Improved brain tumor classification through DenseNet121 based transfer learning

Brain tumors have a big effect on a person’s health by letting abnormal cells grow unchecked in the brain. This means that early and correct diagnosis is very important for effective treatment. Many of the current diagnostic methods are time-consuming, rely primarily on hand interpretation, and freq...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Discover. Oncology Ročník 16; číslo 1; s. 1645 - 23
Hlavní autori: Rasheed, Mehwish, Jaffar, Muhammad Arfan, Akram, Arslan, Rashid, Javed, Alshalali, Tagrid Abdullah N., Irshad, Asma, Sarwar, Nadeem
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 27.08.2025
Springer Nature B.V
Springer
Predmet:
ISSN:2730-6011, 2730-6011
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Brain tumors have a big effect on a person’s health by letting abnormal cells grow unchecked in the brain. This means that early and correct diagnosis is very important for effective treatment. Many of the current diagnostic methods are time-consuming, rely primarily on hand interpretation, and frequently yield unsatisfactory results. This work finds brain tumors in MRI data using DenseNet121 architecture with transfer learning. Model training made use of the Kaggle dataset. By preprocessing the stage, resizing the MRI pictures to minimize noise would help the model perform better. From one MRI scan, the proposed approach divides brain tissues into four groups: benign tumors, gliomas, meningiomas, and pituitary gland malignancies. The designed DenseNet121 architecture precisely classifies brain cancers. We assessed the models’ performance in terms of accuracy, precision, recall, and F1-score. The suggested approach proved successful in the multi-class categorization of brain tumors since it attained an average accuracy improvement of 96.90%. Unlike previous diagnostic techniques, such as eye inspection and other machine learning models, the proposed DenseNet121-based approach is more accurate, takes less time to analyze, and requires less human input. Although the automated method ensures consistent and predictable results, human error sometimes causes more unpredictability in conventional methods. Based on MRI-based detection and transfer learning, this paper proposes an automated method for the classification of brain cancers. The method improves the precision and speed of brain tumor diagnosis, which benefits both MRI-based classification research and clinical use. The development of deep-learning models may even further improve tumor identification and prognosis prediction.
AbstractList Abstract Brain tumors have a big effect on a person’s health by letting abnormal cells grow unchecked in the brain. This means that early and correct diagnosis is very important for effective treatment. Many of the current diagnostic methods are time-consuming, rely primarily on hand interpretation, and frequently yield unsatisfactory results. This work finds brain tumors in MRI data using DenseNet121 architecture with transfer learning. Model training made use of the Kaggle dataset. By preprocessing the stage, resizing the MRI pictures to minimize noise would help the model perform better. From one MRI scan, the proposed approach divides brain tissues into four groups: benign tumors, gliomas, meningiomas, and pituitary gland malignancies. The designed DenseNet121 architecture precisely classifies brain cancers. We assessed the models’ performance in terms of accuracy, precision, recall, and F1-score. The suggested approach proved successful in the multi-class categorization of brain tumors since it attained an average accuracy improvement of 96.90%. Unlike previous diagnostic techniques, such as eye inspection and other machine learning models, the proposed DenseNet121-based approach is more accurate, takes less time to analyze, and requires less human input. Although the automated method ensures consistent and predictable results, human error sometimes causes more unpredictability in conventional methods. Based on MRI-based detection and transfer learning, this paper proposes an automated method for the classification of brain cancers. The method improves the precision and speed of brain tumor diagnosis, which benefits both MRI-based classification research and clinical use. The development of deep-learning models may even further improve tumor identification and prognosis prediction.
Brain tumors have a big effect on a person's health by letting abnormal cells grow unchecked in the brain. This means that early and correct diagnosis is very important for effective treatment. Many of the current diagnostic methods are time-consuming, rely primarily on hand interpretation, and frequently yield unsatisfactory results. This work finds brain tumors in MRI data using DenseNet121 architecture with transfer learning. Model training made use of the Kaggle dataset. By preprocessing the stage, resizing the MRI pictures to minimize noise would help the model perform better. From one MRI scan, the proposed approach divides brain tissues into four groups: benign tumors, gliomas, meningiomas, and pituitary gland malignancies. The designed DenseNet121 architecture precisely classifies brain cancers. We assessed the models' performance in terms of accuracy, precision, recall, and F1-score. The suggested approach proved successful in the multi-class categorization of brain tumors since it attained an average accuracy improvement of 96.90%. Unlike previous diagnostic techniques, such as eye inspection and other machine learning models, the proposed DenseNet121-based approach is more accurate, takes less time to analyze, and requires less human input. Although the automated method ensures consistent and predictable results, human error sometimes causes more unpredictability in conventional methods. Based on MRI-based detection and transfer learning, this paper proposes an automated method for the classification of brain cancers. The method improves the precision and speed of brain tumor diagnosis, which benefits both MRI-based classification research and clinical use. The development of deep-learning models may even further improve tumor identification and prognosis prediction.
Brain tumors have a big effect on a person's health by letting abnormal cells grow unchecked in the brain. This means that early and correct diagnosis is very important for effective treatment. Many of the current diagnostic methods are time-consuming, rely primarily on hand interpretation, and frequently yield unsatisfactory results. This work finds brain tumors in MRI data using DenseNet121 architecture with transfer learning. Model training made use of the Kaggle dataset. By preprocessing the stage, resizing the MRI pictures to minimize noise would help the model perform better. From one MRI scan, the proposed approach divides brain tissues into four groups: benign tumors, gliomas, meningiomas, and pituitary gland malignancies. The designed DenseNet121 architecture precisely classifies brain cancers. We assessed the models' performance in terms of accuracy, precision, recall, and F1-score. The suggested approach proved successful in the multi-class categorization of brain tumors since it attained an average accuracy improvement of 96.90%. Unlike previous diagnostic techniques, such as eye inspection and other machine learning models, the proposed DenseNet121-based approach is more accurate, takes less time to analyze, and requires less human input. Although the automated method ensures consistent and predictable results, human error sometimes causes more unpredictability in conventional methods. Based on MRI-based detection and transfer learning, this paper proposes an automated method for the classification of brain cancers. The method improves the precision and speed of brain tumor diagnosis, which benefits both MRI-based classification research and clinical use. The development of deep-learning models may even further improve tumor identification and prognosis prediction.Brain tumors have a big effect on a person's health by letting abnormal cells grow unchecked in the brain. This means that early and correct diagnosis is very important for effective treatment. Many of the current diagnostic methods are time-consuming, rely primarily on hand interpretation, and frequently yield unsatisfactory results. This work finds brain tumors in MRI data using DenseNet121 architecture with transfer learning. Model training made use of the Kaggle dataset. By preprocessing the stage, resizing the MRI pictures to minimize noise would help the model perform better. From one MRI scan, the proposed approach divides brain tissues into four groups: benign tumors, gliomas, meningiomas, and pituitary gland malignancies. The designed DenseNet121 architecture precisely classifies brain cancers. We assessed the models' performance in terms of accuracy, precision, recall, and F1-score. The suggested approach proved successful in the multi-class categorization of brain tumors since it attained an average accuracy improvement of 96.90%. Unlike previous diagnostic techniques, such as eye inspection and other machine learning models, the proposed DenseNet121-based approach is more accurate, takes less time to analyze, and requires less human input. Although the automated method ensures consistent and predictable results, human error sometimes causes more unpredictability in conventional methods. Based on MRI-based detection and transfer learning, this paper proposes an automated method for the classification of brain cancers. The method improves the precision and speed of brain tumor diagnosis, which benefits both MRI-based classification research and clinical use. The development of deep-learning models may even further improve tumor identification and prognosis prediction.
ArticleNumber 1645
Author Alshalali, Tagrid Abdullah N.
Sarwar, Nadeem
Rashid, Javed
Irshad, Asma
Akram, Arslan
Jaffar, Muhammad Arfan
Rasheed, Mehwish
Author_xml – sequence: 1
  givenname: Mehwish
  surname: Rasheed
  fullname: Rasheed, Mehwish
  organization: Faculty of Computer Science and Information Technology, The Superior University
– sequence: 2
  givenname: Muhammad Arfan
  surname: Jaffar
  fullname: Jaffar, Muhammad Arfan
  organization: Faculty of Computer Science and Information Technology, The Superior University
– sequence: 3
  givenname: Arslan
  surname: Akram
  fullname: Akram, Arslan
  organization: Faculty of Computer Science and Information Technology, The Superior University, Department of Computer Science, University of People, MLC Lab
– sequence: 4
  givenname: Javed
  surname: Rashid
  fullname: Rashid, Javed
  organization: MLC Lab, Information Technology Services, University of Okara
– sequence: 5
  givenname: Tagrid Abdullah N.
  surname: Alshalali
  fullname: Alshalali, Tagrid Abdullah N.
  organization: Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University
– sequence: 6
  givenname: Asma
  orcidid: 0000-0002-0594-5877
  surname: Irshad
  fullname: Irshad, Asma
  organization: School of Biochemistry and Biotechnology, University of the Punjab
– sequence: 7
  givenname: Nadeem
  orcidid: 0000-0001-8681-6382
  surname: Sarwar
  fullname: Sarwar, Nadeem
  email: nadeem_srwr@yahoo.com
  organization: Department of Computer Science, Bahria University Lahore Campus
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40866773$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhi1URNulf4ADisSFS2D8ETs-IVSgrFTRS--W40yyWSX2YieV-Pd4m1JaDpxsjZ_3nfHMnJMTHzwS8obCBwqgPibKpGIlsKoEXgEt-QtyxhSHUgKlJ0_up-QipT1ARinnUL0ipwJqKZXiZ-RmOx1iuMO2aKIdfDEvU4iFG21KQzc4Ow8hB3cxLP2u-II-4Q-cKaNFY1MWzdH61GEsRrTRD75_TV52dkx48XBuyO23r7eX38vrm6vt5efr0gkt5lJIzlzNeed411DadNpaxJpxRAmWCVc74TrV5EwMELVt29Zq7DSlsm4c35DtatsGuzeHOEw2_jLBDuY-EGJvbJwHN6IRWDdVxxutnRYKWg2q5sAlldpKrWT2-rR6HZZmwtahz78an5k-f_HDzvThzlDGNWjg2eH9g0MMPxdMs5mG5HAcrcewJMOZkIKCzh3fkHf_oPuwRJ9bdaQEFaJSOlNvn5b0WMufuWWArYCLIaWI3SNCwRz3w6z7YfLQzf1-mKOIr6KUYd9j_Jv7P6rfvfO8Yg
Cites_doi 10.1007/s11042-023-16776-x
10.1155/2022/1465173
10.1016/j.ibmed.2024.100192
10.32604/cmc.2023.032005
10.3389/fonc.2022.819673
10.1016/j.bspc.2024.107126
10.1101/2022.07.18.22277779
10.3390/electronics12040955
10.1038/s41598-023-50505-6
10.1007/s41870-023-01701-0
10.1007/978-3-030-49339-4_26
10.1016/j.patrec.2019.11.019
10.1093/neuros/nyy543
10.1016/j.compmedimag.2019.05.001
10.1371/journal.pone.0140381
10.1186/s12911-023-02114-6
10.1109/ACCESS.2023.3288017
10.1016/j.patrec.2017.10.037
10.3390/electronics14040710
10.1111/1556-4029.70033
10.1155/2022/3065656
10.1007/s11760-020-01793-2
10.1016/j.cogsys.2019.09.007
10.1108/WJE-09-2020-0456
10.3390/diagnostics13081451
10.1111/srt.13524
10.22266/ijies2021.0831.38
10.1002/ijc.33588
10.1016/j.irbm.2021.06.003
10.1016/j.cmpbup.2025.100183
10.1109/ICCES51350.2021.9489187
10.1155/2022/8104054
10.1016/j.compmedimag.2021.101940
10.1007/s00521-019-04650-7
10.32604/cmc.2023.041074
10.1109/BIBM52615.2021.9669791
10.1007/s42044-024-00220-w
10.1002/jemt.23688
10.1007/s00521-020-05332-5
10.1016/j.imu.2023.101423
10.1007/s13369-019-03967-8
10.1016/B978-0-323-91171-9.00001-6
10.56536/jicet.v3i1.54
10.5120/18036-6883
10.32604/cmc.2023.040512
10.1016/j.bspc.2025.108040
10.1109/SSPS.2017.8071613
10.1016/j.bspc.2023.105421
10.1016/j.advengsoft.2022.103221
10.32604/cmc.2023.041558
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7RV
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
KB0
M0S
NAPCQ
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1007/s12672-025-03501-3
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
Nursing & Allied Health Premium
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed

Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7RV
  name: Nursing & Allied Health Database
  url: https://search.proquest.com/nahs
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2730-6011
EndPage 23
ExternalDocumentID oai_doaj_org_article_4e8b5f3b99c9470d90783036169a6976
PMC12390903
40866773
10_1007_s12672_025_03501_3
Genre Journal Article
GrantInformation_xml – fundername: Princess Nourah Bint Abdulrahman University
  grantid: PNURSP2025R512
  funderid: https://doi.org/10.13039/501100004242
– fundername: Princess Nourah Bint Abdulrahman University
  grantid: PNURSP2025R512
GroupedDBID 0R~
2JY
53G
7RV
7X7
8FI
8FJ
AAJSJ
AASML
ABUWG
AFBBN
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
C6C
CCPQU
EBLON
EBS
FYUFA
GROUPED_DOAJ
HMCUK
NAPCQ
PGMZT
PHGZM
PHGZT
PIMPY
PPXIY
PUEGO
RPM
SOJ
UKHRP
AAYXX
AFFHD
CITATION
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c494t-4632c833fc3fb11bf9aaee823ee60a24c8c4cf7b12120ee9addda9ef91168bc3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001560591300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2730-6011
IngestDate Fri Oct 03 12:52:55 EDT 2025
Tue Nov 04 02:05:26 EST 2025
Thu Sep 04 12:40:42 EDT 2025
Sat Nov 01 15:00:56 EDT 2025
Tue Sep 16 01:46:17 EDT 2025
Sat Nov 29 07:31:44 EST 2025
Thu Aug 28 04:23:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Transfer learning
Multiclass brain tumor classification
DenseNet121
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-4632c833fc3fb11bf9aaee823ee60a24c8c4cf7b12120ee9addda9ef91168bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0594-5877
0000-0001-8681-6382
OpenAccessLink https://doaj.org/article/4e8b5f3b99c9470d90783036169a6976
PMID 40866773
PQID 3244144579
PQPubID 5642930
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_4e8b5f3b99c9470d90783036169a6976
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12390903
proquest_miscellaneous_3246410977
proquest_journals_3244144579
pubmed_primary_40866773
crossref_primary_10_1007_s12672_025_03501_3
springer_journals_10_1007_s12672_025_03501_3
PublicationCentury 2000
PublicationDate 2025-08-27
PublicationDateYYYYMMDD 2025-08-27
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-27
  day: 27
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Discover. Oncology
PublicationTitleAbbrev Discov Onc
PublicationTitleAlternate Discov Oncol
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Springer
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer
References A Akram (3501_CR47) 2023; 77
S Rajendran (3501_CR11) 2023; 11
3501_CR33
3501_CR32
3501_CR30
3501_CR37
3501_CR36
3501_CR35
3501_CR34
M Rasheed (3501_CR31) 2023; 13
3501_CR39
3501_CR38
A Akram (3501_CR43) 2025; 70
A Akram (3501_CR7) 2024; 78
J Rashid (3501_CR6) 2023
ZNK Swati (3501_CR2) 2019; 75
3501_CR20
3501_CR26
JJ Graber (3501_CR1) 2019; 84
3501_CR25
3501_CR29
T Sadad (3501_CR24) 2021; 84
3501_CR28
3501_CR27
J Rashid (3501_CR5) 2023; 74
AH Khan (3501_CR13) 2022; 2022
JD Bodapati (3501_CR3) 2021; 15
3501_CR51
A Akram (3501_CR8) 2024; 78
3501_CR50
3501_CR55
3501_CR10
3501_CR54
3501_CR53
3501_CR52
3501_CR15
3501_CR14
A Upadhyay (3501_CR21) 2021
3501_CR12
3501_CR56
3501_CR19
3501_CR18
3501_CR17
3501_CR16
3501_CR40
MA Gómez-Guzmán (3501_CR49) 2023; 12
S Saeedi (3501_CR23) 2023; 23
J Ferlay (3501_CR4) 2021; 149
3501_CR44
J Naik (3501_CR22) 2014; 14
3501_CR41
R Meera (3501_CR9) 2018; 5
3501_CR48
3501_CR46
A Akram (3501_CR45) 2023; 29
OA Kamil (3501_CR42) 2021; 11
References_xml – year: 2023
  ident: 3501_CR6
  publication-title: Multimed Tools Appl Sep
  doi: 10.1007/s11042-023-16776-x
– ident: 3501_CR34
  doi: 10.1155/2022/1465173
– volume: 5
  start-page: e17
  issue: 20
  year: 2018
  ident: 3501_CR9
  publication-title: EAI Endorsed Trans Energy Web
– ident: 3501_CR54
  doi: 10.1016/j.ibmed.2024.100192
– volume: 74
  start-page: 1235
  issue: 1
  year: 2023
  ident: 3501_CR5
  publication-title: Computers Materials Continua
  doi: 10.32604/cmc.2023.032005
– ident: 3501_CR40
  doi: 10.3389/fonc.2022.819673
– ident: 3501_CR56
  doi: 10.1016/j.bspc.2024.107126
– ident: 3501_CR48
  doi: 10.1101/2022.07.18.22277779
– volume: 12
  start-page: 955
  issue: 4
  year: 2023
  ident: 3501_CR49
  publication-title: Electronics
  doi: 10.3390/electronics12040955
– volume: 14
  start-page: 87
  issue: 6
  year: 2014
  ident: 3501_CR22
  publication-title: Int J Comput Sci Netw Secur (ijcsns)
– ident: 3501_CR33
  doi: 10.1038/s41598-023-50505-6
– ident: 3501_CR51
  doi: 10.1007/s41870-023-01701-0
– ident: 3501_CR18
– start-page: 258
  volume-title: Innovations in Bio-Inspired computing and applications
  year: 2021
  ident: 3501_CR21
  doi: 10.1007/978-3-030-49339-4_26
– ident: 3501_CR28
  doi: 10.1016/j.patrec.2019.11.019
– volume: 84
  start-page: E168
  issue: 3
  year: 2019
  ident: 3501_CR1
  publication-title: Neurosurgery
  doi: 10.1093/neuros/nyy543
– ident: 3501_CR14
– volume: 75
  start-page: 34
  year: 2019
  ident: 3501_CR2
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2019.05.001
– ident: 3501_CR32
  doi: 10.1371/journal.pone.0140381
– volume: 23
  start-page: 16
  issue: 1
  year: 2023
  ident: 3501_CR23
  publication-title: BMC Med Inf Decis Mak
  doi: 10.1186/s12911-023-02114-6
– volume: 11
  start-page: 64758
  year: 2023
  ident: 3501_CR11
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3288017
– ident: 3501_CR37
  doi: 10.1016/j.patrec.2017.10.037
– ident: 3501_CR16
  doi: 10.3390/electronics14040710
– volume: 70
  start-page: 1026
  issue: 3
  year: 2025
  ident: 3501_CR43
  publication-title: J Forensic Sci
  doi: 10.1111/1556-4029.70033
– ident: 3501_CR39
  doi: 10.1155/2022/3065656
– volume: 15
  start-page: 753
  issue: 4
  year: 2021
  ident: 3501_CR3
  publication-title: SIViP
  doi: 10.1007/s11760-020-01793-2
– ident: 3501_CR26
  doi: 10.1016/j.cogsys.2019.09.007
– ident: 3501_CR44
  doi: 10.1108/WJE-09-2020-0456
– volume: 13
  start-page: 1451
  issue: 8
  year: 2023
  ident: 3501_CR31
  publication-title: Diagnostics
  doi: 10.3390/diagnostics13081451
– volume: 29
  start-page: e13524
  issue: 11
  year: 2023
  ident: 3501_CR45
  publication-title: Skin Res Technol
  doi: 10.1111/srt.13524
– ident: 3501_CR35
  doi: 10.22266/ijies2021.0831.38
– volume: 149
  start-page: 778
  issue: 4
  year: 2021
  ident: 3501_CR4
  publication-title: Int J Cancer
  doi: 10.1002/ijc.33588
– ident: 3501_CR12
  doi: 10.1016/j.irbm.2021.06.003
– ident: 3501_CR15
  doi: 10.1016/j.cmpbup.2025.100183
– volume: 11
  start-page: 32
  issue: 1
  year: 2021
  ident: 3501_CR42
  publication-title: Am J Bioinf Res
– ident: 3501_CR50
  doi: 10.1109/ICCES51350.2021.9489187
– volume: 2022
  start-page: p8104054
  issue: 1
  year: 2022
  ident: 3501_CR13
  publication-title: Appl Comput Intell Soft Comput
  doi: 10.1155/2022/8104054
– ident: 3501_CR29
  doi: 10.1016/j.compmedimag.2021.101940
– ident: 3501_CR27
  doi: 10.1007/s00521-019-04650-7
– ident: 3501_CR25
– volume: 78
  start-page: 145
  issue: 1
  year: 2024
  ident: 3501_CR7
  publication-title: CMC
  doi: 10.32604/cmc.2023.041074
– ident: 3501_CR36
  doi: 10.1109/BIBM52615.2021.9669791
– ident: 3501_CR17
  doi: 10.1007/s42044-024-00220-w
– volume: 84
  start-page: 1296
  year: 2021
  ident: 3501_CR24
  publication-title: Microsc Res Tech
  doi: 10.1002/jemt.23688
– ident: 3501_CR38
  doi: 10.1007/s00521-020-05332-5
– ident: 3501_CR52
  doi: 10.1016/j.imu.2023.101423
– ident: 3501_CR30
  doi: 10.1007/s13369-019-03967-8
– ident: 3501_CR10
  doi: 10.1016/B978-0-323-91171-9.00001-6
– ident: 3501_CR46
  doi: 10.56536/jicet.v3i1.54
– ident: 3501_CR19
  doi: 10.5120/18036-6883
– volume: 78
  start-page: 1311
  issue: 1
  year: 2024
  ident: 3501_CR8
  publication-title: CMC
  doi: 10.32604/cmc.2023.040512
– ident: 3501_CR55
  doi: 10.1016/j.bspc.2025.108040
– ident: 3501_CR20
  doi: 10.1109/SSPS.2017.8071613
– ident: 3501_CR53
  doi: 10.1016/j.bspc.2023.105421
– ident: 3501_CR41
  doi: 10.1016/j.advengsoft.2022.103221
– volume: 77
  start-page: 1081
  issue: 1
  year: 2023
  ident: 3501_CR47
  publication-title: CMC
  doi: 10.32604/cmc.2023.041558
SSID ssj0002513305
Score 2.3019454
Snippet Brain tumors have a big effect on a person’s health by letting abnormal cells grow unchecked in the brain. This means that early and correct diagnosis is very...
Brain tumors have a big effect on a person's health by letting abnormal cells grow unchecked in the brain. This means that early and correct diagnosis is very...
Abstract Brain tumors have a big effect on a person’s health by letting abnormal cells grow unchecked in the brain. This means that early and correct diagnosis...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1645
SubjectTerms Accuracy
Algorithms
Automation
Brain cancer
Brain research
Cancer Research
Classification
Datasets
Deep learning
DenseNet121
Glioma
Illnesses
Internal Medicine
Literature reviews
Machine learning
Magnetic resonance imaging
Medical imaging
Medicine
Medicine & Public Health
Molecular Medicine
Multiclass brain tumor classification
Oncology
Radiotherapy
Support vector machines
Surgical Oncology
Transfer learning
Tumors
SummonAdditionalLinks – databaseName: Nursing & Allied Health Database
  dbid: 7RV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQagX3o9AQUbiBhaJ7djxCfGqOMCCUFX1ZtmOU3ogabNZfj9jx7ur5XXhGlvWOPP0jD0fwDP0AnUZakm1qB0Vde1pI3lF0VNVvpNNKVM7huOParFoTk70l5xwW-ZrlWubmAx1O_iYI3-Jjl9g8F8r_er8gkbUqFhdzRAal-FKFX03yrP6erzJsbAIXlLW-a3M_GKOScVoxHBNJTXKd_xRatv_p1jz9yuTv9RNkzs6vPG_G7kJ13MgSl7PknMLLoX-Nlz7lEvtd-DznG4ILXERRYJMq-_DSHwMtuPtosRQklF-yDs8DIdFmCpWkegXWzKlgDiMJMNSnN6Fo8P3R28_0Iy-QL3QYqJCcuYbzjvPO1dVrtPWhtAwHoIsLRO-8cJ3yuHKrAxBo6FsrQ4dWk_ZOM_vwV4_9OEBkLZ0pXMMV7F42nG15i1T1rI2wiQ53hbwfM0Ccz732DDbbsqRYQYZZhLDDC_gTeTSZmbsj50-DOOpyepmRGhc3XGntddCla2O1Up01pXUVmIEVsDBmjkmK-3SbDlTwNPNMKpbrKHYPgyrNEeKWLVXBdyfRWJDicDjoVQKKWx2hGWH1N2R_uxbaumN8YOOGbMCXqzlakvX3__Fw39v4xHssyTqaAzVAexN4yo8hqv-x3S2HJ8kXfkJ1Foa4g
  priority: 102
  providerName: ProQuest
Title Improved brain tumor classification through DenseNet121 based transfer learning
URI https://link.springer.com/article/10.1007/s12672-025-03501-3
https://www.ncbi.nlm.nih.gov/pubmed/40866773
https://www.proquest.com/docview/3244144579
https://www.proquest.com/docview/3246410977
https://pubmed.ncbi.nlm.nih.gov/PMC12390903
https://doaj.org/article/4e8b5f3b99c9470d90783036169a6976
Volume 16
WOSCitedRecordID wos001560591300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2730-6011
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513305
  issn: 2730-6011
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2730-6011
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513305
  issn: 2730-6011
  databaseCode: 7X7
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 2730-6011
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513305
  issn: 2730-6011
  databaseCode: 7RV
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2730-6011
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513305
  issn: 2730-6011
  databaseCode: BENPR
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 2730-6011
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513305
  issn: 2730-6011
  databaseCode: PIMPY
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BQagXxJtAWRmJG1gkfvtIoRVIdFlVVbWcrNhxSg9kq22W38_YyW67PMSFi6XEljX6xp6Hx54BeIVaQJZRKmqF9FRIGahRvKKoqarQKlOqnI7h9LOeTs18bmfXSn2lO2FDeuABuLciGi9b7q0NVuiysSnuhGK3UrZWqEuT9EWr55ozlWQwS2VLSjm-khneyjGlGU3VW3MwjfItTZQT9v_Jyvz9suQvEdOsiA7vwd3RgiTvBsrvw43YPYA7R2OM_CF8Gc4JYkN8Kv9A-tX3xZKEZCWna0GZE2Qsz0M-oBcbp7GvWEWSQmtIny3ZuCRjPYmzR3ByeHDy_iMdyybQIKzoqVCcBcN5G3jrq8q3tq5jNIzHqMqaiWCCCK32ODMrY7Qo4ZraxhbFnjI-8Mew0y26-BRIU_rSe4az1OimeGl5w3RdsybVN_K8KeD1GkF3MSTHcFdpkBPeDvF2GW_HC9hPIG9GpsTW-Qey243sdv9idwF7axa5cbddOjQKBTqGUtsCXm66cZ-k4EfdxcUqj1Eihdt1AU8Gjm4oEejXKa2RQrPF6y1St3u68285FzcqfpuOugp4s14WV3T9HYtn_wOL57DL8npGWaf3YKdfruILuB1-9OeXywnc1MenqZ3r3JoJ3No_mM6OJ3mr4Nfs09Hs60-_5RE_
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgoAL70eggJHgBBGJ7djxASGgVK26XTis0N6s2HFKDyQlmwXxo_iPjJ1kV8vr1gPXJEqc5PM3M57xfABP0ApkictErHhmYp5lNs4FS2O0VKmtRJ6I0I7h40ROp_l8rj5swY9xL4wvqxw5MRB12Vi_Rv4CDT9H5z-T6tXpl9irRvns6iih0cPi0H3_hiHb4uXBLv7fp5TuvZu93Y8HVYHYcsW7mAtGbc5YZVll0tRUqiicyylzTiQF5Ta33FbSpEjqiXMKCaAslKuQFURuLMPbnoPzSOPSV5DJuVwt6VCvlZJkw9acfoMeFZLGXjI2ZPBitmH-gkrAn1zb3ys0f0nTBuu3d_U_-27X4MrgZpPX_by4DluuvgEXj4ZCgpvwvl9McSUxXiODdMvPTUusDyV87VSAKxk0jMguhvpu6jp8JvFWvyRdcPddSwbRjeNbMDuLt7kN23VTu7tAysQkxlC8S4GxnMkUK6ksClp6ESjDygiejX9cn_YdRPS6V7THh0Z86IAPzSJ440GxutJ3_w4HmvZYD2SiuctNVjGjlFVcJqXyuVh0RVKhCoH-ZQQ7Ixb0QEkLvQZCBI9Xp5FMfIaoqF2zDNcI7msSZAR3egSuRsIx-BVS4gjzDWxuDHXzTH3yKTQsR-9I-fXACJ6PMF6P6-_f4t6_X-MRXNqfHU305GB6eB8u0zDLkPblDmx37dI9gAv2a3eyaB-GaUpAnzG8fwLsInoC
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qLarY8H4EChgJVhA1sR07XiBEmY6oWoYRqlB3Vuw4pQsyJZMB8Wn8HddOMqPhteuCbRIljn18374H4ClqgSxxmYgVz0zMs8zGuWBpjJoqtZXIExHaMXw8kpNJfnKiphvwYzgL48sqB5kYBHU5sz5GvouKn6Pxn0m1W_VlEdPR-NX5l9gzSPlM60Cn0UHk0H3_hu7b_OXBCNf6GaXj_eM3b-OeYSC2XPE25oJRmzNWWVaZNDWVKgrncsqcE0lBuc0tt5U0KQr4xDmFwqAslKtQQojcWIavvQRbEm0M3Fxbe_uT6YdlgId65pQk6w_qdMf1qJA09gSyIZ8XszVlGDgD_mTo_l6v-UvSNujC8bX_eBavw9XeACevux1zAzZcfRO23_UlBrfgfRdmcSUxnj2DtIvPs4ZY72T4qqoAZNKzG5GRq-du4lr8JvH2QEna4Ai4hvR0HKe34fgi_uYObNaz2t0DUiYmMYbiWwr08kymWEllUdDS00MZVkbwfFh9fd71FtGrLtIeKxqxogNWNItgzwNk-aTvCx4uzJpT3YsZzV1usooZpaziMimVz9KikZIKVQi0PCPYGXChe2E11ytQRPBkeRvFjM8dFbWbLcIzgvtqBRnB3Q6Ny5FwdIuFlDjCfA2na0Ndv1OffQqtzNFuUj5SGMGLAdKrcf19Lu7_-zcewzaiWh8dTA4fwBUaNhzqA7kDm22zcA_hsv3ans2bR_2eJaAvGN8_AS4lhCM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+brain+tumor+classification+through+DenseNet121+based+transfer+learning&rft.jtitle=Discover.+Oncology&rft.au=Rasheed%2C+Mehwish&rft.au=Jaffar%2C+Muhammad+Arfan&rft.au=Akram%2C+Arslan&rft.au=Rashid%2C+Javed&rft.date=2025-08-27&rft.issn=2730-6011&rft.eissn=2730-6011&rft.volume=16&rft.issue=1&rft.spage=1645&rft_id=info:doi/10.1007%2Fs12672-025-03501-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2730-6011&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2730-6011&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2730-6011&client=summon