, with a 2 year follow-up period before July 2022 to develop the model. Variables collected included patient demographics, visual acuity, spherical equivalence, and Pentacam parameters. Available case data were divided into training and testing data sets. Three ML models were evaluated based on their performance in predicting case corrected distance visual acuity (CDVA) and maximum keratometry (Kmax) changes compared to actual values, as indicated by average root mean squared error (RMSE) and R-squared (R2) values. Patients followed from July 2022 to December 2022 were included in the validation set.ResultsA total of 277 eyes from 195 patients were included in training and testing sets and 43 eyes from 35 patients were included in the validation set. The baseline CDVA (26.7%) and the ratio of steep keratometry to flat keratometry (K2/K1; 13.8%) were closely associated with case CDVA changes. The baseline ratio of Kmax to mean keratometry (Kmax/Kmean; 20.9%) was closely associated with case Kmax changes. Using these metrics, the best-performing ML model was XGBoost, which produced predicted values closest to the actual values for both CDVA and Kmax changes in testing set (R2 = 0.9993 and 0.9888) and validation set (R2 = 0.8956 and 0.8382).ConclusionApplication of a ML approach using XGBoost, and incorporation of identifiable parameters, considerably improved variation prediction accuracy of both CDVA and Kmax 2 years after CXL for treatment of progressive keratoconus.
Author Wang, Hao-yu
Liu, Yu
Qi, Meng-ying
Zeng, Qing-yan
Shen, Dan
AuthorAffiliation 2 Aier Eye Hospital of Wuhan University , Wuhan , China
3 Aier Cornea Institute , Beijing , China
1 Aier School of Ophthalmology, Central South University , Changsha , China
4 Aier School of Ophthalmology and Optometry, Hubei University of Science and Technology , Xianning , China
AuthorAffiliation_xml – name: 3 Aier Cornea Institute , Beijing , China
– name: 2 Aier Eye Hospital of Wuhan University , Wuhan , China
– name: 4 Aier School of Ophthalmology and Optometry, Hubei University of Science and Technology , Xianning , China
– name: 1 Aier School of Ophthalmology, Central South University , Changsha , China
Author_xml – sequence: 1
  givenname: Yu
  surname: Liu
  fullname: Liu, Yu
– sequence: 2
  givenname: Dan
  surname: Shen
  fullname: Shen, Dan
– sequence: 3
  givenname: Hao-yu
  surname: Wang
  fullname: Wang, Hao-yu
– sequence: 4
  givenname: Meng-ying
  surname: Qi
  fullname: Qi, Meng-ying
– sequence: 5
  givenname: Qing-yan
  surname: Zeng
  fullname: Zeng, Qing-yan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37534322$$D View this record in MEDLINE/PubMed
BookMark eNp1ks1u1DAUhSNUREvpA7BBltiwmSGxncReIVQoVKrEBiR21rVzM-NpYg-2M9U8Cm9bz09RW4mVLfucT0f3ntfFifMOi-JtVc4ZE_JjP2I3pyVl86riTU3li-KMUtnMRC1-nzy6nxYXMa7KsqwYrXnFXhWnrK0ZZ5SeFX-_4AYHvx7RJQKuIxsYbAfJekeSJ-uAnTWJbGycYCBgJpu2e90tBkh-xBS2JN15skUIkUCfMBDjg8MsN8HHOFh3a92C3Nm0zDy_CBij3eCRYLybItFbMoJZWodkyCCXDW-Klz0MES-O53nx6-rrz8vvs5sf364vP9_MDJc8zWqsGWvLXgJvW22qxtC21LyjXGgwVJRUNxxYybSWXcNEzbtG59FU2IFmINl5cX3gdh5Wah3sCGGrPFi1f_BhoSAkawZUWhhaNSUKFJJrCoC640xzDbKpe9ll1qcDaz3pvB6ThxpgeAJ9-uPsUi38RlUlk3k7VSZ8OBKC_zNhTGq00eAwgEM_RUUFr5u6Zi3N0vfPpCs_BZdnpRhtaSOElG1WvXsc6V-WhwpkQXsQ7LcVsFfGpn0BckI75Ghq1ze165va9U0d-5ad1TPnA_z_nnudO92L
CitedBy_id crossref_primary_10_1016_j_heliyon_2025_e43050
crossref_primary_10_3389_fmed_2025_1462653
crossref_primary_10_1155_joph_3678453
Cites_doi 10.1186/s12886-021-02235-4
10.3389/fnut.2020.577923
10.1145/3386252
10.1016/S0002-9394(02)02220-1
10.1016/j.jcrs.2010.10.052
10.1097/ICO.0000000000000434
10.1097/01.ico.0000226359.26678.d1
10.1111/aos.13032
10.1016/j.jcrs.2007.12.039
10.1007/s10792-021-01908-9
10.1155/2021/9979560
10.1023/A:1024068626366
10.1016/j.ajo.2012.03.020
10.2147/OPTH.S183347
10.1016/j.clae.2021.101559
10.1038/eye.2014.163
10.1007/s10792-016-0262-z
10.1097/01.icl.0000189038.74139.4a
10.1016/j.jfo.2014.11.017
10.1016/j.exer.2018.08.009
10.1007/s00417-021-05173-5
10.1007/978-3-540-24775-3_3
10.1167/iovs.06-0557
10.1016/j.jfo.2020.08.040
10.1080/02713683.2019.1594945
10.3928/1081597X-20120518-02
10.3928/1081597X-20210830-01
10.2196/27363
10.1093/bib/bbz096
10.1016/j.ajo.2013.11.001
10.1167/iovs.12-10639
10.3928/1081597X-20141120-01
10.3390/jcm10040844
10.1155/2017/4109208
10.3389/fmolb.2022.843150
10.1007/978-1-4842-7150-6_15
10.1167/iovs.02-0973
10.1016/j.survophthal.2017.12.008
10.1016/j.jcrs.2019.01.026
10.1016/j.joco.2016.10.004
10.1111/aos.14275
10.3928/1081597X-20201229-02
10.1097/j.jcrs.0000000000000952
10.1016/j.ophtha.2013.10.028
10.14744/bej.2021.15046
10.1097/ICO.0000000000001051
ContentType Journal Article
Copyright Copyright © 2023 Liu, Shen, Wang, Qi and Zeng.
2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2023 Liu, Shen, Wang, Qi and Zeng. 2023 Liu, Shen, Wang, Qi and Zeng
Copyright_xml – notice: Copyright © 2023 Liu, Shen, Wang, Qi and Zeng.
– notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2023 Liu, Shen, Wang, Qi and Zeng. 2023 Liu, Shen, Wang, Qi and Zeng
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8C1
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3389/fmed.2023.1146529
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health Medical collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Public Health Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2296-858X
ExternalDocumentID oai_doaj_org_article_b8c2160e8e894b2aaebd43b4ba965f9d
PMC10393251
37534322
10_3389_fmed_2023_1146529
Genre Journal Article
GeographicLocations United States--US
China
GeographicLocations_xml – name: China
– name: United States--US
GrantInformation_xml – fundername: Research Fund of the Clinical Research Institute of Aier Eye Hospital Group
  grantid: AR2110D22
– fundername: Health Commission of Wuhan
  grantid: WX20Q19
GroupedDBID 53G
5VS
9T4
AAFWJ
AAYXX
ACGFS
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
GROUPED_DOAJ
HYE
KQ8
M48
M~E
OK1
PGMZT
RPM
ACXDI
IPNFZ
NPM
RIG
3V.
7X7
7XB
88E
8C1
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
K9.
