Constructing a predictive model of negative academic emotions in high school students based on machine learning methods
Negative academic emotions reflect the negative experiences that learners encounter during the learning process. This study aims to explore the effectiveness of machine learning algorithms in predicting high school students’ negative academic emotions and analyze the factors influencing these emotio...
Uloženo v:
| Vydáno v: | Scientific reports Ročník 15; číslo 1; s. 19183 - 11 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
01.06.2025
Nature Publishing Group Nature Portfolio |
| Témata: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Negative academic emotions reflect the negative experiences that learners encounter during the learning process. This study aims to explore the effectiveness of machine learning algorithms in predicting high school students’ negative academic emotions and analyze the factors influencing these emotions, providing valuable insights for promoting the psychological health of high school students. Based on the microsystem proposed in ecological systems theory, we comprehensively consider individual and school factors that affect students’ negative academic emotions. We randomly selected 1,710 high school students from Hebei Province, China (742 males), who completed the Adolescent Resilience Scale, Multidimensional Multi-Attributional Causality Style Scale, Academic Self-Efficacy Questionnaire, Teacher Discipline Style Scale, and Academic Emotion Scale. We applied various machine learning models, such as logistic regression, naive Bayes, support vector machine, decision tree, random forest, gradient boosting decision tree, and adaptive boosting, to analyze the students’ negative academic emotions. The results show that the random forest model had the best predictive performance, with an accuracy of 83.9%. Subsequently, the importance of variables was determined using the forward feature selection method. We concluded that the most important factors for predicting high school students’ negative academic emotions are affect control, followed by ability attribution, luck attribution, background attribution, self-efficacy for learning behaviors, and self-efficacy for learning abilities. This study validates the applicability and value of machine learning models in predicting negative academic emotions, providing important insights for educational practice. When designing intervention strategies, attention should be given to the development of emotional control and attribution styles to help students better alleviate excessive negative academic emotions. |
|---|---|
| AbstractList | Negative academic emotions reflect the negative experiences that learners encounter during the learning process. This study aims to explore the effectiveness of machine learning algorithms in predicting high school students' negative academic emotions and analyze the factors influencing these emotions, providing valuable insights for promoting the psychological health of high school students. Based on the microsystem proposed in ecological systems theory, we comprehensively consider individual and school factors that affect students' negative academic emotions. We randomly selected 1,710 high school students from Hebei Province, China (742 males), who completed the Adolescent Resilience Scale, Multidimensional Multi-Attributional Causality Style Scale, Academic Self-Efficacy Questionnaire, Teacher