Constructing a predictive model of negative academic emotions in high school students based on machine learning methods

Negative academic emotions reflect the negative experiences that learners encounter during the learning process. This study aims to explore the effectiveness of machine learning algorithms in predicting high school students’ negative academic emotions and analyze the factors influencing these emotio...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific reports Ročník 15; číslo 1; s. 19183 - 11
Hlavní autoři: Ma, Shumeng, Jia, Ning, Wei, Xiuchao, Zhang, Wanyi
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 01.06.2025
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Negative academic emotions reflect the negative experiences that learners encounter during the learning process. This study aims to explore the effectiveness of machine learning algorithms in predicting high school students’ negative academic emotions and analyze the factors influencing these emotions, providing valuable insights for promoting the psychological health of high school students. Based on the microsystem proposed in ecological systems theory, we comprehensively consider individual and school factors that affect students’ negative academic emotions. We randomly selected 1,710 high school students from Hebei Province, China (742 males), who completed the Adolescent Resilience Scale, Multidimensional Multi-Attributional Causality Style Scale, Academic Self-Efficacy Questionnaire, Teacher Discipline Style Scale, and Academic Emotion Scale. We applied various machine learning models, such as logistic regression, naive Bayes, support vector machine, decision tree, random forest, gradient boosting decision tree, and adaptive boosting, to analyze the students’ negative academic emotions. The results show that the random forest model had the best predictive performance, with an accuracy of 83.9%. Subsequently, the importance of variables was determined using the forward feature selection method. We concluded that the most important factors for predicting high school students’ negative academic emotions are affect control, followed by ability attribution, luck attribution, background attribution, self-efficacy for learning behaviors, and self-efficacy for learning abilities. This study validates the applicability and value of machine learning models in predicting negative academic emotions, providing important insights for educational practice. When designing intervention strategies, attention should be given to the development of emotional control and attribution styles to help students better alleviate excessive negative academic emotions.
AbstractList Negative academic emotions reflect the negative experiences that learners encounter during the learning process. This study aims to explore the effectiveness of machine learning algorithms in predicting high school students' negative academic emotions and analyze the factors influencing these emotions, providing valuable insights for promoting the psychological health of high school students. Based on the microsystem proposed in ecological systems theory, we comprehensively consider individual and school factors that affect students' negative academic emotions. We randomly selected 1,710 high school students from Hebei Province, China (742 males), who completed the Adolescent Resilience Scale, Multidimensional Multi-Attributional Causality Style Scale, Academic Self-Efficacy Questionnaire, Teacher Discipline Style Scale, and Academic Emotion Scale. We applied various machine learning models, such as logistic regression, naive Bayes, support vector machine, decision tree, random forest, gradient boosting decision tree, and adaptive boosting, to analyze the students' negative academic emotions. The results show that the random forest model had the best predictive performance, with an accuracy of 83.9%. Subsequently, the importance of variables was determined using the forward feature selection method. We concluded that the most important factors for predicting high school students' negative academic emotions are affect control, followed by ability attribution, luck attribution, background attribution, self-efficacy for learning behaviors, and self-efficacy for learning abilities. This study validates the applicability and value of machine learning models in predicting negative academic emotions, providing important insights for educational practice. When designing intervention strategies, attention should be given to the development of emotional control and attribution styles to help students better alleviate excessive negative academic emotions.Negative academic emotions reflect the negative experiences that learners encounter during the learning process. This study aims to explore the effectiveness of machine learning algorithms in predicting high school students' negative academic emotions and analyze the factors influencing these emotions, providing valuable insights for promoting the psychological health of high school students. Based on the microsystem proposed in ecological systems theory, we comprehensively consider individual and school factors that affect students' negative academic emotions. We randomly selected 1,710 high school students from Hebei Province, China (742 males), who completed the Adolescent Resilience Scale, Multidimensional Multi-Attributional Causality Style Scale, Academic Self-Efficacy Questionnaire, Teacher Discipline Style Scale, and Academic Emotion Scale. We applied various machine learning models, such as logistic regression, naive Bayes, support vector machine, decision tree, random forest, gradient boosting decision tree, and adaptive boosting, to analyze the students' negative academic emotions. The results show that the random forest model had the best predictive performance, with an accuracy of 83.9%. Subsequently, the importance of variables was determined using the forward feature selection method. We concluded that the most important factors for predicting high school students' negative academic emotions are affect control, followed by ability attribution, luck attribution, background attribution, self-efficacy for learning behaviors, and self-efficacy for learning abilities. This study validates the applicability and value of machine learning models in predicting negative academic emotions, providing important insights for educational practice. When designing intervention strategies, attention should be given to the development of emotional control and attribution styles to help students better alleviate excessive negative academic emotions.
Negative academic emotions reflect the negative experiences that learners encounter during the learning process. This study aims to explore the effectiveness of machine learning algorithms in predicting high school students’ negative academic emotions and analyze the factors influencing these emotions, providing valuable insights for promoting the psychological health of high school students. Based on the microsystem proposed in ecological systems theory, we comprehensively consider individual and school factors that affect students’ negative academic emotions. We randomly selected 1,710 high school students from Hebei Province, China (742 males), who completed the Adolescent Resilience Scale, Multidimensional Multi-Attributional Causality Style Scale, Academic Self-Efficacy Questionnaire, Teacher Discipline Style Scale, and Academic Emotion Scale. We applied various machine learning models, such as logistic regression, naive Bayes, support vector machine, decision tree, random forest, gradient boosting decision tree, and adaptive boosting, to analyze the students’ negative academic emotions. The results show that the random forest model had the best predictive performance, with an accuracy of 83.9%. Subsequently, the importance of variables was determined using the forward feature selection method. We concluded that the most important factors for predicting high school students’ negative academic emotions are affect control, followed by ability attribution, luck attribution, background attribution, self-efficacy for learning behaviors, and self-efficacy for learning abilities. This study validates the applicability and value of machine learning models in predicting negative academic emotions, providing important insights for educational practice. When designing intervention strategies, attention should be given to the development of emotional control and attribution styles to help students better alleviate excessive negative academic emotions.
Abstract Negative academic emotions reflect the negative experiences that learners encounter during the learning process. This study aims to explore the effectiveness of machine learning algorithms in predicting high school students’ negative academic emotions and analyze the factors influencing these emotions, providing valuable insights for promoting the psychological health of high school students. Based on the microsystem proposed in ecological systems theory, we comprehensively consider individual and school factors that affect students’ negative academic emotions. We randomly selected 1,710 high school students from Hebei Province, China (742 males), who completed the Adolescent Resilience Scale, Multidimensional Multi-Attributional Causality Style Scale, Academic Self-Efficacy Questionnaire, Teacher Discipline Style Scale, and Academic Emotion Scale. We applied various machine learning models, such as logistic regression, naive Bayes, support vector machine, decision tree, random forest, gradient boosting decision tree, and adaptive boosting, to analyze the students’ negative academic emotions. The results show that the random forest model had the best predictive performance, with an accuracy of 83.9%. Subsequently, the importance of variables was determined using the forward feature selection method. We concluded that the most important factors for predicting high school students’ negative academic emotions are affect control, followed by ability attribution, luck attribution, background attribution, self-efficacy for learning behaviors, and self-efficacy for learning abilities. This study validates the applicability and value of machine learning models in predicting negative academic emotions, providing important insights for educational practice. When designing intervention strategies, attention should be given to the development of emotional control and attribution styles to help students better alleviate excessive negative academic emotions.