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c494t-5e53370f9a477bc16c270b4d248bac2802b64a303bb9d63854d6b2961edab3a93
IEDL.DBID DOA
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001029169400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2296-858X
IngestDate Fri Oct 03 12:52:47 EDT 2025
Thu Aug 21 18:42:11 EDT 2025
Thu Oct 02 07:40:19 EDT 2025
Thu Nov 20 00:37:16 EST 2025
Thu Apr 03 06:57:19 EDT 2025
Sat Nov 29 01:47:46 EST 2025
Tue Nov 18 21:38:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords XGBoost (extreme gradient boosting)
keratoconus
prediction model
machine learning
crosslinking (CXL) corneal collagen
Language English
License Copyright © 2023 Liu, Shen, Wang, Qi and Zeng.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-5e53370f9a477bc16c270b4d248bac2802b64a303bb9d63854d6b2961edab3a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by: Cristina Nicula, University of Medicine and Pharmacy Iuliu Hatieganu, Romania
Reviewed by: Mehran Zarei-Ghanavati, Tehran University of Medical Sciences, Iran; Ahmed Abdelkareem Elmassry, Alexandria University, Egypt
OpenAccessLink https://doaj.org/article/b8c2160e8e894b2aaebd43b4ba965f9d
PMID 37534322
PQID 3272688997
PQPubID 7426803
ParticipantIDs doaj_primary_oai_doaj_org_article_b8c2160e8e894b2aaebd43b4ba965f9d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10393251
proquest_miscellaneous_2845655372
proquest_journals_3272688997
pubmed_primary_37534322
crossref_citationtrail_10_3389_fmed_2023_1146529
crossref_primary_10_3389_fmed_2023_1146529
PublicationCentury 2000
PublicationDate 2023-07-03
PublicationDateYYYYMMDD 2023-07-03
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-03
  day: 03
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in medicine
PublicationTitleAlternate Front Med (Lausanne)
PublicationYear 2023
Publisher Frontiers Media SA
Frontiers Media S.A
Publisher_xml – name: Frontiers Media SA
– name: Frontiers Media S.A
References Bikbova (ref5) 2016; 94
Sarac (ref12) 2016; 35
Gilevska (ref14) 2021; 259
Greenstein (ref40) 2011; 37
Korstanje (ref20) 2021
Peña-García (ref33) 2012; 53
Santodomingo-Rubido (ref7) 2022; 45
Sot (ref11) 2021; 44
Sağlık (ref10) 2021; 41
Rebala (ref18) 2019
Tayfur (ref32) 2021; 6
Bradford (ref43) 2018; 177
Greenstein (ref39) 2012; 28
Kato (ref23) 2021; 10
Lombardo (ref4) 2019; 45
De Angelis (ref38) 2015; 38
Iqbal (ref3) 2020; 98
Lenk (ref9) 2021; 37
Badawi (ref17) 2017; 2017
Zhao (ref30) 2020; 21
Wittig-Silva (ref2) 2014; 121
Sedaghat (ref34) 2019; 44
Jester (ref49) 2003; 44
Uçakhan (ref42) 2006; 32
Cronin (ref25) 2022; 48
Maile (ref21) 2021; 9
Ozgurhan (ref45) 2014; 30
Kotecha (ref48) 2006; 47
Viswanathan (ref36) 2015; 34
Wang (ref19) 2020; 53
Xia (ref31) 2022; 9
Mazzotta (ref26) 2014; 28
Wollensak (ref1) 2003; 135
Wisse (ref13) 2014; 157
Aatila (ref22) 2021; 2021
Raiskup-Wolf (ref8) 2008; 34
Kan (ref29) 2020; 7
Godefrooij (ref16) 2017; 37
Mimouni (ref44) 2021; 37
Zhong (ref6) 2018; 63
Vinciguerra (ref46) 2012; 154
Amanzadeh (ref37) 2017; 29
McMahon (ref24) 2006; 25
Olivo-Payne (ref47) 2019; 13
Bouckaert (ref28) 2004; 3056
Nadeau (ref27) 2003; 52
Takahashi (ref41) 1990; 94
Tian (ref15) 2022; 22
Motlagh (ref35) 2019; 8
References_xml – volume: 22
  start-page: 7
  year: 2022
  ident: ref15
  article-title: Predictive factors of the accelerated transepithelial corneal cross-linking outcomes in keratoconus
  publication-title: BMC Ophthalmol
  doi: 10.1186/s12886-021-02235-4
– volume: 7
  start-page: 577923
  year: 2020
  ident: ref29
  article-title: A machine learning based dose prediction of lutein supplements for individuals with eye fatigue
  publication-title: Front Nutr
  doi: 10.3389/fnut.2020.577923
– volume: 53
  start-page: 1
  year: 2020
  ident: ref19
  article-title: Generalizing from a few examples: A survey on few-shot learning[J]
  publication-title: ACM Comput Surv
  doi: 10.1145/3386252
– volume: 135
  start-page: 620
  year: 2003
  ident: ref1
  article-title: Riboflavin/ultraviolet-A–induced collagen crosslinking for the treatment of keratoconus
  publication-title: Am J Ophthalmol
  doi: 10.1016/S0002-9394(02)02220-1
– volume: 37
  start-page: 691
  year: 2011
  ident: ref40
  article-title: Corneal thickness changes after corneal collagen crosslinking for keratoconus and corneal ectasia: one-year results
  publication-title: J Cataract Refract Surg
  doi: 10.1016/j.jcrs.2010.10.052
– volume: 34
  start-page: 791
  year: 2015
  ident: ref36
  article-title: Relationship of structural characteristics to biomechanical profile in Normal, Keratoconic, and crosslinked eyes
  publication-title: Cornea
  doi: 10.1097/ICO.0000000000000434
– volume: 25
  start-page: 794
  year: 2006
  ident: ref24
  article-title: A new method for grading the severity of keratoconus: the keratoconus severity score (KSS)
  publication-title: Cornea
  doi: 10.1097/01.ico.0000226359.26678.d1
– volume: 94
  start-page: 1068
  year: 1990
  ident: ref41
  article-title: Quantitative analysis of collagen fiber in keratoconus
  publication-title: Nippon Ganka Gakkai Zasshi
– volume: 94
  start-page: e600
  year: 2016
  ident: ref5
  article-title: Standard corneal collagen crosslinking versus transepithelial iontophoresis-assisted corneal crosslinking, 24 months follow-up: randomized control trial
  publication-title: Acta Ophthalmol
  doi: 10.1111/aos.13032
– volume: 34
  start-page: 796
  year: 2008
  ident: ref8
  article-title: Collagen crosslinking with riboflavin and ultraviolet-A light in keratoconus: long-term results
  publication-title: J Cataract Refract Surg
  doi: 10.1016/j.jcrs.2007.12.039
– volume: 41
  start-page: 3443
  year: 2021
  ident: ref10
  article-title: Risk factors for progression following corneal collagen crosslinking in keratoconus
  publication-title: Int Ophthalmol
  doi: 10.1007/s10792-021-01908-9
– volume: 2021
  start-page: 9979560
  year: 2021
  ident: ref22
  article-title: Keratoconus severity classification using features selection and machine learning algorithms
  publication-title: Comput Math Methods Med
  doi: 10.1155/2021/9979560
– volume: 52
  start-page: 239
  year: 2003
  ident: ref27
  article-title: Inference for the generalization error
  publication-title: Mach Learn
  doi: 10.1023/A:1024068626366
– volume: 154
  start-page: 520
  year: 2012
  ident: ref46
  article-title: Two-year corneal cross-linking results in patients younger than 18 years with documented progressive keratoconus
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2012.03.020
– volume: 13
  start-page: 1183
  year: 2019
  ident: ref47
  article-title: Optimal management of pediatric keratoconus: challenges and solutions
  publication-title: Clin Ophthalmol
  doi: 10.2147/OPTH.S183347
– volume: 8
  start-page: 177
  year: 2019
  ident: ref35
  article-title: Pentacam® corneal tomography for screening of refractive surgery candidates: A review of the literature, part I
  publication-title: Med Hypothesis Discov Innov Ophthalmol
– volume: 45
  start-page: 101559
  year: 2022
  ident: ref7
  article-title: Keratoconus: an updated review
  publication-title: Cont Lens Anterior Eye
  doi: 10.1016/j.clae.2021.101559
– volume: 28
  start-page: 1179
  year: 2014
  ident: ref26
  article-title: Pulsed vs continuous light accelerated corneal collagen crosslinking: in vivo qualitative investigation by confocal microscopy and corneal OCT
  publication-title: Eye (Lond)
  doi: 10.1038/eye.2014.163
– volume: 37
  start-page: 341
  year: 2017
  ident: ref16
  article-title: Predictors for treatment outcomes after corneal crosslinking for keratoconus: a validation study
  publication-title: Int Ophthalmol
  doi: 10.1007/s10792-016-0262-z
– volume: 32
  start-page: 183
  year: 2006
  ident: ref42
  article-title: In vivo confocal microscopy findings in keratoconus
  publication-title: Eye Contact Lens
  doi: 10.1097/01.icl.0000189038.74139.4a
– volume: 38
  start-page: 595
  year: 2015
  ident: ref38
  article-title: Facteurs prédictifs de bonne réponse au crosslinking d'un kératocône évolutif: résultats réfractifs et topographiques à un an postopératoire [Predictive factors for visual outcome after corneal collagen crosslinking treatment in progressive keratoconus: One-year refractive and topographic results]
  publication-title: J Fr Ophtalmol
  doi: 10.1016/j.jfo.2014.11.017
– volume: 177
  start-page: 173
  year: 2018
  ident: ref43
  article-title: Collagen fiber crimping following in vivo UVA-induced corneal crosslinking
  publication-title: Exp Eye Res
  doi: 10.1016/j.exer.2018.08.009
– volume: 259
  start-page: 2259
  year: 2021
  ident: ref14
  article-title: Are changes in visual acuity and astigmatism after corneal cross-linking (CXL) in keratoconus predictable?
  publication-title: Graefes Arch Clin Exp Ophthalmol
  doi: 10.1007/s00417-021-05173-5
– volume: 3056
  start-page: 3
  year: 2004
  ident: ref28
  article-title: Evaluating the replicability of significance tests for comparing learning algorithms
  publication-title: Lecture Notes Comput Sci
  doi: 10.1007/978-3-540-24775-3_3
– volume: 47
  start-page: 5337
  year: 2006
  ident: ref48
  article-title: Corneal thickness- and age-related biomechanical properties of the cornea measured with the ocular response analyzer
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.06-0557
– volume: 44
  start-page: 863
  year: 2021
  ident: ref11
  article-title: Risk factors for keratoconus progression after treatment by accelerated cross-linking (A-CXL): a prospective 24-month study
  publication-title: J Fr Ophtalmol
  doi: 10.1016/j.jfo.2020.08.040
– volume: 44
  start-page: 707
  year: 2019
  ident: ref34
  article-title: Predictors of successful outcome following intrastromal corneal ring segments implantation
  publication-title: Curr Eye Res
  doi: 10.1080/02713683.2019.1594945
– volume: 28
  start-page: 397
  year: 2012
  ident: ref39
  article-title: Effect of topographic cone location on outcomes of corneal collagen cross-linking for keratoconus and corneal ectasia
  publication-title: J Refract Surg
  doi: 10.3928/1081597X-20120518-02
– volume: 37
  start-page: 816
  year: 2021
  ident: ref9
  article-title: Risk factors for progression of keratoconus and failure rate after corneal cross-linking
  publication-title: J Refract Surg
  doi: 10.3928/1081597X-20210830-01
– volume: 9
  start-page: e27363
  year: 2021
  ident: ref21
  article-title: Machine learning algorithms to detect subclinical keratoconus: systematic review
  publication-title: JMIR Med Inform
  doi: 10.2196/27363
– volume: 21
  start-page: 1581
  year: 2020
  ident: ref30
  article-title: Evaluation of single-cell classifiers for single-cell RNA sequencing data sets
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbz096
– volume: 157
  start-page: 519
  year: 2014
  ident: ref13
  article-title: A multivariate analysis and statistical model for predicting visual acuity and keratometry one year after cross-linking for keratoconus
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2013.11.001
– volume: 53
  start-page: 8447
  year: 2012
  ident: ref33
  article-title: Intracorneal ring segment in keratoconus: a model to predict visual changes induced by the surgery
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.12-10639
– volume: 30
  start-page: 843
  year: 2014
  ident: ref45
  article-title: Accelerated corneal cross-linking in pediatric patients with keratoconus: 24-month outcomes
  publication-title: J Refract Surg
  doi: 10.3928/1081597X-20141120-01
– volume: 10
  start-page: 844
  year: 2021
  ident: ref23
  article-title: Predicting keratoconus progression and need for corneal crosslinking using deep learning
  publication-title: J Clin Med
  doi: 10.3390/jcm10040844
– volume: 2017
  start-page: 4109208
  year: 2017
  ident: ref17
  article-title: Predictive factors of the standard cross-linking outcomes in adult keratoconus: one-year follow-up
  publication-title: J Ophthalmol
  doi: 10.1155/2017/4109208
– volume: 9
  start-page: 843150
  year: 2022
  ident: ref31
  article-title: Inferring retinal degeneration-related genes based on Xgboost
  publication-title: Front Mol Biosci
  doi: 10.3389/fmolb.2022.843150
– volume-title: Advanced Forecasting With Python
  year: 2021
  ident: ref20
  article-title: Gradient boosting with XGBoost and LightGBM
  doi: 10.1007/978-1-4842-7150-6_15
– volume: 44
  start-page: 1850
  year: 2003
  ident: ref49
  article-title: Myofibroblast differentiation of normal human keratocytes and hTERT, extended-life human corneal fibroblasts
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.02-0973
– start-page: 1
  volume-title: An Introduction to Machine Learning
  year: 2019
  ident: ref18
  article-title: Machine learning definition and basics
– volume: 63
  start-page: 453
  year: 2018
  ident: ref6
  article-title: Angiogenesis and lymphangiogenesis in corneal transplantation—a review
  publication-title: Surv Ophthalmol
  doi: 10.1016/j.survophthal.2017.12.008
– volume: 45
  start-page: 992
  year: 2019
  ident: ref4
  article-title: Two-year outcomes of a randomized controlled trial of transepithelial corneal crosslinking with iontophoresis for keratoconus
  publication-title: J Cataract Refract Surg
  doi: 10.1016/j.jcrs.2019.01.026
– volume: 29
  start-page: 189
  year: 2017
  ident: ref37
  article-title: Effects of single-segment Intacs implantation on visual acuity and corneal topographic indices of keratoconus
  publication-title: J Curr Ophthalmol
  doi: 10.1016/j.joco.2016.10.004
– volume: 98
  start-page: e352
  year: 2020
  ident: ref3
  article-title: Standard cross-linking protocol versus accelerated and transepithelial cross-linking protocols for treatment of paediatric keratoconus: a 2-year comparative study
  publication-title: Acta Ophthalmol
  doi: 10.1111/aos.14275
– volume: 37
  start-page: 186
  year: 2021
  ident: ref44
  article-title: Fellow eye as a predictor for keratoconus progression following accelerated corneal cross-linking
  publication-title: J Refract Surg
  doi: 10.3928/1081597X-20201229-02
– volume: 48
  start-page: 1175
  year: 2022
  ident: ref25
  article-title: Oxygen-supplemented transepithelial-accelerated corneal crosslinking with pulsed irradiation for progressive keratoconus: 1 year outcomes
  publication-title: J Cataract Refract Surg
  doi: 10.1097/j.jcrs.0000000000000952
– volume: 121
  start-page: 812
  year: 2014
  ident: ref2
  article-title: A randomized, controlled trial of corneal collagen cross-linking in progressive keratoconus: three-year results
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2013.10.028
– volume: 6
  start-page: 267
  year: 2021
  ident: ref32
  article-title: Factors affecting visual gain after accelerated crosslinking in pediatric Keratoconic cases
  publication-title: Beyoglu Eye J
  doi: 10.14744/bej.2021.15046
– volume: 35
  start-page: 1503
  year: 2016
  ident: ref12
  article-title: Factors influencing progression of keratoconus 2 years after corneal collagen cross-linking in pediatric patients
  publication-title: Cornea
  doi: 10.1097/ICO.0000000000001051
SSID ssj0001325413
Score 2.29554
Snippet To explore and validate the utility of machine learning (ML) methods using a limited sample size to predict changes in visual acuity and keratometry 2 years...
PurposeTo explore and validate the utility of machine learning (ML) methods using a limited sample size to predict changes in visual acuity and keratometry 2...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1146529
SubjectTerms Algorithms
Cornea
crosslinking (CXL) corneal collagen
Datasets
keratoconus
Machine learning
Medicine
prediction model
Surgery
Visual acuity
Vitamin B
XGBoost (extreme gradient boosting)
SummonAdditionalLinks – databaseName: Health Medical collection
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jj9MwFLZgQIgL-xIYkJE4IUUktuPlhAAx4sKIA0i9Rd4yVDBJyVLUn8K_5dlx2ylCc-HauNFT3uLv2Z_eh9DLQK0wyrhc6QYaFNjTIKWczWkD4Ljh3BnpotiEOD2Vi4X6nA7chkSr3NbEWKhdZ8MZ-WtKBOESugPxZvUzD6pR4XY1SWhcRdeCbHaIc7EQ-zMWCu1PSefLTOjFFDjLh_GghMYZuVUElvvtKE7t_xfU_JsxeWELOrn9v8bfQbcS-MRv52i5i6749h668Sldr99Hvy9QiLBuHYYwXM6iS3js8KoPK0e8Xg4TvEbbCSB8XPc9jGbuzv3Yb_D4q8MbyJ8BR_1xDO1tC2gUxw-QpBpwOP7FkRsWaLhrn94Azfk0YLPB55Hj6XEStTh7gL6efPjy_mOetBtyyxQb88oDjhRFozQTwtiSWyIKwxxh0mhLZEEMZxr2T2OUgxpQMccNUbz0ThuqFX2Ijtqu9Y8R9qphleOeEm8APhLpG8WMU5YUUnNpM1RsXVjbNNg86Gv8qKHBCV6vg9fr4PU6eT1Dr3Z_Wc1TPS5b_C7ExW5hGMgdf-j6szrld22kJSUvvPQSjCNae-MYNcxoxatGuQwdbyOjTlViqPdhkaEXu8eQ3-HSRre-m4Ya4ANg7ooKkqFHcxDuLKHQazKoyBmSB-F5YOrhk3b5Lc4QDwwAyI7yyeV2PUU3w6eI_GR6jI7GfvLP0HW7HpdD_zxm2x-DBzlx
  priority: 102
  providerName: ProQuest
Title Development and validation to predict visual acuity and keratometry two years after corneal crosslinking with progressive keratoconus by machine learning
URI https://www.ncbi.nlm.nih.gov/pubmed/37534322
https://www.proquest.com/docview/3272688997
https://www.proquest.com/docview/2845655372
https://pubmed.ncbi.nlm.nih.gov/PMC10393251
https://doaj.org/article/b8c2160e8e894b2aaebd43b4ba965f9d
Volume 10
WOSCitedRecordID wos001029169400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2296-858X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325413
  issn: 2296-858X
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2296-858X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325413
  issn: 2296-858X
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2296-858X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325413
  issn: 2296-858X
  databaseCode: 7X7
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2296-858X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325413
  issn: 2296-858X
  databaseCode: BENPR
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 2296-858X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325413
  issn: 2296-858X
  databaseCode: 8C1
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2296-858X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325413
  issn: 2296-858X
  databaseCode: PIMPY
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG50FfEivo2uQwuehMGku9OPo7vsoocdBlEYT6Ff0UE3WSbJyPyU_bdb3ekdZ0T04iWQpBM6qarU96WLrxB6HUorjDJuqnQNBAVyGoSUs1NaAziuOXdGuthsQsxmcrFQ851WX6EmbJQHHl_cWyMtKXjupZeKGaK1N45Rw4xWvKyVC1_fXKgdMhX_rlAgPgUdlzGBhSkwkw_CoIRGddwyQspfiSjq9f8JZP5eK7mTfE7vo3sJNeJ342wfoBu-eYjunKV18Ufocqf2B-vGYfCf5dgtCfctvliFkT1eL7sBbqPtANg7jvseNJXbc9-vNrj_2eINOH6HY-NwDLy0ARiJ4_xTjwUc_tviWNQV6mfXPt0BWPXQYbPB57E40-PUjeLrY_T59OTT8ftparowtUyxflp6AIAir5VmQhhbcEtEbpgjTBpticyJ4UxD4jNGOQjekjluiOKFd9pQregTdNC0jX-GsFc1Kx33lHgDuI9IX4MJnbIkl5pLm6H82gKVTYrkoTHGjwqYSTBaFYxWBaNVyWgZerO95GKU4_jb4KNg1u3AoKQdD4B_Vcm_qn_5V4YOr52iSuHdVZQIwiVQVZGhV9vTEJhhtUU3vh26CvI-gOWSCpKhp6MPbWdCgSQy-JRmSO55195U9880y29R_Dss3YNzF8__x8O9QHfDC4vlx_QQHfSrwb9Et-26X3arCbopFiJuJWzlcTFBt45OZvOPkxhssDf_cDb_cgVloTJh
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLamDQEv3C-BAUaCF6SI1HYS-wEhbtOqrVUfhjSegm8ZFSwpTdqpP4U_wW_k2HHbFaG97YHXxo1c9zvH53O-nA-hF05aoYQysZAlEBTY0yCkjI5pCcVxmWVGcePNJvLhkB8fi9EW-r18F8bJKpc50SdqU2t3Rv6akpxkHNhB_nbyM3auUe7p6tJCo4PFgV2cAWVr3vQ_wv_7kpC9T0cf9uPgKhBrJlgbpxYqnDwphWR5rnQv0yRPFDOEcSU14QlRGZOQ2ZUSBtCZMpMpIrKeNVJR6ZovQcrfYQ7s22hn1B-MvqxPdSgQrh7tHp8C-xMAD-sakhLqu_KmvpRdb4DeJ-Bfxe3fGs1zm97ezf9tuW6hG6G8xu-6eLiNtmx1B10dBAHBXfTrnEgKy8pgCLRxZyuF2xpPpm5ki-fjZga3kXoGJMWP--6aT9entp0ucHtW4wX8tgZ7h3UMBL6Cehv7BQ9mFNgdcGOvfnNC47kNd9B1NWuwWuBTr2K1ONh2nNxDny9lYe6j7aqu7EOErShZajJLiVVQIBNuS8GUEZokXGZcRyhZQqbQoXW7cxD5UQCFcygrHMoKh7IioCxCr1ZfmXR9Sy4a_N7hcDXQtRz3H9TTkyJksEJxTXpZYrnlMDkipVWGUcWUFFlaChOh3SUSi5AHm2INwwg9X12GDOYeS8nK1rOmgAIJWEVKcxKhBx3oVzOhwKYZ7DkR4hvhsDHVzSvV-Jvvku40DhCNvUcXz-sZurZ_NDgsDvvDg8foulsWr8amu2i7nc7sE3RFz9txM30aYh2jr5cdL38A_PeW8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+validation+to+predict+visual+acuity+and+keratometry+two+years+after+corneal+crosslinking+with+progressive+keratoconus+by+machine+learning&rft.jtitle=Frontiers+in+medicine&rft.au=Liu%2C+Yu&rft.au=Shen%2C+Dan&rft.au=Wang%2C+Hao-yu&rft.au=Qi%2C+Meng-ying&rft.date=2023-07-03&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-858X&rft.volume=10&rft_id=info:doi/10.3389%2Ffmed.2023.1146529&rft.externalDocID=PMC10393251
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-858X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-858X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-858X&client=summon