Identifying individuals from their brain natural frequency fingerprints

Neural oscillations are critical for brain function and cognition. Thus, identifying the typical or natural frequencies of the brain is an important step in understanding its functional architecture. Recently, a data-driven algorithm has been developed for mapping these frequencies throughout the co...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific reports Ročník 15; číslo 1; s. 22492 - 13
Hlavní autoři: Arana, Lydia, Herrera-Morueco, Juan José, Santonja, Javier, Capilla, Almudena
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 02.07.2025
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Neural oscillations are critical for brain function and cognition. Thus, identifying the typical or natural frequencies of the brain is an important step in understanding its functional architecture. Recently, a data-driven algorithm has been developed for mapping these frequencies throughout the cortex, free of anatomical and frequency-band constraints, but its robustness is limited to group-level analyses. Here, we adapt this algorithm to improve the single-subject maps of natural frequencies derived from magnetoencephalography and validate them using the fingerprinting technique. Modifications to the original method included (1) increasing the number of power spectra assigned to each k-means cluster, and (2) smoothing across neighboring voxels. Our results show high accuracy in individual identification within single sessions and across sessions separated by over four years. This demonstrates the stability and reliability of the single-subject mapping of natural frequencies, enhancing opportunities for identification of pathological variations in the intrinsic oscillatory activity of individuals.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-025-05632-7