ArticleNumber 19183
Author Zhang, Wanyi
Wei, Xiuchao
Ma, Shumeng
Jia, Ning
Author_xml – sequence: 1
  givenname: Shumeng
  surname: Ma
  fullname: Ma, Shumeng
  organization: College of Education, Hebei Normal University
– sequence: 2
  givenname: Ning
  surname: Jia
  fullname: Jia, Ning
  email: jianing@hebtu.edu.cn
  organization: College of Education, Hebei Normal University
– sequence: 3
  givenname: Xiuchao
  surname: Wei
  fullname: Wei, Xiuchao
  organization: College of Education, Hebei Normal University, Qin Huangdao
– sequence: 4
  givenname: Wanyi
  surname: Zhang
  fullname: Zhang, Wanyi
  organization: Dongying Shengli
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40451895$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhiNUREvpH-CALHHhEsg4zodPCK34qFSJC5ytiT1JvErsxU6K-Pd4N6W0HPDF9viZd8b2-zw7c95Rlr2E4i0UZfsuCqhkmxe8ygsBos7rJ9kFL0SV85Lzswfr8-wqxn2RRsWlAPksOxfpDFpZXWQ_d97FJax6sW5gyA6BjE2bW2KzNzQx3zNHA54iqNHQbDWj2S82JTLr2GiHkUU9ej-xuKyG3BJZh5EM847NqEfriE2EwR1LzLSM3sQX2dMep0hXd_Nl9v3Tx2-7L_nN18_Xuw83uRZSLDnXXQPQ9aZqWw0VCl5DK3reNTVAX9ZA2HNo6w4RRUM98kpLjQiy5QZEUV5m15uu8bhXh2BnDL-UR6tOAR8GhWGxeiIFWgDytmyFJgFNIzXvOlEjGFkU3By13m9ah7Wbyeh004DTI9HHJ86OavC3CjjwRtQyKby5Uwj-x0pxUbONmqYJHfk1qpKDaHgFskno63_QvV-DS291okRdcFkn6tXDlu57-fPBCeAboIOPMVB_j0ChjkZSm5FUMpI6GUkdVcstKSbYDRT-1v5P1m_JCMt7
Cites_doi 10.1037/0022-0663.98.3.583
10.1007/s10518-012-9350-2
10.1111/jcal.12642
10.1080/02699930244000039
10.1080/01443410.2022.2059652
10.1037/1528-3542.7.2.336
10.18637/jss.v080.i01
10.1348/0007126042369802
10.1177/1745691617693393
10.59429/esp.v9i7.6213
10.1111/j.2044-8279.2012.02084.x
10.1016/j.nicl.2019.101676
10.1080/02699931.2016.1204989
10.1037/pspp0000448
10.1016/j.learninstruc.2007.09.001
10.1007/s12646-013-0193-y
10.1001/archgenpsychiatry.2009.85
10.57096/edunity.v3i1.217
10.1007/BF00289625
10.20982/tqmp.12.3.p175
10.1016/j.lindif.2022.102128
10.1613/jair.953
10.1007/978-3-319-65094-4_15
10.1016/j.learninstruc.2005.07.006
10.1016/B978-012372545-5/50003-4
10.1146/annurev.psych.51.1.171
10.1207/S15326985EP3702_4
10.1007/s10648-006-9029-9
10.3724/SP.J.1042.2018.01054
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-04146-6
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database (ProQuest)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database


MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 11
ExternalDocumentID oai_doaj_org_article_1c41a28384ce41779c2bb46a1d9002d0
PMC12127469
40451895
10_1038_s41598_025_04146_6
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Planning Office of Philosophy and Social Science
  grantid: No.22FJKB019
  funderid: http://dx.doi.org/10.13039/501100010240
– fundername: National Planning Office of Philosophy and Social Science
  grantid: No.22FJKB019
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PMFND
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
PUEGO
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c494t-2cb711bfd588c15a426184f2b7611f361eaf2186baaa47efa25c9caa1982d1403
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001500912700018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:42:04 EDT 2025
Tue Nov 04 02:01:53 EST 2025
Sat Nov 01 14:39:17 EDT 2025
Tue Oct 07 09:09:42 EDT 2025
Thu Aug 28 04:48:20 EDT 2025
Sat Nov 29 07:50:59 EST 2025
Mon Jun 02 01:55:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Machine learning algorithms
High school students
Negative academic emotions
Prediction
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-2cb711bfd588c15a426184f2b7611f361eaf2186baaa47efa25c9caa1982d1403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/1c41a28384ce41779c2bb46a1d9002d0
PMID 40451895
PQID 3214460296
PQPubID 2041939
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_1c41a28384ce41779c2bb46a1d9002d0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12127469
proquest_miscellaneous_3214725197
proquest_journals_3214460296
pubmed_primary_40451895
crossref_primary_10_1038_s41598_025_04146_6
springer_journals_10_1038_s41598_025_04146_6
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References 4146_CR5
4146_CR4
YQ Hu (4146_CR20) 2008; 40
R Pekrun (4146_CR48) 2017; 31
MV Covington (4146_CR60) 2000; 51
A Efklides (4146_CR10) 2005; 15
J Tezcan (4146_CR50) 2012; 10
4146_CR18
NV Chawla (4146_CR53) 2002; 16
R Pekrun (4146_CR62) 2006; 98
XF Ding (4146_CR40) 2021; 44
4146_CR58
R Pekrun (4146_CR3) 2006; 18
WX Zhang (4146_CR15) 2009; 17
J Lin (4146_CR31) 2020; 4
GR Jiang (4146_CR61) 2021; 53
T Sorensen (4146_CR55) 2015; 12
T Hailikari (4146_CR24) 2022; 42
WK Pan (4146_CR56) 2023; 11
AR Handayani (4146_CR17) 2024; 3
4146_CR25
JM Lu (4146_CR12) 2006; 30
WE Copeland (4146_CR13) 2009; 66
R Pekrun (4146_CR1) 2002; 37
4146_CR30
P Bürkner (4146_CR54) 2017; 080
4146_CR33
Y Gao (4146_CR38) 2021; 29
YQ Hu (4146_CR45) 2008; 40
T Zhang (4146_CR23) 2015; 23
DY Wang (4146_CR59) 2017; 33
4146_CR34
XK Xu (4146_CR37) 2020; 43
S Erkut (4146_CR26) 1983; 9
X Lin (4146_CR51) 2022; 17
LM Al-Qaisy (4146_CR7) 2011; 3
M Alamgir (4146_CR16) 2024; 5
ZC Liang (4146_CR52) 2020; 27
B Andrews (4146_CR8) 2004; 95
CT Diao (4146_CR28) 2020; 18
DY Wang (4146_CR39) 2017; 46
ZL Mei (4146_CR21) 2024; 9
L Tang (4146_CR32) 2009; 18
WB Deng (4146_CR35) 2022; 38
N Peng (4146_CR14) 2003; 4
D Putwain (4146_CR29) 2013; 83
MY Sun (4146_CR44) 2008; 55
AC Frenzel (4146_CR2) 2007; 17
4146_CR49
JL Gowin (4146_CR41) 2019; 21
4146_CR46
4146_CR47
FQ Zhao (4146_CR19) 2018; 26
MW Eysenck (4146_CR9) 2007; 7
ZC Jiang (4146_CR22) 2017; 25
HX Ma (4146_CR27) 2013; 33
M Ma (4146_CR43) 2022; 43
R Pekrun (4146_CR6) 2023; 124
T Yarkoni (4146_CR42) 2017; 12
YQ Wang (4146_CR36) 2022; 94
LI Li (4146_CR57) 2013; 40
J Meinhardt (4146_CR11) 2003; 17
References_xml – ident: 4146_CR34
– volume: 98
  start-page: 583
  year: 2006
  ident: 4146_CR62
  publication-title: J. Educ. Psychol.
  doi: 10.1037/0022-0663.98.3.583
– volume: 4
  start-page: 89
  year: 2020
  ident: 4146_CR31
  publication-title: Chin. J. Special Educ.
– volume: 10
  start-page: 1205
  year: 2012
  ident: 4146_CR50
  publication-title: Bull. Earthq. Eng.
  doi: 10.1007/s10518-012-9350-2
– volume: 5
  start-page: 64
  year: 2024
  ident: 4146_CR16
  publication-title: J. Dev. Social Sci.
– volume: 38
  start-page: 707
  year: 2022
  ident: 4146_CR35
  publication-title: J. Comput. Assist. Learn.
  doi: 10.1111/jcal.12642
– volume: 33
  start-page: 56
  year: 2017
  ident: 4146_CR59
  publication-title: Psychol. Dev. Educ.
– volume: 17
  start-page: 477
  year: 2003
  ident: 4146_CR11
  publication-title: Cogn. Emot.
  doi: 10.1080/02699930244000039
– volume: 42
  start-page: 626
  year: 2022
  ident: 4146_CR24
  publication-title: Educational Psychol.
  doi: 10.1080/01443410.2022.2059652
– volume: 7
  start-page: 336
  year: 2007
  ident: 4146_CR9
  publication-title: Emotion
  doi: 10.1037/1528-3542.7.2.336
– volume: 080
  start-page: 1
  year: 2017
  ident: 4146_CR54
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v080.i01
– ident: 4146_CR18
– volume: 95
  start-page: 509
  year: 2004
  ident: 4146_CR8
  publication-title: Br. J. Psychol.
  doi: 10.1348/0007126042369802
– volume: 12
  start-page: 1100
  year: 2017
  ident: 4146_CR42
  publication-title: Perspect. Psychol. Sci.
  doi: 10.1177/1745691617693393
– ident: 4146_CR58
– volume: 46
  start-page: 935
  year: 2017
  ident: 4146_CR39
  publication-title: J. Hygiene Res.
– volume: 4
  start-page: 163
  year: 2003
  ident: 4146_CR14
  publication-title: Shanghai J. Prev. Med.
– volume: 18
  start-page: 456
  year: 2009
  ident: 4146_CR32
  publication-title: Chin. J. Behav. Med. Brain Sci.
– volume: 9
  start-page: 6213
  year: 2024
  ident: 4146_CR21
  publication-title: Environ. Social Psychol.
  doi: 10.59429/esp.v9i7.6213
– volume: 83
  start-page: 633
  year: 2013
  ident: 4146_CR29
  publication-title: Br. J. Educ. Psychol.
  doi: 10.1111/j.2044-8279.2012.02084.x
– volume: 21
  start-page: 7
  year: 2019
  ident: 4146_CR41
  publication-title: NeuroImage-Clin
  doi: 10.1016/j.nicl.2019.101676
– volume: 44
  start-page: 330
  year: 2021
  ident: 4146_CR40
  publication-title: J. Psychol. Sci.
– volume: 31
  start-page: 1268
  year: 2017
  ident: 4146_CR48
  publication-title: Cognition Emot.
  doi: 10.1080/02699931.2016.1204989
– ident: 4146_CR49
– volume: 124
  start-page: 145
  year: 2023
  ident: 4146_CR6
  publication-title: J. Personal. Soc. Psychol.
  doi: 10.1037/pspp0000448
– volume: 17
  start-page: 478
  year: 2007
  ident: 4146_CR2
  publication-title: Learn. Instruction
  doi: 10.1016/j.learninstruc.2007.09.001
– ident: 4146_CR30
  doi: 10.1007/s12646-013-0193-y
– volume: 66
  start-page: 764
  year: 2009
  ident: 4146_CR13
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archgenpsychiatry.2009.85
– volume: 3
  start-page: 96
  year: 2011
  ident: 4146_CR7
  publication-title: Int. J. Psychol. Counselling
– volume: 3
  start-page: 103
  year: 2024
  ident: 4146_CR17
  publication-title: Edunity Kajian Ilmu Sosial Dan. Pendidikan
  doi: 10.57096/edunity.v3i1.217
– volume: 9
  start-page: 217
  year: 1983
  ident: 4146_CR26
  publication-title: Sex. Roles
  doi: 10.1007/BF00289625
– volume: 30
  start-page: 1291
  year: 2006
  ident: 4146_CR12
  publication-title: J. Psychol. Sci.
– volume: 12
  start-page: 175
  year: 2015
  ident: 4146_CR55
  publication-title: Quant. Methods Psychol.
  doi: 10.20982/tqmp.12.3.p175
– ident: 4146_CR46
– volume: 43
  start-page: 763
  year: 2022
  ident: 4146_CR43
  publication-title: Chin. J. School Health
– volume: 33
  start-page: 37
  year: 2013
  ident: 4146_CR27
  publication-title: Theory Pract. Educ.
– volume: 94
  start-page: 10
  year: 2022
  ident: 4146_CR36
  publication-title: Learn. Individual Differences
  doi: 10.1016/j.lindif.2022.102128
– ident: 4146_CR5
– volume: 16
  start-page: 321
  year: 2002
  ident: 4146_CR53
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
– ident: 4146_CR25
  doi: 10.1007/978-3-319-65094-4_15
– volume: 25
  start-page: 290
  year: 2017
  ident: 4146_CR22
  publication-title: China J. Health Psychol.
– volume: 23
  start-page: 1510
  year: 2015
  ident: 4146_CR23
  publication-title: China J. Health Psychol.
– volume: 29
  start-page: 629
  year: 2021
  ident: 4146_CR38
  publication-title: China J. Health Psychol.
– volume: 40
  start-page: 497
  year: 2013
  ident: 4146_CR57
  publication-title: Mod. Prev. Med.
– volume: 17
  start-page: 764
  year: 2022
  ident: 4146_CR51
  publication-title: J. Chengdu Med. Coll.
– volume: 17
  start-page: 736
  year: 2009
  ident: 4146_CR15
  publication-title: Adv. Psychol. Sci.
– volume: 43
  start-page: 1341
  year: 2020
  ident: 4146_CR37
  publication-title: J. Psychol. Sci.
– volume: 15
  start-page: 377
  year: 2005
  ident: 4146_CR10
  publication-title: Learn. Instruction
  doi: 10.1016/j.learninstruc.2005.07.006
– ident: 4146_CR33
– volume: 55
  start-page: 611
  year: 2008
  ident: 4146_CR44
  publication-title: Psychol. Test.
– ident: 4146_CR4
  doi: 10.1016/B978-012372545-5/50003-4
– ident: 4146_CR47
– volume: 40
  start-page: 902
  year: 2008
  ident: 4146_CR20
  publication-title: Acta Physiol. Sinica
– volume: 53
  start-page: 182
  year: 2021
  ident: 4146_CR61
  publication-title: Acta Physiol. Sinica
– volume: 51
  start-page: 171
  year: 2000
  ident: 4146_CR60
  publication-title: Ann. Rev. Psychol.
  doi: 10.1146/annurev.psych.51.1.171
– volume: 37
  start-page: 91
  year: 2002
  ident: 4146_CR1
  publication-title: Educ. Psychol.
  doi: 10.1207/S15326985EP3702_4
– volume: 18
  start-page: 315
  year: 2006
  ident: 4146_CR3
  publication-title: Educational Psychol. Rev.
  doi: 10.1007/s10648-006-9029-9
– volume: 18
  start-page: 524
  year: 2020
  ident: 4146_CR28
  publication-title: Stud. Psychol. Behav.
– volume: 40
  start-page: 902
  year: 2008
  ident: 4146_CR45
  publication-title: Acta Physiol. Sinica
– volume: 11
  start-page: 577
  year: 2023
  ident: 4146_CR56
  publication-title: Psychology:Techniques Appl.
– volume: 26
  start-page: 1054
  year: 2018
  ident: 4146_CR19
  publication-title: Adv. Psychol. Sci.
  doi: 10.3724/SP.J.1042.2018.01054
– volume: 27
  start-page: 289
  year: 2020
  ident: 4146_CR52
  publication-title: Chin. J. Hosp. Stat.
SSID ssj0000529419
Score 2.4562342
Snippet Negative academic emotions reflect the negative experiences that learners encounter during the learning process. This study aims to explore the effectiveness...
Abstract Negative academic emotions reflect the negative experiences that learners encounter during the learning process. This study aims to explore the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 19183
SubjectTerms 631/477
631/477/2811
Academic Performance - psychology
Adolescent
Adolescents
China
Decision trees
Emotions
Female
High school students
Humanities and Social Sciences
Humans
Learning
Learning algorithms
Logistic Models
Machine learning
Machine learning algorithms
Male
multidisciplinary
Negative academic emotions
Negativism
Prediction
Prediction models
Predictive Learning Models - standards
Predictive Learning Models - statistics & numerical data
Psychological Tests
Random Forest
Regression analysis
Reproducibility of Results
Resilience, Psychological
Science
Science (multidisciplinary)
Secondary school students
Secondary schools
Self Efficacy
Students
Students - psychology
System theory
Systems Theory
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB5BFyQuvB-BBRmJG0RbJ45jnxCLdsWpWiGQ9mb5WXogKc0C4t_jsd2uyuvCNbYiO_NyZsbfB_BCyI75EKL3872rmWl9bWRoa266GE6EC4KbRDbRLxbi_FyelYTbVNoqtz4xOWo3WsyRH7UJ22veSP56_aVG1iisrhYKjatwgEhlbAYHxyeLs_e7LAvWsRiV5bbMvBVHU4xYeKus6eo5i26i5nsRKQH3_-m0-XvT5C-V0xSQTm_971Zuw81yFCVvsu7cgSt-uAvXMznlj3vwHbk8M7rssCSarDdY00HvSBJ9DhkDGfwyAYcTXdrsic-0QBNZDQShkMmUYD7JlDE0J4Jh05FxIJ9TG6cnhbdiSTKZ9XQfPp6efHj7ri40DbVlkl3UjTU9pSa4TghLO40_ZYKFxvSc0tBy6nVA5iujtWa9D7rprLRaUykah3CBD2A2jIN_BCS-0ArNWG8dwto7gSClgkvdeiOMsBW83IpKrTMah0pV9FaoLFgVBauSYBWv4BiluZuJSNrpwbhZqmKYilpGdTxjCWY9o30vbWMM45o6GYOFm1dwuBWiKuY9qUsJVvB8NxwNE6stevDj1zynT_eCK3iYVWe3EoaoPtFMKhB7SrW31P2RYfUpgX9ThORnXFbwaqt_l-v6-7d4_O9tPIEbTTIJTC8dwixql38K1-y3i9W0eVas6id5aiwR
  priority: 102
  providerName: ProQuest
Title Constructing a predictive model of negative academic emotions in high school students based on machine learning methods
URI https://link.springer.com/article/10.1038/s41598-025-04146-6
https://www.ncbi.nlm.nih.gov/pubmed/40451895
https://www.proquest.com/docview/3214460296
https://www.proquest.com/docview/3214725197
https://pubmed.ncbi.nlm.nih.gov/PMC12127469
https://doaj.org/article/1c41a28384ce41779c2bb46a1d9002d0
Volume 15
WOSCitedRecordID wos001500912700018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PbxQhFMdftNXES-Nvx9YNJt500oVhBji2po0eupkYTdYTAQa2e3C26VSN_708mN12_REvXjgMZIbwHjwY4PMFeCVVzX0IcfTzoiu5rXxpVajKxtYxnMguyMYmsQkxm8n5XLU3pL7wTFjGA-eGO6SOUxNjoOTOcyqEcsxa3hjaqdiZu7Raj7OeG4upTPVmilM13pKZVvJwiJEKb5OxupzyODyUzVYkSsD-P80yfz8s-cuOaQpEp_dhb5xBkqNc8wdwy_cP4W7WlPzxCL6jBGeGwvYLYsjFJW7F4KBGkuoNWQXS-0XifRMzno4nPqv5DGTZEyQYkyHROcmQ0ZcDwWjXkVVPvqTTl56MchMLkjWoh8fw6fTk49t35aiuUDqu-FXJnBWU2tDVUjpaG1xLSR6YFQ2loWqoNwEFq6wxhgsfDKudcsZQJVmHlL8nsNOvev8MSHyhk4Zz4Tqk0XcS2aKyUabyVlrpCni9bml9kSEaOm1-V1Jnu-hoF53sopsCjtEYm5IIwE4Polvo0S30v9yigIO1KfXYKwddJT7clKn4jZeb7NifcJPE9H71NZcR6TpvAU-z5Tc14Qjjid5dgNzyia2qbuf0y_PE7KZI0ueNKuDN2n2u6_X3tnj-P9piH-6x5Pf47-gAdqIP-hdwx327Wg6XE7gt5iKlcgK7xyez9sMkdaaYnrEWUxHT3fb9Wfv5J6wOIuo
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VAoILny0NFDASnCDqOnFi-4AQX1WrlhWHIu3N2I6z7IFkuylU_VP8Rjx2stXydeuB6yaKnOzzG9sz8x7AUyEL5uras5_jVcpM7lIj6zwtTeHDiahqUZpgNsHHYzGZyI9r8GPohcGyyoETA1FXrcUz8p08aHuNMlm-mh-n6BqF2dXBQiPC4sCdnfotW_dy_53_f59l2e77o7d7ae8qkFom2UmaWcMpNXVVCGFpoXEPIVidGb-hp3VeUqdrNGoyWmvGXa2zwkqrtd-dZxWq2_nnXoLLnsc5lpDxCV-e6WDWjFHZ9-aMcrHT-fiIPWxZkY6YJ6W0XIl_wSbgT2vb30s0f8nThvC3e_N_-3C34Ea_0Cav48y4DWuuuQNXo_Xm2V04RafSqJ3bTIkm8wVmrJD7STAHIm1NGjcNsuhE900ExEXTo47MGoJCz6QLIqakiwqhHcFFQUXahnwNRaqO9K4cUxKtursN-HQhb70J603buC0g_oFWaMa4rVC0vxIowSpKqXNnhBE2gecDNNQ8ao2oUCOQCxWBpDyQVACSKhN4g-hZ3ok64eGHdjFVPe0oahnVfgUpmHWMci5tZgwrNa2kD4XVKIHtATSqJ69OnSMmgSfLy552MJekG9d-i_fw0PWcwL0I1eVIGGoWeRJIQKyAeGWoq1ea2ZcgbU7RcICVMoEXA97Px_X3b3H_36_xGK7tHX04VIf744MHcD0L0xEP0rZh3SPNPYQr9vvJrFs8CvOZwOeLngc_AcO2h6I
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAX3o9AASPBCaJdO05iHxACyoqqsNoDSL25tmMveyBZNoWqf41fh8dJtlpetx64JpHlJN_M2J6Z7wN4ImTOnffB-7mySrnJXGqkz9LC5CGciMqLwkSxiXI6FQcHcrYFP4ZeGCyrHHxidNRVY_GMfJRFbq8xk8XI92URs93Jy-XXFBWkMNM6yGl0ENl3J8dh-9a-2NsN__opY5O3H9-8S3uFgdRyyY9SZk1JqfFVLoSlucb9hOCembC5pz4rqNMeRZuM1pqXzmuWW2m1Djt1ViHTXRj3HJwveZ6jdX1gs_X5DmbQOJV9n844E6M2xErsZ2N5OubBQaXFRiyMkgF_Wuf-Xq75S842hsLJ1f_5I16DK_0CnLzqLOY6bLn6BlzsJDlPbsIxKph2nLr1nGiyXGEmC2MCiaJBpPGkdvNIl05031xAXCeG1JJFTZAAmrSR3JS0HXNoS3CxUJGmJl9i8aojvVrHnHQS3u0t-HQmb30btuumdneBhAGt0JyXtkIy_0ogNasopM6cEUbYBJ4NMFHLjoNExdqBTKgOVCqASkVQqSKB14ik9ZPIHx4vNKu56t2RopZTHVaWglvHaVlKy4zhhaaVDCGyGiewMwBI9U6tVafoSeDx-nZwR5hj0rVrvnXPlLEbOoE7HWzXM-HIZRScQwJiA9AbU928Uy8-R8pzikIEvJAJPB-wfzqvv3-Le_9-jUdwKcBfvd-b7t-HyyxaJp6v7cB2AJp7ABfs96NFu3oYTZvA4VmbwU873JBv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constructing+a+predictive+model+of+negative+academic+emotions+in+high+school+students+based+on+machine+learning+methods&rft.jtitle=Scientific+reports&rft.au=Ma%2C+Shumeng&rft.au=Jia%2C+Ning&rft.au=Wei%2C+Xiuchao&rft.au=Zhang%2C+Wanyi&rft.date=2025-06-01&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=19183&rft_id=info:doi/10.1038%2Fs41598-025-04146-6&rft_id=info%3Apmid%2F40451895&rft.externalDocID=40451895
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon