Bayesian optimized CNN ensemble for efficient potato blight detection using fuzzy image enhancement

Potato blight is a serious disease that affects potato crops and leads to substantial agricultural and economic losses. To enhance detection accuracy, we propose Bayesian Optimized CNN Weighted Ensemble Potato Blight Detection, a deep learning-based approach that optimizes CNN models through Bayesia...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific reports Ročník 15; číslo 1; s. 31259 - 20
Hlavní autoři: Jain, Achin, Dubey, Arun Kumar, Pan, Vincent Shin-Hung, Mahfoudh, Saoucene, Althaqafi, Turki A., Arya, Varsha, Alhalabi, Wadee, Singh, Sunil K., Jain, Vanita, Panwar, Arvind, Kumar, Sudhakar, Hsu, Ching-Hsien, Gupta, Brij B.
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 25.08.2025
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Potato blight is a serious disease that affects potato crops and leads to substantial agricultural and economic losses. To enhance detection accuracy, we propose Bayesian Optimized CNN Weighted Ensemble Potato Blight Detection, a deep learning-based approach that optimizes CNN models through Bayesian optimization and ensemble learning. In the proposed study, extensive experiments were conducted to develop an optimized Bayesian Weighted Ensemble CNN model for the detection of potato leaf blight. First, multiple CNN architectures were trained using different optimizers: ADAM (DL1), SGD (DL2), RMSProp (DL3), and ADAMAX (DL4), evaluating their individual performance. To mitigate class imbalance, data augmentation techniques were applied, increasing the number of healthy leaves by 6 times. In addition, fuzzy image enhancement was implemented to improve feature extraction and classification accuracy. Bayesian optimization was then used to determine the optimal weights for a deep ensemble model, exploring 11 possible model combinations. The final EDL7 ensemble model (DL1 + DL2 + DL3), optimized through Bayesian optimization, achieved the highest accuracy of 97.94%, outperforming individual models. Furthermore, the ensemble model achieved a precision of 0.981, recall of 0.983, and an F1 score of 0.982, ensuring a well-balanced trade-off between precision and recall. These results highlight the effectiveness of Bayesian-optimized ensemble learning in improving potato blight detection, making it a robust and reliable solution for agricultural disease classification.
AbstractList Potato blight is a serious disease that affects potato crops and leads to substantial agricultural and economic losses. To enhance detection accuracy, we propose Bayesian Optimized CNN Weighted Ensemble Potato Blight Detection, a deep learning-based approach that optimizes CNN models through Bayesian optimization and ensemble learning. In the proposed study, extensive experiments were conducted to develop an optimized Bayesian Weighted Ensemble CNN model for the detection of potato leaf blight. First, multiple CNN architectures were trained using different optimizers: ADAM (DL1), SGD (DL2), RMSProp (DL3), and ADAMAX (DL4), evaluating their individual performance. To mitigate class imbalance, data augmentation techniques were applied, increasing the number of healthy leaves by 6 times. In addition, fuzzy image enhancement was implemented to improve feature extraction and classification accuracy. Bayesian optimization was then used to determine the optimal weights for a deep ensemble model, exploring 11 possible model combinations. The final EDL7 ensemble model (DL1 + DL2 + DL3), optimized through Bayesian optimization, achieved the highest accuracy of 97.94%, outperforming individual models. Furthermore, the ensemble model achieved a precision of 0.981, recall of 0.983, and an F1 score of 0.982, ensuring a well-balanced trade-off between precision and recall. These results highlight the effectiveness of Bayesian-optimized ensemble learning in improving potato blight detection, making it a robust and reliable solution for agricultural disease classification.Potato blight is a serious disease that affects potato crops and leads to substantial agricultural and economic losses. To enhance detection accuracy, we propose Bayesian Optimized CNN Weighted Ensemble Potato Blight Detection, a deep learning-based approach that optimizes CNN models through Bayesian optimization and ensemble learning. In the proposed study, extensive experiments were conducted to develop an optimized Bayesian Weighted Ensemble CNN model for the detection of potato leaf blight. First, multiple CNN architectures were trained using different optimizers: ADAM (DL1), SGD (DL2), RMSProp (DL3), and ADAMAX (DL4), evaluating their individual performance. To mitigate class imbalance, data augmentation techniques were applied, increasing the number of healthy leaves by 6 times. In addition, fuzzy image enhancement was implemented to improve feature extraction and classification accuracy. Bayesian optimization was then used to determine the optimal weights for a deep ensemble model, exploring 11 possible model combinations. The final EDL7 ensemble model (DL1 + DL2 + DL3), optimized through Bayesian optimization, achieved the highest accuracy of 97.94%, outperforming individual models. Furthermore, the ensemble model achieved a precision of 0.981, recall of 0.983, and an F1 score of 0.982, ensuring a well-balanced trade-off between precision and recall. These results highlight the effectiveness of Bayesian-optimized ensemble learning in improving potato blight detection, making it a robust and reliable solution for agricultural disease classification.
Potato blight is a serious disease that affects potato crops and leads to substantial agricultural and economic losses. To enhance detection accuracy, we propose Bayesian Optimized CNN Weighted Ensemble Potato Blight Detection, a deep learning-based approach that optimizes CNN models through Bayesian optimization and ensemble learning. In the proposed study, extensive experiments were conducted to develop an optimized Bayesian Weighted Ensemble CNN model for the detection of potato leaf blight. First, multiple CNN architectures were trained using different optimizers: ADAM (DL1), SGD (DL2), RMSProp (DL3), and ADAMAX (DL4), evaluating their individual performance. To mitigate class imbalance, data augmentation techniques were applied, increasing the number of healthy leaves by 6 times. In addition, fuzzy image enhancement was implemented to improve feature extraction and classification accuracy. Bayesian optimization was then used to determine the optimal weights for a deep ensemble model, exploring 11 possible model combinations. The final EDL7 ensemble model (DL1 + DL2 + DL3), optimized through Bayesian optimization, achieved the highest accuracy of 97.94%, outperforming individual models. Furthermore, the ensemble model achieved a precision of 0.981, recall of 0.983, and an F1 score of 0.982, ensuring a well-balanced trade-off between precision and recall. These results highlight the effectiveness of Bayesian-optimized ensemble learning in improving potato blight detection, making it a robust and reliable solution for agricultural disease classification.
Abstract Potato blight is a serious disease that affects potato crops and leads to substantial agricultural and economic losses. To enhance detection accuracy, we propose Bayesian Optimized CNN Weighted Ensemble Potato Blight Detection, a deep learning-based approach that optimizes CNN models through Bayesian optimization and ensemble learning. In the proposed study, extensive experiments were conducted to develop an optimized Bayesian Weighted Ensemble CNN model for the detection of potato leaf blight. First, multiple CNN architectures were trained using different optimizers: ADAM (DL1), SGD (DL2), RMSProp (DL3), and ADAMAX (DL4), evaluating their individual performance. To mitigate class imbalance, data augmentation techniques were applied, increasing the number of healthy leaves by 6 times. In addition, fuzzy image enhancement was implemented to improve feature extraction and classification accuracy. Bayesian optimization was then used to determine the optimal weights for a deep ensemble model, exploring 11 possible model combinations. The final EDL7 ensemble model (DL1 + DL2 + DL3), optimized through Bayesian optimization, achieved the highest accuracy of 97.94%, outperforming individual models. Furthermore, the ensemble model achieved a precision of 0.981, recall of 0.983, and an F1 score of 0.982, ensuring a well-balanced trade-off between precision and recall. These results highlight the effectiveness of Bayesian-optimized ensemble learning in improving potato blight detection, making it a robust and reliable solution for agricultural disease classification.
ArticleNumber 31259
Author Singh, Sunil K.
Kumar, Sudhakar
Mahfoudh, Saoucene
Jain, Achin
Dubey, Arun Kumar
Jain, Vanita
Arya, Varsha
Gupta, Brij B.
Panwar, Arvind
Hsu, Ching-Hsien
Pan, Vincent Shin-Hung
Althaqafi, Turki A.
Alhalabi, Wadee
Author_xml – sequence: 1
  givenname: Achin
  surname: Jain
  fullname: Jain, Achin
  organization: Department of Information Technology, Bharati Vidyapeeth’s College of Engineering
– sequence: 2
  givenname: Arun Kumar
  surname: Dubey
  fullname: Dubey, Arun Kumar
  organization: Department of Information Technology, Bharati Vidyapeeth’s College of Engineering
– sequence: 3
  givenname: Vincent Shin-Hung
  surname: Pan
  fullname: Pan, Vincent Shin-Hung
  email: vincentpan@cyut.edu.tw
  organization: Department of Information Management, Chaoyang University of Technology, Department of Computer Science and Information Engineering, Asia University
– sequence: 4
  givenname: Saoucene
  surname: Mahfoudh
  fullname: Mahfoudh, Saoucene
  organization: School of Engineering, Computing, and Design, Dar Al-Hekma University
– sequence: 5
  givenname: Turki A.
  surname: Althaqafi
  fullname: Althaqafi, Turki A.
  organization: Computer Science Department, School of Engineering, Computing and Design, Dar Al-Hekma University
– sequence: 6
  givenname: Varsha
  surname: Arya
  fullname: Arya, Varsha
  organization: Hong Kong Metropolitan University, Center for Interdisciplinary Research, University of Petroleum and Energy Studies (UPES), UCRD, Chandigarh University
– sequence: 7
  givenname: Wadee
  surname: Alhalabi
  fullname: Alhalabi, Wadee
  organization: Immersive Virtual Reality Research Group, Department of Computer Science, King Abdulaziz University, Scientific Research Center Consultant, Dar Al-Hekma University
– sequence: 8
  givenname: Sunil K.
  surname: Singh
  fullname: Singh, Sunil K.
  organization: Department of CSE, Chandigarh College of Engineering and Technology, Panjab University
– sequence: 9
  givenname: Vanita
  surname: Jain
  fullname: Jain, Vanita
  organization: Department of Electronic Science, University of Delhi
– sequence: 10
  givenname: Arvind
  surname: Panwar
  fullname: Panwar, Arvind
  organization: Galgotias Multi-Disciplinary Research and Development Cell (G-MRDC), Galgotias University
– sequence: 11
  givenname: Sudhakar
  surname: Kumar
  fullname: Kumar, Sudhakar
  organization: Department of CSE, Chandigarh College of Engineering and Technology, Panjab University
– sequence: 12
  givenname: Ching-Hsien
  surname: Hsu
  fullname: Hsu, Ching-Hsien
  organization: Department of Computer Science and Information Engineering, Asia University
– sequence: 13
  givenname: Brij B.
  surname: Gupta
  fullname: Gupta, Brij B.
  email: gupta.brij@gmail.com
  organization: Department of Computer Science and Information Engineering, Asia University, Department of Medical Research, China Medical University Hospital, China Medical University, Symbiosis Centre for Information Technology (SCIT), Symbiosis International University, School of Cybersecurity, Korea University, Kyung Hee University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40854933$$D View this record in MEDLINE/PubMed
BookMark eNp9UstuFDEQHKEg8iA_wAFZ4sJlwK95-IRgBSFSFC5wtjx2e9arGXuxPUi7X483G0LCAV_caldVl-06r0588FBVrwh-RzDr3ydOGtHXmDZ1KTiuu2fVGcW8qSmj9ORRfVpdprTBZTVUcCJeVKcc9w0XjJ1V-pPaQXLKo7DNbnZ7MGh1e4vAJ5iHCZANEYG1TjvwGW1DVjmgYXLjOiMDGXR2waMlOT8iu-z3O-RmNUIRWCuvYS6sl9Vzq6YEl_f7RfXjy-fvq6_1zber69XHm1pzwXPNVQOsZZh2gwbRdnaAFhuDRTc0ILjoNMXGKsMIMwBWg9HEgNbatsMg2p5dVNdHXRPURm5jMRJ3Mign7xohjlLF7PQEUtOm0b2l2nDLB90ISgzrDGA6YCYsLlofjlrbZZjLpHKNqKYnok9PvFvLMfyShLKup4QVhbf3CjH8XCBlObukYZqUh7AkyShvWUd6cYC--Qe6CUv05a0OKNZi0fKDpdePLT14-fOZBUCPAB1DShHsA4RgeQiNPIZGltDIu9DIrpDYkZQK2I8Q_87-D-s3wnfGTQ
Cites_doi 10.1109/MM.2021.3121279
10.1007/s11042-024-18822-8
10.1257/jep.28.1.121
10.1109/TII.2022.3170594
10.3390/app13031487
10.1016/j.agrformet.2019.107858
10.1016/j.ecoinf.2024.102618
10.1016/j.lwt.2021.111966
10.1007/978-1-0716-1609-3_1
10.1016/j.scitotenv.2020.140338
10.1007/978-981-13-8406-6_37
10.1155/2018/6710865
10.1109/ICOIACT50329.2020.9332037
10.1109/ICAIS53314.2022.9742963
10.32604/cmc.2022.020017
10.1007/s11042-017-4637-6
10.1016/j.pmpp.2021.101781
10.3390/agronomy12030748
10.1016/j.inffus.2024.102365
10.1111/j.1365-3059.2005.01187.x
10.1109/CCECE.2017.7946594
10.1007/s11042-020-08726-8
10.58414/SCIENTIFICTEMPER.2023.14.3.04
10.1016/j.ecolind.2021.108200
10.1109/Indo-TaiwanICAN48429.2020.9181312
10.4018/IJSSCI.371761
10.1109/ACCESS.2021.3069646
10.3906/elk-1809-181
10.1080/10807039.2022.2064814
10.3390/s22072696
10.1016/j.inffus.2024.102401
10.1016/j.ghm.2024.05.002
10.4018/IJSSCI.333628
10.1109/ICTACS56270.2022.9988540
10.4018/IJSSCI.328771
10.1109/ACCESS.2020.3048415
10.1201/9780429446047
10.3390/su13094883
10.1109/ACCESS.2021.3102227
10.1109/ICISS49785.2020.9316021
10.3390/rs12020286
10.1109/SMARTGENCON56628.2022.10083986
10.4018/IJSWIS.366655
10.3390/electronics10172064
10.1016/j.patrec.2018.08.010
10.1088/1757-899X/1022/1/012121
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-15940-7
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Publicly Available Content Database



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 20
ExternalDocumentID oai_doaj_org_article_c255c8f2cd4f4bc5921d37de02b039f0
PMC12378213
40854933
10_1038_s41598_025_15940_7
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88A
8FK
COVID
K9.
M48
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c494t-4a5e363027bce967fbe60dd097b5e9497c20dfad313deefcedc1decccf6bb9683
IEDL.DBID 7X7
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001559344300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Mon Nov 10 04:33:46 EST 2025
Tue Nov 04 02:05:48 EST 2025
Sat Nov 01 14:08:50 EDT 2025
Sat Nov 01 15:13:34 EDT 2025
Thu Sep 04 04:59:30 EDT 2025
Sat Nov 29 07:31:27 EST 2025
Tue Aug 26 01:11:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords CNN
Bayesian optimization
Ensemble learning
Potato blight detection
Optimizer
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-4a5e363027bce967fbe60dd097b5e9497c20dfad313deefcedc1decccf6bb9683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3243609640?pq-origsite=%requestingapplication%
PMID 40854933
PQID 3243609640
PQPubID 2041939
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_c255c8f2cd4f4bc5921d37de02b039f0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12378213
proquest_miscellaneous_3246371893
proquest_journals_3243609640
pubmed_primary_40854933
crossref_primary_10_1038_s41598_025_15940_7
springer_journals_10_1038_s41598_025_15940_7
PublicationCentury 2000
PublicationDate 2025-08-25
PublicationDateYYYYMMDD 2025-08-25
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-25
  day: 25
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References AH Ali (15940_CR50) 2024; 81
X Guan (15940_CR14) 2025; 21
R Mahum (15940_CR38) 2023; 29
AK Mandle (15940_CR5) 2025; 21
C Daniel (15940_CR49) 2024; 2
CM Viana (15940_CR23) 2021; 131
15940_CR52
15940_CR51
R Singh (15940_CR2) 2021; 150
15940_CR13
M Türkoğlu (15940_CR21) 2019; 27
A Hamrani (15940_CR24) 2020; 741
15940_CR39
15940_CR37
MA Khan (15940_CR16) 2020; 79
J-Y Shin (15940_CR25) 2020; 281
TA Asfaw (15940_CR41) 2023; 14
P Kumari (15940_CR19) 2023; 13
15940_CR1
M Liao (15940_CR32) 2024; 108
KM Gold (15940_CR4) 2020; 12
C Yu (15940_CR26) 2018; 77
15940_CR40
15940_CR9
S Biswas (15940_CR48) 2024; 83
CS Tan (15940_CR44) 2023; 15
15940_CR46
RW Liu (15940_CR3) 2022; 19
K Zhang (15940_CR18) 2018; 2018
H Chu (15940_CR7) 2023; 15
15940_CR29
SK Singh (15940_CR54) 2021
G Forbes (15940_CR12) 2005; 54
SMH Zaidi (15940_CR28) 2025; 17
T Poornappriya (15940_CR17) 2022; 11
A Cravero (15940_CR27) 2022; 12
15940_CR31
L Li (15940_CR11) 2021; 9
15940_CR30
J Rashid (15940_CR35) 2021; 10
RG Dawod (15940_CR15) 2022; 22
15940_CR34
KK Chakraborty (15940_CR53) 2022; 117
15940_CR33
SA Bhat (15940_CR42) 2021; 9
A Sharma (15940_CR22) 2020; 9
F Kang (15940_CR6) 2023; 13
JM Alston (15940_CR8) 2014; 28
15940_CR20
H Wang (15940_CR36) 2020; 130
T Kassanuk (15940_CR10) 2023; 13
C Selvam (15940_CR47) 2024; 108
FK Shaikh (15940_CR45) 2021; 42
N Khan (15940_CR43) 2021; 13
References_xml – volume: 42
  start-page: 17
  year: 2021
  ident: 15940_CR45
  publication-title: IEEE Micro
  doi: 10.1109/MM.2021.3121279
– volume: 83
  start-page: 82199
  year: 2024
  ident: 15940_CR48
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-024-18822-8
– ident: 15940_CR9
– volume: 28
  start-page: 121
  year: 2014
  ident: 15940_CR8
  publication-title: J. Econ. Perspect.
  doi: 10.1257/jep.28.1.121
– volume: 19
  start-page: 1581
  year: 2022
  ident: 15940_CR3
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2022.3170594
– volume: 13
  start-page: 1487
  year: 2023
  ident: 15940_CR6
  publication-title: Appl. Sci.
  doi: 10.3390/app13031487
– ident: 15940_CR20
– volume: 281
  year: 2020
  ident: 15940_CR25
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2019.107858
– volume: 81
  year: 2024
  ident: 15940_CR50
  publication-title: Eco. Inform.
  doi: 10.1016/j.ecoinf.2024.102618
– volume: 150
  year: 2021
  ident: 15940_CR2
  publication-title: Lwt
  doi: 10.1016/j.lwt.2021.111966
– ident: 15940_CR1
  doi: 10.1007/978-1-0716-1609-3_1
– volume: 741
  year: 2020
  ident: 15940_CR24
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.140338
– volume: 11
  start-page: 392
  year: 2022
  ident: 15940_CR17
  publication-title: Int. J. Electr. Eng. Technol.
– ident: 15940_CR34
  doi: 10.1007/978-981-13-8406-6_37
– volume: 2018
  start-page: 6710865
  year: 2018
  ident: 15940_CR18
  publication-title: Adv. Multimedia
  doi: 10.1155/2018/6710865
– ident: 15940_CR30
  doi: 10.1109/ICOIACT50329.2020.9332037
– ident: 15940_CR31
  doi: 10.1109/ICAIS53314.2022.9742963
– ident: 15940_CR40
  doi: 10.32604/cmc.2022.020017
– volume: 77
  start-page: 4585
  year: 2018
  ident: 15940_CR26
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-017-4637-6
– volume: 117
  year: 2022
  ident: 15940_CR53
  publication-title: Physiol. Mol. Plant Pathol.
  doi: 10.1016/j.pmpp.2021.101781
– volume: 12
  start-page: 748
  year: 2022
  ident: 15940_CR27
  publication-title: Agronomy
  doi: 10.3390/agronomy12030748
– volume: 108
  year: 2024
  ident: 15940_CR47
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2024.102365
– volume: 13
  start-page: 1
  year: 2023
  ident: 15940_CR19
  publication-title: Int. J. Cloud Appl. Comput. (IJCAC)
– volume: 21
  start-page: 1
  year: 2025
  ident: 15940_CR5
  publication-title: Int. J. Semant. Web Inf. Syst. (IJSWIS)
– volume: 54
  start-page: 364
  year: 2005
  ident: 15940_CR12
  publication-title: Plant. Pathol.
  doi: 10.1111/j.1365-3059.2005.01187.x
– ident: 15940_CR52
  doi: 10.1109/CCECE.2017.7946594
– volume: 79
  start-page: 18627
  year: 2020
  ident: 15940_CR16
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-020-08726-8
– ident: 15940_CR46
– volume: 14
  start-page: 582
  year: 2023
  ident: 15940_CR41
  publication-title: Sci. Temper
  doi: 10.58414/SCIENTIFICTEMPER.2023.14.3.04
– volume: 131
  year: 2021
  ident: 15940_CR23
  publication-title: Ecol. Ind.
  doi: 10.1016/j.ecolind.2021.108200
– ident: 15940_CR33
  doi: 10.1109/Indo-TaiwanICAN48429.2020.9181312
– volume: 17
  start-page: 1
  year: 2025
  ident: 15940_CR28
  publication-title: Int. J. Softw. Sci. Comput. Intell. (IJSSCI)
  doi: 10.4018/IJSSCI.371761
– volume: 13
  start-page: 1
  year: 2023
  ident: 15940_CR10
  publication-title: Int. J. Cloud Appl. Comput. (IJCAC)
– volume: 9
  start-page: 56683
  year: 2021
  ident: 15940_CR11
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3069646
– volume: 27
  start-page: 1636
  year: 2019
  ident: 15940_CR21
  publication-title: Turk. J. Electr. Eng. Comput. Sci.
  doi: 10.3906/elk-1809-181
– volume: 29
  start-page: 303
  year: 2023
  ident: 15940_CR38
  publication-title: Hum. Ecol. Risk Assess. Int. J.
  doi: 10.1080/10807039.2022.2064814
– volume: 22
  start-page: 2696
  year: 2022
  ident: 15940_CR15
  publication-title: Sensors
  doi: 10.3390/s22072696
– volume: 108
  year: 2024
  ident: 15940_CR32
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2024.102401
– volume: 2
  start-page: 197
  year: 2024
  ident: 15940_CR49
  publication-title: Geohazard Mech.
  doi: 10.1016/j.ghm.2024.05.002
– volume: 15
  start-page: 1
  year: 2023
  ident: 15940_CR44
  publication-title: Int. J. Softw. Sci. Comput. Intell. (IJSSCI)
  doi: 10.4018/IJSSCI.333628
– ident: 15940_CR39
  doi: 10.1109/ICTACS56270.2022.9988540
– volume: 15
  start-page: 1
  year: 2023
  ident: 15940_CR7
  publication-title: Int. J. Softw. Sci. Comput. Intell. (IJSSCI)
  doi: 10.4018/IJSSCI.328771
– volume: 9
  start-page: 4843
  year: 2020
  ident: 15940_CR22
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3048415
– volume-title: Linux Yourself: Concept and Programming
  year: 2021
  ident: 15940_CR54
  doi: 10.1201/9780429446047
– ident: 15940_CR13
– volume: 13
  start-page: 4883
  year: 2021
  ident: 15940_CR43
  publication-title: Sustainability
  doi: 10.3390/su13094883
– volume: 9
  start-page: 110209
  year: 2021
  ident: 15940_CR42
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3102227
– ident: 15940_CR29
  doi: 10.1109/ICISS49785.2020.9316021
– volume: 12
  start-page: 286
  year: 2020
  ident: 15940_CR4
  publication-title: Remote Sensing
  doi: 10.3390/rs12020286
– ident: 15940_CR37
  doi: 10.1109/SMARTGENCON56628.2022.10083986
– volume: 21
  start-page: 1
  year: 2025
  ident: 15940_CR14
  publication-title: Int. J. Semant. Web Inf. Syst. (IJSWIS)
  doi: 10.4018/IJSWIS.366655
– volume: 10
  start-page: 2064
  year: 2021
  ident: 15940_CR35
  publication-title: Electronics
  doi: 10.3390/electronics10172064
– volume: 130
  start-page: 64
  year: 2020
  ident: 15940_CR36
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2018.08.010
– ident: 15940_CR51
  doi: 10.1088/1757-899X/1022/1/012121
SSID ssj0000529419
Score 2.45791
Snippet Potato blight is a serious disease that affects potato crops and leads to substantial agricultural and economic losses. To enhance detection accuracy, we...
Abstract Potato blight is a serious disease that affects potato crops and leads to substantial agricultural and economic losses. To enhance detection accuracy,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 31259
SubjectTerms 639/166
639/4077
Agricultural production
Algorithms
Artificial intelligence
Automation
Bayes Theorem
Bayesian analysis
Bayesian optimization
Classification
CNN
Deep Learning
Disease prevention
Ensemble learning
Fuzzy Logic
Humanities and Social Sciences
Image Processing, Computer-Assisted - methods
Leaf blight
Mathematical models
multidisciplinary
Neural networks
Neural Networks, Computer
Optimizer
Plant diseases
Plant Diseases - microbiology
Plant Leaves - microbiology
Potato blight detection
Potatoes
Science
Science (multidisciplinary)
Solanum tuberosum - microbiology
Vegetables
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhJNBLyaOPbR6o0Fu7xJZkyzomoaGHsvSQQm7CkkbNQtYO2d3C7q_PjOzdZPugl96M5Yc832j0jTWaYexDHgovJVk_jzCoWtdoB0mXBR5Twe3apaolX_VoVN3cmG_PSn1RTFiXHrgT3JlHzuurKHxQUTlfGJEHqQNkwmXSxOStZ9o8c6a6rN7CqNz0u2QyWZ1Ncaai3WSiGOIBhdFtzEQpYf-fWObvwZK_rJimiehqj73sGSQ_73q-z7agOWC7XU3JxSHzF_UCaGckb9EaTMZLCPxyNOLorsLE3QFHlsohJY7AV_H7Ftlmy90dOek8wCyFZjWc4uF_8DhfLhd8PEGjgw-4JQ2hv4mv2Perz9eXX4Z9JYWhV0bNEIMCZElLlM6DKXV0UGYhZEa7Aowy2ossxDrIXAaA6PFr84Dg-lg6Z8pKvmbbTdvAW8braKIM3qHf55RHZwoJnw7OEXMKdRQD9nElVXvfJcywaaFbVrbDwCIGNmFg9YBdkODXV1Ky63QCVcD2KmD_pQIDdryCzfYjcGpR2WSJ_pnC5vfrZhw7tCBSN9DO0zWlxMnZyAF706G87gllflNGYku1gf9GVzdbmvFtys-NZAB5V463flqpylO__i6Ld_9DFkfshSAdz9D-Fcdse_YwhxO243_OxtOH0zRIHgHVbRdW
  priority: 102
  providerName: Directory of Open Access Journals
Title Bayesian optimized CNN ensemble for efficient potato blight detection using fuzzy image enhancement
URI https://link.springer.com/article/10.1038/s41598-025-15940-7
https://www.ncbi.nlm.nih.gov/pubmed/40854933
https://www.proquest.com/docview/3243609640
https://www.proquest.com/docview/3246371893
https://pubmed.ncbi.nlm.nih.gov/PMC12378213
https://doaj.org/article/c255c8f2cd4f4bc5921d37de02b039f0
Volume 15
WOSCitedRecordID wos001559344300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZgCxIX3rCBpTISN6g2iZ04PiG62hVIbFQhkMrJil-7lbZJ6WOl9tcz46RdldeFixXFSWRnxuNvHp4h5E1iM8MYSj8DZOCVqEAOIi-ncI0FtysdqpZ8FmVZjMdy1BncFl1Y5VYmBkFtG4M28mN4meWAt3n8fvZjgFWj0LvaldC4TXpYNhv5XIzFzsaCXiyeyO6sTMyK4wXsV3imLM0GcIHBdHv7UUjb_yes-XvI5C9-07AdnT3434k8JPc7IEo_tJzziNxy9WNyty1NuX5CzLBaOzxgSRsQKtPJxll6UpYUtF431VeOAtilLuSfgLHSWQOgtaH6CnV9at0yRHjVFMPqL6hfbTZrOpmC7IIPXCKjoVHyKfl2dvr15OOgK8gwMFzyJZAycyxHT6c2TubCa5fH1sZS6MxJLoVJY-sryxJmnfMGfldigUeMz7WWecGekYO6qd0hoZWXnlmjQX3U3IBOBrhRWK0RgNnKpxF5uyWLmrV5N1Twl7NCtURUQEQViKhERIZIud2TmDM73GjmF6pbgsqA9mQKnxrLPdcmk2limbAuTnXMpI8jcrQlmOoW8kLdUCsir3fdsATRr1LVrlmFZ3IGe7xkEXnessluJJhAjksGPcUeA-0Ndb-nnlyGNN-AKQC-JfDquy2v3Yzr7__ixb-n8ZLcS5H9YxCQ2RE5WM5X7hW5Y66Xk8W8H9ZPaIs-6Q1Py9GXfjBTQHuejrAV0PZGn85H338CEEAr6g
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGB2Iv3GGFAUaCJ6iWxM7FDwixwbRqXdWHIY0nE9-2SmtSegG1P4rfyDlO0qnc3vbAWxQnke18Pv6Oz42Ql6GJNWMo_TT8Bp6nOchBxHIE11hwO1e-akkv7fez01Mx2CA_mlgYdKtsZKIX1KbUeEa-Cy-zBPg2D96Nv3awahRaV5sSGhUsjuziO6hs07fdD_B_X0XRwceT_cNOXVWgo7ngM-hPbFmC5jqlrUhSp2wSGBOIVMVWcJHqKDAuNyxkxlqnrdGhgYFqlyglkozBd6-RTQ5gD1pkc9A9Hnxeneqg3YyHoo7OCVi2O4UdEqPYorgDF-i-t7YD-kIBf2K3vztp_mKp9Rvgwe3_berukFs11abvq7Vxl2zY4h65URXfXNwnei9fWAwhpSWIzdFwaQ3d7_cp6PV2pC4sBTpPrc-wAXNDxyXQ8pKqCzzNoMbOvA9bQTFw4Iy6-XK5oMMRSGf4wDkuJTx2fUA-XckIH5JWURZ2m9DcCceMVqAgK65B6wRmnBqlkGKa3EVt8rqBgRxXmUWk9whgmaxAIwE00oNGpm2yh0hZPYlZwf2NcnImayEjNeiHOnORNtxxpWMRhYalxgaRCphwQZvsNACRtaiaykt0tMmLVTMIGbQc5YUt5_6ZhAGLEaxNHlWwXPUEU-RxwaAlWwPsWlfXW4rhuU9kDqwJCGoIr75psH3Zr7_PxeN_D-M5uXl4ctyTvW7_6AnZinDpBbAdxDukNZvM7VNyXX-bDaeTZ_XqpeTLVaP-J2WEiEY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFH4qKSAu7EugwCDBCaLYHm9zQIh0EVUrK0Ig9TZ4tjZSY4csoOSn8et4z0uqsN164GZ5bGtm_M2b783bAF76JtKck_TT-BvCPMlRDhKWA7ymgtu5qqqWHCdZlp6ciOEW_GhjYcitspWJlaA2paYz8j6-zGPk26HXd41bxHDv4N3ka48qSJGltS2nUUPkyC6_o_o2e3u4h__6VRAc7H_a_dBrKgz0dCjCOfYtsjwm053SVsSJUzb2jPFEoiIrQpHowDMuN9znxlqnrdG-wUFrFysl4pTjd6_AdsJR6enA9mA_G35cn_CQDS30RROp4_G0P8PdkiLagqiHF-TKt7EbVkUD_sR0f3fY_MVqW22GB7f-52m8DTcbCs7e12vmDmzZ4i5cq4tyLu-BHuRLS6GlrERxOh6trGG7WcZQ37djdW4Z0nxmq8wbOE9sUiJdL5k6p1MOZuy88m0rGAUUnDK3WK2WbDRGqY0fOKMlRsex9-HzpYzwAXSKsrCPgOVOOG60QsVZhRq1UWTMiVGKqKfJXdCF1y0k5KTOOCIrTwGeyhpAEgEkKwDJpAsDQs36ScoWXt0op6eyET5So96oUxdoE7pQ6UgEvuGJsV6gPC6c14WdFiyyEWEzeYGULrxYN6PwIYtSXthyUT0Tc2Q3gnfhYQ3RdU8odV4oOLakG-Dd6OpmSzE6qxKcI5tC4urjq29anF_06-9z8fjfw3gO1xHq8vgwO3oCNwJahR7uEtEOdObThX0KV_W3-Wg2fdYsZAZfLhv0PwHuGZDg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+optimized+CNN+ensemble+for+efficient+potato+blight+detection+using+fuzzy+image+enhancement&rft.jtitle=Scientific+reports&rft.au=Jain%2C+Achin&rft.au=Dubey%2C+Arun+Kumar&rft.au=Pan%2C+Vincent+Shin-Hung&rft.au=Mahfoudh%2C+Saoucene&rft.date=2025-08-25&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=31259&rft_id=info:doi/10.1038%2Fs41598-025-15940-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon