A novel passive shimming optimization method of MRI magnet based on a PSA-SQP hybrid algorithm

In Magnetic Resonance Imaging (MRI), achieving a highly uniform main magnetic field (B 0 ) is essential for producing detailed images of human anatomy. Passive Shimming (PS) is a technique used to enhance B 0 uniformity by strategically arranging shimming iron pieces inside the magnet bore. Traditio...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific reports Ročník 15; číslo 1; s. 28419 - 10
Hlavní autoři: Zhao, Jie, Zhu, Minhua, Xia, Ling, Fan, Yifeng, Liu, Feng
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 04.08.2025
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In Magnetic Resonance Imaging (MRI), achieving a highly uniform main magnetic field (B 0 ) is essential for producing detailed images of human anatomy. Passive Shimming (PS) is a technique used to enhance B 0 uniformity by strategically arranging shimming iron pieces inside the magnet bore. Traditionally, PS optimization has been implemented using Linear Programming (LP), posing challenges in balancing field quality with the quantity of iron used for shimming. This work aims to improve the efficacy of passive shimming by optimally balancing field quality, iron usage, and harmonics, leading to a smoother field profile. This study introduces a hybrid algorithm that combines a Pattern Search Algorithm with Sequential Quadratic Programming (PSA-SQP) to enhance shimming performance. Additionally, a regularization method is employed to effectively reduce the use of iron pieces. The magnetic field improved from 462 ppm to 6.7 ppm, utilizing merely 0.8 kg of iron in a 400 mm Diameter of Spherical Volume (DSV) of a 7T MRI magnet. Compared to traditional LP optimization techniques, this method notably enhanced magnetic field uniformity by 98.5% and reduced the iron weight requirement by 91.7%, showcasing impressive performance. The proposed new passive shimming algorithm is more effective in improving magnetic field uniformity for MRI applications.
AbstractList In Magnetic Resonance Imaging (MRI), achieving a highly uniform main magnetic field (B0) is essential for producing detailed images of human anatomy. Passive Shimming (PS) is a technique used to enhance B0 uniformity by strategically arranging shimming iron pieces inside the magnet bore. Traditionally, PS optimization has been implemented using Linear Programming (LP), posing challenges in balancing field quality with the quantity of iron used for shimming. This work aims to improve the efficacy of passive shimming by optimally balancing field quality, iron usage, and harmonics, leading to a smoother field profile. This study introduces a hybrid algorithm that combines a Pattern Search Algorithm with Sequential Quadratic Programming (PSA-SQP) to enhance shimming performance. Additionally, a regularization method is employed to effectively reduce the use of iron pieces. The magnetic field improved from 462 ppm to 6.7 ppm, utilizing merely 0.8 kg of iron in a 400 mm Diameter of Spherical Volume (DSV) of a 7T MRI magnet. Compared to traditional LP optimization techniques, this method notably enhanced magnetic field uniformity by 98.5% and reduced the iron weight requirement by 91.7%, showcasing impressive performance. The proposed new passive shimming algorithm is more effective in improving magnetic field uniformity for MRI applications.
In Magnetic Resonance Imaging (MRI), achieving a highly uniform main magnetic field (B 0 ) is essential for producing detailed images of human anatomy. Passive Shimming (PS) is a technique used to enhance B 0 uniformity by strategically arranging shimming iron pieces inside the magnet bore. Traditionally, PS optimization has been implemented using Linear Programming (LP), posing challenges in balancing field quality with the quantity of iron used for shimming. This work aims to improve the efficacy of passive shimming by optimally balancing field quality, iron usage, and harmonics, leading to a smoother field profile. This study introduces a hybrid algorithm that combines a Pattern Search Algorithm with Sequential Quadratic Programming (PSA-SQP) to enhance shimming performance. Additionally, a regularization method is employed to effectively reduce the use of iron pieces. The magnetic field improved from 462 ppm to 6.7 ppm, utilizing merely 0.8 kg of iron in a 400 mm Diameter of Spherical Volume (DSV) of a 7T MRI magnet. Compared to traditional LP optimization techniques, this method notably enhanced magnetic field uniformity by 98.5% and reduced the iron weight requirement by 91.7%, showcasing impressive performance. The proposed new passive shimming algorithm is more effective in improving magnetic field uniformity for MRI applications.
In Magnetic Resonance Imaging (MRI), achieving a highly uniform main magnetic field (B ) is essential for producing detailed images of human anatomy. Passive Shimming (PS) is a technique used to enhance B uniformity by strategically arranging shimming iron pieces inside the magnet bore. Traditionally, PS optimization has been implemented using Linear Programming (LP), posing challenges in balancing field quality with the quantity of iron used for shimming. This work aims to improve the efficacy of passive shimming by optimally balancing field quality, iron usage, and harmonics, leading to a smoother field profile. This study introduces a hybrid algorithm that combines a Pattern Search Algorithm with Sequential Quadratic Programming (PSA-SQP) to enhance shimming performance. Additionally, a regularization method is employed to effectively reduce the use of iron pieces. The magnetic field improved from 462 ppm to 6.7 ppm, utilizing merely 0.8 kg of iron in a 400 mm Diameter of Spherical Volume (DSV) of a 7T MRI magnet. Compared to traditional LP optimization techniques, this method notably enhanced magnetic field uniformity by 98.5% and reduced the iron weight requirement by 91.7%, showcasing impressive performance. The proposed new passive shimming algorithm is more effective in improving magnetic field uniformity for MRI applications.
In Magnetic Resonance Imaging (MRI), achieving a highly uniform main magnetic field (B0) is essential for producing detailed images of human anatomy. Passive Shimming (PS) is a technique used to enhance B0 uniformity by strategically arranging shimming iron pieces inside the magnet bore. Traditionally, PS optimization has been implemented using Linear Programming (LP), posing challenges in balancing field quality with the quantity of iron used for shimming. This work aims to improve the efficacy of passive shimming by optimally balancing field quality, iron usage, and harmonics, leading to a smoother field profile. This study introduces a hybrid algorithm that combines a Pattern Search Algorithm with Sequential Quadratic Programming (PSA-SQP) to enhance shimming performance. Additionally, a regularization method is employed to effectively reduce the use of iron pieces. The magnetic field improved from 462 ppm to 6.7 ppm, utilizing merely 0.8 kg of iron in a 400 mm Diameter of Spherical Volume (DSV) of a 7T MRI magnet. Compared to traditional LP optimization techniques, this method notably enhanced magnetic field uniformity by 98.5% and reduced the iron weight requirement by 91.7%, showcasing impressive performance. The proposed new passive shimming algorithm is more effective in improving magnetic field uniformity for MRI applications.In Magnetic Resonance Imaging (MRI), achieving a highly uniform main magnetic field (B0) is essential for producing detailed images of human anatomy. Passive Shimming (PS) is a technique used to enhance B0 uniformity by strategically arranging shimming iron pieces inside the magnet bore. Traditionally, PS optimization has been implemented using Linear Programming (LP), posing challenges in balancing field quality with the quantity of iron used for shimming. This work aims to improve the efficacy of passive shimming by optimally balancing field quality, iron usage, and harmonics, leading to a smoother field profile. This study introduces a hybrid algorithm that combines a Pattern Search Algorithm with Sequential Quadratic Programming (PSA-SQP) to enhance shimming performance. Additionally, a regularization method is employed to effectively reduce the use of iron pieces. The magnetic field improved from 462 ppm to 6.7 ppm, utilizing merely 0.8 kg of iron in a 400 mm Diameter of Spherical Volume (DSV) of a 7T MRI magnet. Compared to traditional LP optimization techniques, this method notably enhanced magnetic field uniformity by 98.5% and reduced the iron weight requirement by 91.7%, showcasing impressive performance. The proposed new passive shimming algorithm is more effective in improving magnetic field uniformity for MRI applications.
Abstract In Magnetic Resonance Imaging (MRI), achieving a highly uniform main magnetic field (B0) is essential for producing detailed images of human anatomy. Passive Shimming (PS) is a technique used to enhance B0 uniformity by strategically arranging shimming iron pieces inside the magnet bore. Traditionally, PS optimization has been implemented using Linear Programming (LP), posing challenges in balancing field quality with the quantity of iron used for shimming. This work aims to improve the efficacy of passive shimming by optimally balancing field quality, iron usage, and harmonics, leading to a smoother field profile. This study introduces a hybrid algorithm that combines a Pattern Search Algorithm with Sequential Quadratic Programming (PSA-SQP) to enhance shimming performance. Additionally, a regularization method is employed to effectively reduce the use of iron pieces. The magnetic field improved from 462 ppm to 6.7 ppm, utilizing merely 0.8 kg of iron in a 400 mm Diameter of Spherical Volume (DSV) of a 7T MRI magnet. Compared to traditional LP optimization techniques, this method notably enhanced magnetic field uniformity by 98.5% and reduced the iron weight requirement by 91.7%, showcasing impressive performance. The proposed new passive shimming algorithm is more effective in improving magnetic field uniformity for MRI applications.
In Magnetic Resonance Imaging (MRI), achieving a highly uniform main magnetic field (B0) is essential for producing detailed images of human anatomy. Passive Shimming (PS) is a technique used to enhance B0 uniformity by strategically arranging shimming iron pieces inside the magnet bore. Traditionally, PS optimization has been implemented using Linear Programming (LP), posing challenges in balancing field quality with the quantity of iron used for shimming. This work aims to improve the efficacy of passive shimming by optimally balancing field quality, iron usage, and harmonics, leading to a smoother field profile. This study introduces a hybrid algorithm that combines a Pattern Search Algorithm with Sequential Quadratic Programming (PSA-SQP) to enhance shimming performance. Additionally, a regularization method is employed to effectively reduce the use of iron pieces. The magnetic field improved from 462 ppm to 6.7 ppm, utilizing merely 0.8 kg of iron in a 400 mm Diameter of Spherical Volume (DSV) of a 7T MRI magnet. Compared to traditional LP optimization techniques, this method notably enhanced magnetic field uniformity by 98.5% and reduced the iron weight requirement by 91.7%, showcasing impressive performance. The proposed new passive shimming algorithm is more effective in improving magnetic field uniformity for MRI applications.
ArticleNumber 28419
Author Xia, Ling
Fan, Yifeng
Zhu, Minhua
Liu, Feng
Zhao, Jie
Author_xml – sequence: 1
  givenname: Jie
  surname: Zhao
  fullname: Zhao, Jie
  organization: School of Medical Imaging, Hangzhou Medical College
– sequence: 2
  givenname: Minhua
  surname: Zhu
  fullname: Zhu, Minhua
  organization: School of Medical Imaging, Hangzhou Medical College
– sequence: 3
  givenname: Ling
  surname: Xia
  fullname: Xia, Ling
  organization: Key Laboratory of Biomedical Engineering, Ministry of Education, Zhejiang University
– sequence: 4
  givenname: Yifeng
  surname: Fan
  fullname: Fan, Yifeng
  email: fanyifeng@hmc.edu.cn
  organization: School of Medical Imaging, Hangzhou Medical College
– sequence: 5
  givenname: Feng
  surname: Liu
  fullname: Liu, Feng
  organization: School of Information Technology and Electrical Engineering, The University of Queensland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40760142$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhiNUREvpH-CALHHhEvBnEp_QqoKyUhGFwhXLjidZrxJ7sbMrtb8e76aUlgO-2Jp55p3R-H1eHPngoSheEvyWYNa8S5wI2ZSYipKwWpCSPylOKOaipIzSowfv4-IspTXOR1DJiXxWHHNcV5hwelL8XCAfdjCgjU7J7QCllRtH53sUNpMb3a2eXPBohGkVLAod-vxtiUbde5iQ0QlyzCONrq4X5fXXK7S6MdFZpIc-RDetxhfF004PCc7u7tPix8cP388_lZdfLpbni8uy5ZJPJTWGgOFWdsJKQ00lCVhadxW1hFR1xwQQU_OayY4wboUVmGJhMBG00gI6dlosZ10b9Fptoht1vFFBO3UIhNgrHSfXDqC01sTqupEN4LxDYjSjTDaiAWtqw5us9X7W2mzNCLYFP0U9PBJ9nPFupfqwU2S_bUJkVnhzpxDDry2kSY0utTAM2kPYJpUbVlUtKcMZff0Pug7b6POuDtR-tGpPvXo40v0sf_4xA3QG2hhSitDdIwSrvV_U7BeV_aIOflE8F7G5KGXY9xD_9v5P1W_yT8B8
Cites_doi 10.1109/20.119968
10.1109/TASC.2017.2732285
10.1002/mp.16538
10.1109/TMAG.2007.916267
10.1109/TMAG.2005.845080
10.1109/TASC.2011.2112358
10.1201/9780203758731-1
10.1007/s10948-019-05241-2
10.1109/ASEMD.2015.7453633
10.1016/j.jmr.2015.05.004
10.1016/j.neucom.2015.07.025
10.1007/s11431-013-5169-6
10.1016/j.asoc.2012.12.025
10.1002/mrm.1910010107
10.1016/j.pnsc.2009.04.007
10.1016/j.jmr.2015.11.019
10.1002/mp.17403
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-13751-4
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 10
ExternalDocumentID oai_doaj_org_article_aaa1da7898e04151ba3239858edb7b48
PMC12322119
40760142
10_1038_s41598_025_13751_4
Genre Journal Article
GrantInformation_xml – fundername: Zhejiang Provincial Natural Science Foundation of China
  grantid: No. LTGY23H180019
– fundername: Basic Scientific Research Funds of Department of Education of Zhejiang Province
  grantid: KYZD202103
– fundername: National Science Foundation of China
  grantid: Grant No. 52293423; Grant No. 52293423
– fundername: National Science Foundation of China
  grantid: Grant No. 52293423
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AARCD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c494t-2bb1eb4d9f5d9b2b691ed27f62d1167f35e1b74739f134d5d50205b01526a5ef3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001544985800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:21:53 EDT 2025
Tue Nov 04 02:03:58 EST 2025
Fri Sep 05 15:22:22 EDT 2025
Tue Oct 07 09:17:18 EDT 2025
Mon Aug 11 01:32:18 EDT 2025
Sat Nov 29 07:31:46 EST 2025
Tue Aug 05 01:10:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Pattern search algorithm
Passive shimming
Magnetic resonance imaging
Sequential quadratic programming
Hybrid optimization
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-2bb1eb4d9f5d9b2b691ed27f62d1167f35e1b74739f134d5d50205b01526a5ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/aaa1da7898e04151ba3239858edb7b48
PMID 40760142
PQID 3236323960
PQPubID 2041939
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_aaa1da7898e04151ba3239858edb7b48
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12322119
proquest_miscellaneous_3236679230
proquest_journals_3236323960
pubmed_primary_40760142
crossref_primary_10_1038_s41598_025_13751_4
springer_journals_10_1038_s41598_025_13751_4
PublicationCentury 2000
PublicationDate 2025-08-04
PublicationDateYYYYMMDD 2025-08-04
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-04
  day: 04
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References H Qu (13751_CR8) 2020; 33
X You (13751_CR12) 2013; 56
VE Eregin (13751_CR3) 1992; 28
F Liu (13751_CR5) 2011; 21
X Kong (13751_CR7) 2015; 257
F Kang (13751_CR22) 2013; 13
YY Yao (13751_CR21) 2005; 41
13751_CR24
Z Jin (13751_CR14) 2009; 19
X Kong (13751_CR9) 2016; 263
W Wang (13751_CR17) 2023; 50
FX Li (13751_CR16) 2016; 26
M Abe (13751_CR10) 2017; 27
J Zhao (13751_CR18) 2024; 58
Y Zhang (13751_CR13) 2008; 44
X Zhao (13751_CR23) 2016; 171
13751_CR4
F Romeo (13751_CR20) 1984; 1
13751_CR2
13751_CR11
13751_CR1
X Zhu (13751_CR6) 2016; 26
13751_CR25
J Zhao (13751_CR19) 2024; 51
S Noguchi (13751_CR15) 2014; 24
References_xml – volume: 28
  start-page: 675
  year: 1992
  ident: 13751_CR3
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/20.119968
– volume: 27
  start-page: 1
  year: 2017
  ident: 13751_CR10
  publication-title: IEEE Trans. Appl. Supercond
  doi: 10.1109/TASC.2017.2732285
– volume: 50
  start-page: 6514
  year: 2023
  ident: 13751_CR17
  publication-title: Med. Phys.
  doi: 10.1002/mp.16538
– volume: 58
  start-page: 1305
  year: 2024
  ident: 13751_CR18
  publication-title: J. Zhejiang Univ.
– volume: 44
  start-page: 1058
  year: 2008
  ident: 13751_CR13
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2007.916267
– volume: 41
  start-page: 1504
  year: 2005
  ident: 13751_CR21
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2005.845080
– ident: 13751_CR24
– volume: 21
  start-page: 60
  issue: 2
  year: 2011
  ident: 13751_CR5
  publication-title: IEEE Trans. Appl. Supercond
  doi: 10.1109/TASC.2011.2112358
– volume: 24
  start-page: 1
  year: 2014
  ident: 13751_CR15
  publication-title: IEEE Trans. Appl. Supercond
– ident: 13751_CR2
  doi: 10.1201/9780203758731-1
– volume: 33
  start-page: 867
  year: 2020
  ident: 13751_CR8
  publication-title: J. Supercond Novel Magn.
  doi: 10.1007/s10948-019-05241-2
– ident: 13751_CR1
  doi: 10.1109/ASEMD.2015.7453633
– volume: 257
  start-page: 64
  year: 2015
  ident: 13751_CR7
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2015.05.004
– volume: 171
  start-page: 966
  year: 2016
  ident: 13751_CR23
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.07.025
– volume: 56
  start-page: 1208
  year: 2013
  ident: 13751_CR12
  publication-title: Sci. China:Technol Sci.
  doi: 10.1007/s11431-013-5169-6
– volume: 13
  start-page: 1781
  year: 2013
  ident: 13751_CR22
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.12.025
– volume: 1
  start-page: 44
  year: 1984
  ident: 13751_CR20
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910010107
– volume: 26
  start-page: 1
  year: 2016
  ident: 13751_CR16
  publication-title: IEEE Trans. Appl. Supercond
– ident: 13751_CR25
– volume: 19
  start-page: 1439
  year: 2009
  ident: 13751_CR14
  publication-title: Prog Nat. Sci.
  doi: 10.1016/j.pnsc.2009.04.007
– volume: 26
  start-page: 1
  year: 2016
  ident: 13751_CR6
  publication-title: IEEE Trans. Appl. Supercond
– volume: 263
  start-page: 122
  year: 2016
  ident: 13751_CR9
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2015.11.019
– volume: 51
  start-page: 8613
  year: 2024
  ident: 13751_CR19
  publication-title: Med. Phys.
  doi: 10.1002/mp.17403
– ident: 13751_CR11
– ident: 13751_CR4
SSID ssj0000529419
Score 2.4560332
Snippet In Magnetic Resonance Imaging (MRI), achieving a highly uniform main magnetic field (B 0 ) is essential for producing detailed images of human anatomy. Passive...
In Magnetic Resonance Imaging (MRI), achieving a highly uniform main magnetic field (B ) is essential for producing detailed images of human anatomy. Passive...
In Magnetic Resonance Imaging (MRI), achieving a highly uniform main magnetic field (B0) is essential for producing detailed images of human anatomy. Passive...
Abstract In Magnetic Resonance Imaging (MRI), achieving a highly uniform main magnetic field (B0) is essential for producing detailed images of human anatomy....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 28419
SubjectTerms 639/166
639/705
639/766
Algorithms
Humanities and Social Sciences
Hybrid optimization
Integer programming
Iron
Linear programming
Magnetic fields
Magnetic resonance imaging
multidisciplinary
NMR
Nuclear magnetic resonance
Optimization algorithms
Passive shimming
Pattern search algorithm
Regularization methods
Science
Science (multidisciplinary)
Sequential quadratic programming
SummonAdditionalLinks – databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELagCxIX3o_AgozEDaLWjyTOCRXEij3sqrAgLRciO7bbSpukNNmV9t8zk7hdldeJQy6JD5PM64vH8w0hryBrO2W5BU8DC5aKy9hkysSlcpkDRIyTBfphE9nxsTo9zWehPboNxyo3MbEP1APbM57bhiA8tk2JO-ZjwUUKF8Dvt6sfMc6QwlprGKhxnewh8dZkRPZmh0ezb9s9F6xqSZaH3pmJUOMW8hf2mPEkZiJL4HdqJz_1NP5_wp6_H6H8pY7ap6eDO__3xe6S2wGm0ulgV_fINVffJzeHwZWXD8j3Ka2bC3dGV4C9IV7SdrGsKhCMNhCCqtDbSYfx1LTx9OjzIa30vHYdxbwJ92qq6exkGp98mtHFJfaNUX02B1G6RfWQfD348OX9xzhMaohLmcsu5sYwZ6TNfWJzw02aM2d55lNusc7jReKYgR8XkXsmpE1sAig1MQBFeKoT58UjMqqb2j0h1DNZMuW9lsZLMBeTelYCpphY3GcQIiKvN_opVgMhR9EX0oUqBm0WoM2i12YhI_IOVbhdiWTa_Y1mPS-CbxZaa2Z1pnLlkLCAGY0aUIly1mRGqojsbzRXBA9viytFReTl9jH4JhZcdO2a82FNigSNsObxYC9bSSSWRJnkEVE7lrQj6u6Terno-b8RBSMxX0TebIzuSq6_f4un_36NZ-QWRz_A4zByn4y69bl7Tm6UF92yXb8IrvQTEkoryA
  priority: 102
  providerName: ProQuest
Title A novel passive shimming optimization method of MRI magnet based on a PSA-SQP hybrid algorithm
URI https://link.springer.com/article/10.1038/s41598-025-13751-4
https://www.ncbi.nlm.nih.gov/pubmed/40760142
https://www.proquest.com/docview/3236323960
https://www.proquest.com/docview/3236679230
https://pubmed.ncbi.nlm.nih.gov/PMC12322119
https://doaj.org/article/aaa1da7898e04151ba3239858edb7b48
Volume 15
WOSCitedRecordID wos001544985800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgA4mXiW8CozISbxCtdpzYfuzQJvbQKmwglRcsu7bXSksytdmk_fc7x2lZ-RAvvNyDc4msO5_vnPP9DqH34LWdsNSCpcEKZoKy1HBh0plw3EFEHDoLdM0m-GQiplNZ3mn1Fe6ERXjgKLgDrTWxmgspXKgmJ0ZnAbIuF84ablhX5jvk8s5hKqJ6U8mI7Ktkhpk4WMHLoZqM5inJeA4Hpy1P1AH2_ynK_P2y5C8Z084RHT9Ge30EiUdx5k_QPVc_RQ9jT8mbZ-jHCNfNtbvAlxAWw1aGV_NFVcGXcAO7Q9WXXeLYORo3Ho9PT3Clz2vX4uDSYKzGGpdno_TsS4nnN6GkC-uL82a5aOfVc_Tt-Ojrp89p30QhnTHJ2pQaQ5xhVvrcSkNNIYmzlPuC2pCC8VnuiIEzRSY9yZjNbQ4BZG4gSqCFzp3PXqCduqndK4Q9YTMivNfMeAaaNIUnM3D3Qxt-AWRZgj6sBaouI1aG6nLcmVBR_ArErzrxK5agwyDzDWfAue4GQPuq1776l_YTtL_WmOqNb6WApQhsxTBB7zaPwWxCLkTXrrmKPEXATgSel1HBm5mwkK0kjCZIbKl-a6rbT-rFvIPmDgFqwMxL0Mf1Kvk5r7_L4vX_kMUb9IiG5R3us7B9tNMur9xb9GB23S5WywG6z6e8o2KAdg-PJuXpoLMZoGNaBsqB7pYn4_L7LWiNF_M
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JbxMxFLZKAcGFfRkoYCQ4wai1xzPjOSAUlqpRmyrQVuoJY4_tJFIzE5K0KH-K38h7s6QK260HDnOxrZGX7y322wh5AVLbScstUBogWEguQpNKE-bSpQ40YqwsUBWbSPf35fFx1l8jP9pYGHSrbHlixahtmeMb-WbEowQ-ULjfTr6FWDUKrattCY0aFrtu8R2ubLM33Q9wvi853_54-H4nbKoKhLnIxDzkxjBnhM18bDPDTZIxZ3nqE27RJuGj2DEDSnaUeRYJG9sYNKrYgNjkiY6dj-C_l8hlAZIQXQh7vL9800GrmWBZE5uzFcnNGchHjGHjcciiNIbr2or8q8oE_Em3_d1F8xc7bSX-tm_-bxt3i9xoFG3aqSnjNllzxR1ytS69ubhLvnRoUZ65EzqB2wNwfDobjsZjWDotgYmOm-hUWhfYpqWnvc9dOtaDws0pSn5oK6im_YNOePCpT4cLjHyj-mQAS58Px_fI0YUs7j5ZL8rCPSTUM5Ez6b0WxgsAvEk8y0Er2rL4UhJFAXnVIkBN6pQiqnIFiKSq8aIAL6rCixIBeYcgWY7EdOBVQzkdqIa7KK01szqVmXSYcoEZjScuY-msSY2QAdlosaEaHjVT58AIyPNlN3AXNBnpwpWn9ZgEU0zCmAc1IpczEWjUZYIHRK5gdWWqqz3FaFhlMEc9HlMLBuR1C-vzef19Lx79exnPyLWdw96e2uvu7z4m1zlSHTr3iA2yPp-euifkSn42H82mTyuypeTrRcP9J_PHetc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jj9MwFLaGYREX9iUwgJHgBFHHSxLngFBhGFENVIUBqSeCHdttpWlS2s6g_jV-He9l6ahstzlw6CWxKtv53nuf_TZCnoDVdspyC5IGCJaKy9AkyoS5cokDRoydBapmE0m_r4bDdLBFfrS5MBhW2erESlHbMsc78o7gIoYfEO6Ob8IiBnv7L2ffQuwghZ7Wtp1GDZEDt_oOx7fFi94efOunnO-_-fT6bdh0GAhzmcplyI1hzkib-simhps4Zc7yxMfcon_Ci8gxA4RbpJ4JaSMbAbuKDJhQHuvIeQH_e46cx5KCqBSSYbK-30EPmmRpk6ezK1RnAbYS89l4FDKRRHB027CFVcuAP_Hc38M1f_HZVqZw_-r_vInXyJWGgNNuLTHXyZYrbpCLdUvO1U3ypUuL8sQd0RmcKsAS0MV4Mp3CNtASlOu0yVqldeNtWnr6_mOPTvWocEuKjACeFVTTwWE3PPwwoOMVZsRRfTSCpS_H01vk85ks7jbZLsrC3SXUM5kz5b2WxksQBBN7lgNb2rV4gyJEQJ61aMhmdamRrAoRECqrsZMBdrIKO5kMyCsEzHoklgmvHpTzUdZonUxrzaxOVKoclmJgRuPXV5Fy1iRGqoDstDjJGt21yE5BEpDH69egddCVpAtXHtdjYiw9CWPu1Ohcz0Sis5dJHhC1gduNqW6-KSbjqrI58nssORiQ5y3ET-f197249-9lPCKXAOXZu17_4D65zFEAMeZH7pDt5fzYPSAX8pPlZDF_WEkwJV_PGu0_ATcfg4Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+passive+shimming+optimization+method+of+MRI+magnet+based+on+a+PSA-SQP+hybrid+algorithm&rft.jtitle=Scientific+reports&rft.au=Jie+Zhao&rft.au=Minhua+Zhu&rft.au=Ling+Xia&rft.au=Yifeng+Fan&rft.date=2025-08-04&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1038%2Fs41598-025-13751-4&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_aaa1da7898e04151ba3239858edb7b48
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon