Design of optimal disturbance rejection PID controllers using genetic algorithms

This paper presents a method to design an optimal disturbance rejection PID controller. First, a condition for disturbance rejection of a control system-H/sub /spl infin//-norm-is described. Second, the design is formulated as a constrained optimization problem. It consists of minimizing a performan...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on evolutionary computation Vol. 5; no. 1; pp. 78 - 82
Main Authors: Krohling, R.A., Rey, J.P.
Format: Journal Article
Language:English
Published: New York, NY IEEE 01.02.2001
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1089-778X, 1941-0026
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a method to design an optimal disturbance rejection PID controller. First, a condition for disturbance rejection of a control system-H/sub /spl infin//-norm-is described. Second, the design is formulated as a constrained optimization problem. It consists of minimizing a performance index, i.e., the integral of the time weighted squared error subject to the disturbance rejection constraint. A new method employing two genetic algorithms (GA) is developed for solving the constraint optimization problem. The method is tested by a design example of a PID controller for a servomotor system. Simulation results are presented to demonstrate the performance and validity of the method.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ISSN:1089-778X
1941-0026
DOI:10.1109/4235.910467