Image processing with Optical matrix vector multipliers implemented for encoding and decoding tasks

This study introduces an optical neural network (ONN)-based autoencoder for efficient image processing, utilizing specialized optical matrix-vector multipliers for both encoding and decoding tasks. To address the challenges in efficient decoding, we propose a method that optimizes output processing...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Light, science & applications Ročník 14; číslo 1; s. 248 - 14
Hlavní autori: Kim, Minjoo, Kim, Yelim, Park, Won Il
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 22.07.2025
Springer Nature B.V
Nature Publishing Group
Predmet:
ISSN:2047-7538, 2095-5545, 2047-7538
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This study introduces an optical neural network (ONN)-based autoencoder for efficient image processing, utilizing specialized optical matrix-vector multipliers for both encoding and decoding tasks. To address the challenges in efficient decoding, we propose a method that optimizes output processing through scalar multiplications, enhancing performance in generating higher-dimensional outputs. By employing on-system iterative tuning, we mitigate hardware imperfections and noise, progressively improving image reconstruction accuracy to near-digital quality. Furthermore, our approach supports noise reduction and optical image generation, enabling models such as denoising autoencoders, variational autoencoders, and generative adversarial networks. Our results demonstrate that ONN-based systems have the potential to surpass the energy efficiency of traditional electronic systems, enabling real-time, low-power image processing in applications such as medical imaging, autonomous vehicles, and edge computing.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2047-7538
2095-5545
2047-7538
DOI:10.1038/s41377-025-01904-z