Discipline Style Scale, and Academic Emotion Scale. We applied various machine learning models, such as logistic regression, naive Bayes, support vector machine, decision tree, random forest, gradient boosting decision tree, and adaptive boosting, to analyze the students' negative academic emotions. The results show that the random forest model had the best predictive performance, with an accuracy of 83.9%. Subsequently, the importance of variables was determined using the forward feature selection method. We concluded that the most important factors for predicting high school students' negative academic emotions are affect control, followed by ability attribution, luck attribution, background attribution, self-efficacy for learning behaviors, and self-efficacy for learning abilities. This study validates the applicability and value of machine learning models in predicting negative academic emotions, providing important insights for educational practice. When designing intervention strategies, attention should be given to the development of emotional control and attribution styles to help students better alleviate excessive negative academic emotions.Negative academic emotions reflect the negative experiences that learners encounter during the learning process. This study aims to explore the effectiveness of machine learning algorithms in predicting high school students' negative academic emotions and analyze the factors influencing these emotions, providing valuable insights for promoting the psychological health of high school students. Based on the microsystem proposed in ecological systems theory, we comprehensively consider individual and school factors that affect students' negative academic emotions. We randomly selected 1,710 high school students from Hebei Province, China (742 males), who completed the Adolescent Resilience Scale, Multidimensional Multi-Attributional Causality Style Scale, Academic Self-Efficacy Questionnaire, Teacher Discipline Style Scale, and Academic Emotion Scale. We applied various machine learning models, such as logistic regression, naive Bayes, support vector machine, decision tree, random forest, gradient boosting decision tree, and adaptive boosting, to analyze the students' negative academic emotions. The results show that the random forest model had the best predictive performance, with an accuracy of 83.9%. Subsequently, the importance of variables was determined using the forward feature selection method. We concluded that the most important factors for predicting high school students' negative academic emotions are affect control, followed by ability attribution, luck attribution, background attribution, self-efficacy for learning behaviors, and self-efficacy for learning abilities. This study validates the applicability and value of machine learning models in predicting negative academic emotions, providing important insights for educational practice. When designing intervention strategies, attention should be given to the development of emotional control and attribution styles to help students better alleviate excessive negative academic emotions. Negative academic emotions reflect the negative experiences that learners encounter during the learning process. This study aims to explore the effectiveness of machine learning algorithms in predicting high school students’ negative academic emotions and analyze the factors influencing these emotions, providing valuable insights for promoting the psychological health of high school students. Based on the microsystem proposed in ecological systems theory, we comprehensively consider individual and school factors that affect students’ negative academic emotions. We randomly selected 1,710 high school students from Hebei Province, China (742 males), who completed the Adolescent Resilience Scale, Multidimensional Multi-Attributional Causality Style Scale, Academic Self-Efficacy Questionnaire, Teacher Discipline Style Scale, and Academic Emotion Scale. We applied various machine learning models, such as logistic regression, naive Bayes, support vector machine, decision tree, random forest, gradient boosting decision tree, and adaptive boosting, to analyze the students’ negative academic emotions. The results show that the random forest model had the best predictive performance, with an accuracy of 83.9%. Subsequently, the importance of variables was determined using the forward feature selection method. We concluded that the most important factors for predicting high school students’ negative academic emotions are affect control, followed by ability attribution, luck attribution, background attribution, self-efficacy for learning behaviors, and self-efficacy for learning abilities. This study validates the applicability and value of machine learning models in predicting negative academic emotions, providing important insights for educational practice. When designing intervention strategies, attention should be given to the development of emotional control and attribution styles to help students better alleviate excessive negative academic emotions. Abstract Negative academic emotions reflect the negative experiences that learners encounter during the learning process. This study aims to explore the effectiveness of machine learning algorithms in predicting high school students’ negative academic emotions and analyze the factors influencing these emotions, providing valuable insights for promoting the psychological health of high school students. Based on the microsystem proposed in ecological systems theory, we comprehensively consider individual and school factors that affect students’ negative academic emotions. We randomly selected 1,710 high school students from Hebei Province, China (742 males), who completed the Adolescent Resilience Scale, Multidimensional Multi-Attributional Causality Style Scale, Academic Self-Efficacy Questionnaire, Teacher Discipline Style Scale, and Academic Emotion Scale. We applied various machine learning models, such as logistic regression, naive Bayes, support vector machine, decision tree, random forest, gradient boosting decision tree, and adaptive boosting, to analyze the students’ negative academic emotions. The results show that the random forest model had the best predictive performance, with an accuracy of 83.9%. Subsequently, the importance of variables was determined using the forward feature selection method. We concluded that the most important factors for predicting high school students’ negative academic emotions are affect control, followed by ability attribution, luck attribution, background attribution, self-efficacy for learning behaviors, and self-efficacy for learning abilities. This study validates the applicability and value of machine learning models in predicting negative academic emotions, providing important insights for educational practice. When designing intervention strategies, attention should be given to the development of emotional control and attribution styles to help students better alleviate excessive negative academic emotions. |
| ArticleNumber | 19183 |
| Author | Zhang, Wanyi Wei, Xiuchao Ma, Shumeng Jia, Ning |
| Author_xml | – sequence: 1 givenname: Shumeng surname: Ma fullname: Ma, Shumeng organization: College of Education, Hebei Normal University – sequence: 2 givenname: Ning surname: Jia fullname: Jia, Ning email: jianing@hebtu.edu.cn organization: College of Education, Hebei Normal University – sequence: 3 givenname: Xiuchao surname: Wei fullname: Wei, Xiuchao organization: College of Education, Hebei Normal University, Qin Huangdao – sequence: 4 givenname: Wanyi surname: Zhang fullname: Zhang, Wanyi organization: Dongying Shengli |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40451895$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kk1v1DAQhiNUREvpH-CALHHhEsg4zodPCK34qFSJC5ytiT1JvErsxU6K-Pd4N6W0HPDF9viZd8b2-zw7c95Rlr2E4i0UZfsuCqhkmxe8ygsBos7rJ9kFL0SV85Lzswfr8-wqxn2RRsWlAPksOxfpDFpZXWQ_d97FJax6sW5gyA6BjE2bW2KzNzQx3zNHA54iqNHQbDWj2S82JTLr2GiHkUU9ej-xuKyG3BJZh5EM847NqEfriE2EwR1LzLSM3sQX2dMep0hXd_Nl9v3Tx2-7L_nN18_Xuw83uRZSLDnXXQPQ9aZqWw0VCl5DK3reNTVAX9ZA2HNo6w4RRUM98kpLjQiy5QZEUV5m15uu8bhXh2BnDL-UR6tOAR8GhWGxeiIFWgDytmyFJgFNIzXvOlEjGFkU3By13m9ah7Wbyeh004DTI9HHJ86OavC3CjjwRtQyKby5Uwj-x0pxUbONmqYJHfk1qpKDaHgFskno63_QvV-DS291okRdcFkn6tXDlu57-fPBCeAboIOPMVB_j0ChjkZSm5FUMpI6GUkdVcstKSbYDRT-1v5P1m_JCMt7 |
| Cites_doi | 10.1037/0022-0663.98.3.583 10.1007/s10518-012-9350-2 10.1111/jcal.12642 10.1080/02699930244000039 10.1080/01443410.2022.2059652 10.1037/1528-3542.7.2.336 10.18637/jss.v080.i01 10.1348/0007126042369802 10.1177/1745691617693393 10.59429/esp.v9i7.6213 10.1111/j.2044-8279.2012.02084.x 10.1016/j.nicl.2019.101676 10.1080/02699931.2016.1204989 10.1037/pspp0000448 10.1016/j.learninstruc.2007.09.001 10.1007/s12646-013-0193-y 10.1001/archgenpsychiatry.2009.85 10.57096/edunity.v3i1.217 10.1007/BF00289625 10.20982/tqmp.12.3.p175 10.1016/j.lindif.2022.102128 10.1613/jair.953 10.1007/978-3-319-65094-4_15 10.1016/j.learninstruc.2005.07.006 10.1016/B978-012372545-5/50003-4 10.1146/annurev.psych.51.1.171 10.1207/S15326985EP3702_4 10.1007/s10648-006-9029-9 10.3724/SP.J.1042.2018.01054 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-025-04146-6 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database (ProQuest) Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 11 |
| ExternalDocumentID | oai_doaj_org_article_1c41a28384ce41779c2bb46a1d9002d0 PMC12127469 40451895 10_1038_s41598_025_04146_6 |
| Genre | Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GrantInformation_xml | – fundername: National Planning Office of Philosophy and Social Science grantid: No.22FJKB019 funderid: http://dx.doi.org/10.13039/501100010240 – fundername: National Planning Office of Philosophy and Social Science grantid: No.22FJKB019 |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PMFND PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX AFFHD CITATION PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM PUEGO 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c494t-2cb711bfd588c15a426184f2b7611f361eaf2186baaa47efa25c9caa1982d1403 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001500912700018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:42:04 EDT 2025 Tue Nov 04 02:01:53 EST 2025 Sat Nov 01 14:39:17 EDT 2025 Tue Oct 07 09:09:42 EDT 2025 Thu Aug 28 04:48:20 EDT 2025 Sat Nov 29 07:50:59 EST 2025 Mon Jun 02 01:55:21 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Machine learning algorithms High school students Negative academic emotions Prediction |
| Language | English |
| License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c494t-2cb711bfd588c15a426184f2b7611f361eaf2186baaa47efa25c9caa1982d1403 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/1c41a28384ce41779c2bb46a1d9002d0 |
| PMID | 40451895 |
| PQID | 3214460296 |
| PQPubID | 2041939 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1c41a28384ce41779c2bb46a1d9002d0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12127469 proquest_miscellaneous_3214725197 proquest_journals_3214460296 pubmed_primary_40451895 crossref_primary_10_1038_s41598_025_04146_6 springer_journals_10_1038_s41598_025_04146_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-01 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | 4146_CR5 4146_CR4 YQ Hu (4146_CR20) 2008; 40 R Pekrun (4146_CR48) 2017; 31 MV Covington (4146_CR60) 2000; 51 A Efklides (4146_CR10) 2005; 15 J Tezcan (4146_CR50) 2012; 10 4146_CR18 NV Chawla (4146_CR53) 2002; 16 R Pekrun (4146_CR62) 2006; 98 XF Ding (4146_CR40) 2021; 44 4146_CR58 R Pekrun (4146_CR3) 2006; 18 WX Zhang (4146_CR15) 2009; 17 J Lin (4146_CR31) 2020; 4 GR Jiang (4146_CR61) 2021; 53 T Sorensen (4146_CR55) 2015; 12 T Hailikari (4146_CR24) 2022; 42 WK Pan (4146_CR56) 2023; 11 AR Handayani (4146_CR17) 2024; 3 4146_CR25 JM Lu (4146_CR12) 2006; 30 WE Copeland (4146_CR13) 2009; 66 R Pekrun (4146_CR1) 2002; 37 4146_CR30 P Bürkner (4146_CR54) 2017; 080 4146_CR33 Y Gao (4146_CR38) 2021; 29 YQ Hu (4146_CR45) 2008; 40 T Zhang (4146_CR23) 2015; 23 DY Wang (4146_CR59) 2017; 33 4146_CR34 XK Xu (4146_CR37) 2020; 43 S Erkut (4146_CR26) 1983; 9 X Lin (4146_CR51) 2022; 17 LM Al-Qaisy (4146_CR7) 2011; 3 M Alamgir (4146_CR16) 2024; 5 ZC Liang (4146_CR52) 2020; 27 B Andrews (4146_CR8) 2004; 95 CT Diao (4146_CR28) 2020; 18 DY Wang (4146_CR39) 2017; 46 ZL Mei (4146_CR21) 2024; 9 L Tang (4146_CR32) 2009; 18 WB Deng (4146_CR35) 2022; 38 N Peng (4146_CR14) 2003; 4 D Putwain (4146_CR29) 2013; 83 MY Sun (4146_CR44) 2008; 55 AC Frenzel (4146_CR2) 2007; 17 4146_CR49 JL Gowin (4146_CR41) 2019; 21 4146_CR46 4146_CR47 FQ Zhao (4146_CR19) 2018; 26 MW Eysenck (4146_CR9) 2007; 7 ZC Jiang (4146_CR22) 2017; 25 HX Ma (4146_CR27) 2013; 33 M Ma (4146_CR43) 2022; 43 R Pekrun (4146_CR6) 2023; 124 T Yarkoni (4146_CR42) 2017; 12 YQ Wang (4146_CR36) 2022; 94 LI Li (4146_CR57) 2013; 40 J Meinhardt (4146_CR11) 2003; 17 |
| References_xml | – ident: 4146_CR34 – volume: 98 start-page: 583 year: 2006 ident: 4146_CR62 publication-title: J. Educ. Psychol. doi: 10.1037/0022-0663.98.3.583 – volume: 4 start-page: 89 year: 2020 ident: 4146_CR31 publication-title: Chin. J. Special Educ. – volume: 10 start-page: 1205 year: 2012 ident: 4146_CR50 publication-title: Bull. Earthq. Eng. doi: 10.1007/s10518-012-9350-2 – volume: 5 start-page: 64 year: 2024 ident: 4146_CR16 publication-title: J. Dev. Social Sci. – volume: 38 start-page: 707 year: 2022 ident: 4146_CR35 publication-title: J. Comput. Assist. Learn. doi: 10.1111/jcal.12642 – volume: 33 start-page: 56 year: 2017 ident: 4146_CR59 publication-title: Psychol. Dev. Educ. – volume: 17 start-page: 477 year: 2003 ident: 4146_CR11 publication-title: Cogn. Emot. doi: 10.1080/02699930244000039 – volume: 42 start-page: 626 year: 2022 ident: 4146_CR24 publication-title: Educational Psychol. doi: 10.1080/01443410.2022.2059652 – volume: 7 start-page: 336 year: 2007 ident: 4146_CR9 publication-title: Emotion doi: 10.1037/1528-3542.7.2.336 – volume: 080 start-page: 1 year: 2017 ident: 4146_CR54 publication-title: J. Stat. Softw. doi: 10.18637/jss.v080.i01 – ident: 4146_CR18 – volume: 95 start-page: 509 year: 2004 ident: 4146_CR8 publication-title: Br. J. Psychol. doi: 10.1348/0007126042369802 – volume: 12 start-page: 1100 year: 2017 ident: 4146_CR42 publication-title: Perspect. Psychol. Sci. doi: 10.1177/1745691617693393 – ident: 4146_CR58 – volume: 46 start-page: 935 year: 2017 ident: 4146_CR39 publication-title: J. Hygiene Res. – volume: 4 start-page: 163 year: 2003 ident: 4146_CR14 publication-title: Shanghai J. Prev. Med. – volume: 18 start-page: 456 year: 2009 ident: 4146_CR32 publication-title: Chin. J. Behav. Med. Brain Sci. – volume: 9 start-page: 6213 year: 2024 ident: 4146_CR21 publication-title: Environ. Social Psychol. doi: 10.59429/esp.v9i7.6213 – volume: 83 start-page: 633 year: 2013 ident: 4146_CR29 publication-title: Br. J. Educ. Psychol. doi: 10.1111/j.2044-8279.2012.02084.x – volume: 21 start-page: 7 year: 2019 ident: 4146_CR41 publication-title: NeuroImage-Clin doi: 10.1016/j.nicl.2019.101676 – volume: 44 start-page: 330 year: 2021 ident: 4146_CR40 publication-title: J. Psychol. Sci. – volume: 31 start-page: 1268 year: 2017 ident: 4146_CR48 publication-title: Cognition Emot. doi: 10.1080/02699931.2016.1204989 – ident: 4146_CR49 – volume: 124 start-page: 145 year: 2023 ident: 4146_CR6 publication-title: J. Personal. Soc. Psychol. doi: 10.1037/pspp0000448 – volume: 17 start-page: 478 year: 2007 ident: 4146_CR2 publication-title: Learn. Instruction doi: 10.1016/j.learninstruc.2007.09.001 – ident: 4146_CR30 doi: 10.1007/s12646-013-0193-y – volume: 66 start-page: 764 year: 2009 ident: 4146_CR13 publication-title: Arch. Gen. Psychiatry doi: 10.1001/archgenpsychiatry.2009.85 – volume: 3 start-page: 96 year: 2011 ident: 4146_CR7 publication-title: Int. J. Psychol. Counselling – volume: 3 start-page: 103 year: 2024 ident: 4146_CR17 publication-title: Edunity Kajian Ilmu Sosial Dan. Pendidikan doi: 10.57096/edunity.v3i1.217 – volume: 9 start-page: 217 year: 1983 ident: 4146_CR26 publication-title: Sex. Roles doi: 10.1007/BF00289625 – volume: 30 start-page: 1291 year: 2006 ident: 4146_CR12 publication-title: J. Psychol. Sci. – volume: 12 start-page: 175 year: 2015 ident: 4146_CR55 publication-title: Quant. Methods Psychol. doi: 10.20982/tqmp.12.3.p175 – ident: 4146_CR46 – volume: 43 start-page: 763 year: 2022 ident: 4146_CR43 publication-title: Chin. J. School Health – volume: 33 start-page: 37 year: 2013 ident: 4146_CR27 publication-title: Theory Pract. Educ. – volume: 94 start-page: 10 year: 2022 ident: 4146_CR36 publication-title: Learn. Individual Differences doi: 10.1016/j.lindif.2022.102128 – ident: 4146_CR5 – volume: 16 start-page: 321 year: 2002 ident: 4146_CR53 publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.953 – ident: 4146_CR25 doi: 10.1007/978-3-319-65094-4_15 – volume: 25 start-page: 290 year: 2017 ident: 4146_CR22 publication-title: China J. Health Psychol. – volume: 23 start-page: 1510 year: 2015 ident: 4146_CR23 publication-title: China J. Health Psychol. – volume: 29 start-page: 629 year: 2021 ident: 4146_CR38 publication-title: China J. Health Psychol. – volume: 40 start-page: 497 year: 2013 ident: 4146_CR57 publication-title: Mod. Prev. Med. – volume: 17 start-page: 764 year: 2022 ident: 4146_CR51 publication-title: J. Chengdu Med. Coll. – volume: 17 start-page: 736 year: 2009 ident: 4146_CR15 publication-title: Adv. Psychol. Sci. – volume: 43 start-page: 1341 year: 2020 ident: 4146_CR37 publication-title: J. Psychol. Sci. – volume: 15 start-page: 377 year: 2005 ident: 4146_CR10 publication-title: Learn. Instruction doi: 10.1016/j.learninstruc.2005.07.006 – ident: 4146_CR33 – volume: 55 start-page: 611 year: 2008 ident: 4146_CR44 publication-title: Psychol. Test. – ident: 4146_CR4 doi: 10.1016/B978-012372545-5/50003-4 – ident: 4146_CR47 – volume: 40 start-page: 902 year: 2008 ident: 4146_CR20 publication-title: Acta Physiol. Sinica – volume: 53 start-page: 182 year: 2021 ident: 4146_CR61 publication-title: Acta Physiol. Sinica – volume: 51 start-page: 171 year: 2000 ident: 4146_CR60 publication-title: Ann. Rev. Psychol. doi: 10.1146/annurev.psych.51.1.171 – volume: 37 start-page: 91 year: 2002 ident: 4146_CR1 publication-title: Educ. Psychol. doi: 10.1207/S15326985EP3702_4 – volume: 18 start-page: 315 year: 2006 ident: 4146_CR3 publication-title: Educational Psychol. Rev. doi: 10.1007/s10648-006-9029-9 – volume: 18 start-page: 524 year: 2020 ident: 4146_CR28 publication-title: Stud. Psychol. Behav. – volume: 40 start-page: 902 year: 2008 ident: 4146_CR45 publication-title: Acta Physiol. Sinica – volume: 11 start-page: 577 year: 2023 ident: 4146_CR56 publication-title: Psychology:Techniques Appl. – volume: 26 start-page: 1054 year: 2018 ident: 4146_CR19 publication-title: Adv. Psychol. Sci. doi: 10.3724/SP.J.1042.2018.01054 – volume: 27 start-page: 289 year: 2020 ident: 4146_CR52 publication-title: Chin. J. Hosp. Stat. |
| SSID | ssj0000529419 |
| Score | 2.4562342 |
| Snippet | Negative academic emotions reflect the negative experiences that learners encounter during the learning process. This study aims to explore the effectiveness... Abstract Negative academic emotions reflect the negative experiences that learners encounter during the learning process. This study aims to explore the... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 19183 |
| SubjectTerms | 631/477 631/477/2811 Academic Performance - psychology Adolescent Adolescents China Decision trees Emotions Female High school students Humanities and Social Sciences Humans Learning Learning algorithms Logistic Models Machine learning Machine learning algorithms Male multidisciplinary Negative academic emotions Negativism Prediction Prediction models Predictive Learning Models - standards Predictive Learning Models - statistics & numerical data Psychological Tests Random Forest Regression analysis Reproducibility of Results Resilience, Psychological Science Science (multidisciplinary) Secondary school students Secondary schools Self Efficacy Students Students - psychology System theory Systems Theory |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB5BFyQuvB-BBRmJG0RbJ45jnxCLdsWpWiGQ9mb5WXogKc0C4t_jsd2uyuvCNbYiO_NyZsbfB_BCyI75EKL3872rmWl9bWRoa266GE6EC4KbRDbRLxbi_FyelYTbVNoqtz4xOWo3WsyRH7UJ22veSP56_aVG1iisrhYKjatwgEhlbAYHxyeLs_e7LAvWsRiV5bbMvBVHU4xYeKus6eo5i26i5nsRKQH3_-m0-XvT5C-V0xSQTm_971Zuw81yFCVvsu7cgSt-uAvXMznlj3vwHbk8M7rssCSarDdY00HvSBJ9DhkDGfwyAYcTXdrsic-0QBNZDQShkMmUYD7JlDE0J4Jh05FxIJ9TG6cnhbdiSTKZ9XQfPp6efHj7ri40DbVlkl3UjTU9pSa4TghLO40_ZYKFxvSc0tBy6nVA5iujtWa9D7rprLRaUykah3CBD2A2jIN_BCS-0ArNWG8dwto7gSClgkvdeiOMsBW83IpKrTMah0pV9FaoLFgVBauSYBWv4BiluZuJSNrpwbhZqmKYilpGdTxjCWY9o30vbWMM45o6GYOFm1dwuBWiKuY9qUsJVvB8NxwNE6stevDj1zynT_eCK3iYVWe3EoaoPtFMKhB7SrW31P2RYfUpgX9ThORnXFbwaqt_l-v6-7d4_O9tPIEbTTIJTC8dwixql38K1-y3i9W0eVas6id5aiwR priority: 102 providerName: ProQuest |
| Title | Constructing a predictive model of negative academic emotions in high school students based on machine learning methods |
| URI | https://link.springer.com/article/10.1038/s41598-025-04146-6 https://www.ncbi.nlm.nih.gov/pubmed/40451895 https://www.proquest.com/docview/3214460296 https://www.proquest.com/docview/3214725197 https://pubmed.ncbi.nlm.nih.gov/PMC12127469 https://doaj.org/article/1c41a28384ce41779c2bb46a1d9002d0 |
| Volume | 15 |
| WOSCitedRecordID | wos001500912700018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PbxQhFMdftNXES-Nvx9YNJt500oVhBji2po0eupkYTdYTAQa2e3C26VSN_708mN12_REvXjgMZIbwHjwY4PMFeCVVzX0IcfTzoiu5rXxpVajKxtYxnMguyMYmsQkxm8n5XLU3pL7wTFjGA-eGO6SOUxNjoOTOcyqEcsxa3hjaqdiZu7Raj7OeG4upTPVmilM13pKZVvJwiJEKb5OxupzyODyUzVYkSsD-P80yfz8s-cuOaQpEp_dhb5xBkqNc8wdwy_cP4W7WlPzxCL6jBGeGwvYLYsjFJW7F4KBGkuoNWQXS-0XifRMzno4nPqv5DGTZEyQYkyHROcmQ0ZcDwWjXkVVPvqTTl56MchMLkjWoh8fw6fTk49t35aiuUDqu-FXJnBWU2tDVUjpaG1xLSR6YFQ2loWqoNwEFq6wxhgsfDKudcsZQJVmHlL8nsNOvev8MSHyhk4Zz4Tqk0XcS2aKyUabyVlrpCni9bml9kSEaOm1-V1Jnu-hoF53sopsCjtEYm5IIwE4Polvo0S30v9yigIO1KfXYKwddJT7clKn4jZeb7NifcJPE9H71NZcR6TpvAU-z5Tc14Qjjid5dgNzyia2qbuf0y_PE7KZI0ueNKuDN2n2u6_X3tnj-P9piH-6x5Pf47-gAdqIP-hdwx327Wg6XE7gt5iKlcgK7xyez9sMkdaaYnrEWUxHT3fb9Wfv5J6wOIuo |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VAoILny0NFDASnCDqOnFi-4AQX1WrlhWHIu3N2I6z7IFkuylU_VP8Rjx2stXydeuB6yaKnOzzG9sz8x7AUyEL5uras5_jVcpM7lIj6zwtTeHDiahqUZpgNsHHYzGZyI9r8GPohcGyyoETA1FXrcUz8p08aHuNMlm-mh-n6BqF2dXBQiPC4sCdnfotW_dy_53_f59l2e77o7d7ae8qkFom2UmaWcMpNXVVCGFpoXEPIVidGb-hp3VeUqdrNGoyWmvGXa2zwkqrtd-dZxWq2_nnXoLLnsc5lpDxCV-e6WDWjFHZ9-aMcrHT-fiIPWxZkY6YJ6W0XIl_wSbgT2vb30s0f8nThvC3e_N_-3C34Ea_0Cav48y4DWuuuQNXo_Xm2V04RafSqJ3bTIkm8wVmrJD7STAHIm1NGjcNsuhE900ExEXTo47MGoJCz6QLIqakiwqhHcFFQUXahnwNRaqO9K4cUxKtursN-HQhb70J603buC0g_oFWaMa4rVC0vxIowSpKqXNnhBE2gecDNNQ8ao2oUCOQCxWBpDyQVACSKhN4g-hZ3ok64eGHdjFVPe0oahnVfgUpmHWMci5tZgwrNa2kD4XVKIHtATSqJ69OnSMmgSfLy552MJekG9d-i_fw0PWcwL0I1eVIGGoWeRJIQKyAeGWoq1ea2ZcgbU7RcICVMoEXA97Px_X3b3H_36_xGK7tHX04VIf744MHcD0L0xEP0rZh3SPNPYQr9vvJrFs8CvOZwOeLngc_AcO2h6I |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAX3o9AASPBCaJdO05iHxACyoqqsNoDSL25tmMveyBZNoWqf41fh8dJtlpetx64JpHlJN_M2J6Z7wN4ImTOnffB-7mySrnJXGqkz9LC5CGciMqLwkSxiXI6FQcHcrYFP4ZeGCyrHHxidNRVY_GMfJRFbq8xk8XI92URs93Jy-XXFBWkMNM6yGl0ENl3J8dh-9a-2NsN__opY5O3H9-8S3uFgdRyyY9SZk1JqfFVLoSlucb9hOCembC5pz4rqNMeRZuM1pqXzmuWW2m1Djt1ViHTXRj3HJwveZ6jdX1gs_X5DmbQOJV9n844E6M2xErsZ2N5OubBQaXFRiyMkgF_Wuf-Xq75S842hsLJ1f_5I16DK_0CnLzqLOY6bLn6BlzsJDlPbsIxKph2nLr1nGiyXGEmC2MCiaJBpPGkdvNIl05031xAXCeG1JJFTZAAmrSR3JS0HXNoS3CxUJGmJl9i8aojvVrHnHQS3u0t-HQmb30btuumdneBhAGt0JyXtkIy_0ogNasopM6cEUbYBJ4NMFHLjoNExdqBTKgOVCqASkVQqSKB14ik9ZPIHx4vNKu56t2RopZTHVaWglvHaVlKy4zhhaaVDCGyGiewMwBI9U6tVafoSeDx-nZwR5hj0rVrvnXPlLEbOoE7HWzXM-HIZRScQwJiA9AbU928Uy8-R8pzikIEvJAJPB-wfzqvv3-Le_9-jUdwKcBfvd-b7t-HyyxaJp6v7cB2AJp7ABfs96NFu3oYTZvA4VmbwU873JBv |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constructing+a+predictive+model+of+negative+academic+emotions+in+high+school+students+based+on+machine+learning+methods&rft.jtitle=Scientific+reports&rft.au=Ma%2C+Shumeng&rft.au=Jia%2C+Ning&rft.au=Wei%2C+Xiuchao&rft.au=Zhang%2C+Wanyi&rft.date=2025-06-01&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=19183&rft_id=info:doi/10.1038%2Fs41598-025-04146-6&rft_id=info%3Apmid%2F40451895&rft.externalDocID=40451895 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |