Digital biomarkers for interstitial glucose prediction in healthy individuals using wearables and machine learning

A personalized low-glycemic diet, maintaining stable blood glucose levels, aids in weight reduction and managing (pre-)diabetes and migraines in individuals. However, invasiveness, high cost, and limited lifecycle of continuous glucose monitoring (CGM) devices restrict their widespread use. To addre...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 15; no. 1; pp. 30164 - 19
Main Authors: Huang, Xinyu, Schmelter, Franziska, Seitzer, Christian, Martensen, Lars, Otzen, Hans, Piet, Artur, Witt, Oliver, Schröder, Torsten, Günther, Ulrich L., Marshall, Lisa, Grzegorzek, Marcin, Sina, Christian
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 18.08.2025
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A personalized low-glycemic diet, maintaining stable blood glucose levels, aids in weight reduction and managing (pre-)diabetes and migraines in individuals. However, invasiveness, high cost, and limited lifecycle of continuous glucose monitoring (CGM) devices restrict their widespread use. To address these issues, we investigated machine learning (ML) approaches for glucose monitoring using data from non-invasive wearables. Our study comprised two phases involving healthy participants: The main study included two experimental sessions lasting 7–8 h with two standardized test meals, totaling over 1550 interstitial glucose (IG) measurements with CGM, and high-frequency multimodal data collected by two different non-invasive sensor devices. The follow-up study involved more than 14,400 IG measurements. Using ML approaches, correlations between glycemic measures and sensor data were assessed to estimate the feasibility of accurately predicting personalized IG alterations in real-time. An ensemble feature selection-based light gradient boosting machine (LightGBM) algorithm, omitting the need for food logs, was developed. This algorithm achieved a root mean squared error (RMSE) of 18.49 ± 0.1 mg/dL and a mean absolute percentage error (MAPE) of 15.58 ± 0.09%, demonstrating the feasibility of non-invasive glucose monitoring with high accuracy, which paves the way for novel approaches in the objective prevention of diet-related diseases.
AbstractList A personalized low-glycemic diet, maintaining stable blood glucose levels, aids in weight reduction and managing (pre-)diabetes and migraines in individuals. However, invasiveness, high cost, and limited lifecycle of continuous glucose monitoring (CGM) devices restrict their widespread use. To address these issues, we investigated machine learning (ML) approaches for glucose monitoring using data from non-invasive wearables. Our study comprised two phases involving healthy participants: The main study included two experimental sessions lasting 7–8 h with two standardized test meals, totaling over 1550 interstitial glucose (IG) measurements with CGM, and high-frequency multimodal data collected by two different non-invasive sensor devices. The follow-up study involved more than 14,400 IG measurements. Using ML approaches, correlations between glycemic measures and sensor data were assessed to estimate the feasibility of accurately predicting personalized IG alterations in real-time. An ensemble feature selection-based light gradient boosting machine (LightGBM) algorithm, omitting the need for food logs, was developed. This algorithm achieved a root mean squared error (RMSE) of 18.49 ± 0.1 mg/dL and a mean absolute percentage error (MAPE) of 15.58 ± 0.09%, demonstrating the feasibility of non-invasive glucose monitoring with high accuracy, which paves the way for novel approaches in the objective prevention of diet-related diseases.
Abstract A personalized low-glycemic diet, maintaining stable blood glucose levels, aids in weight reduction and managing (pre-)diabetes and migraines in individuals. However, invasiveness, high cost, and limited lifecycle of continuous glucose monitoring (CGM) devices restrict their widespread use. To address these issues, we investigated machine learning (ML) approaches for glucose monitoring using data from non-invasive wearables. Our study comprised two phases involving healthy participants: The main study included two experimental sessions lasting 7–8 h with two standardized test meals, totaling over 1550 interstitial glucose (IG) measurements with CGM, and high-frequency multimodal data collected by two different non-invasive sensor devices. The follow-up study involved more than 14,400 IG measurements. Using ML approaches, correlations between glycemic measures and sensor data were assessed to estimate the feasibility of accurately predicting personalized IG alterations in real-time. An ensemble feature selection-based light gradient boosting machine (LightGBM) algorithm, omitting the need for food logs, was developed. This algorithm achieved a root mean squared error (RMSE) of 18.49 ± 0.1 mg/dL and a mean absolute percentage error (MAPE) of 15.58 ± 0.09%, demonstrating the feasibility of non-invasive glucose monitoring with high accuracy, which paves the way for novel approaches in the objective prevention of diet-related diseases.
A personalized low-glycemic diet, maintaining stable blood glucose levels, aids in weight reduction and managing (pre-)diabetes and migraines in individuals. However, invasiveness, high cost, and limited lifecycle of continuous glucose monitoring (CGM) devices restrict their widespread use. To address these issues, we investigated machine learning (ML) approaches for glucose monitoring using data from non-invasive wearables. Our study comprised two phases involving healthy participants: The main study included two experimental sessions lasting 7–8 h with two standardized test meals, totaling over 1550 interstitial glucose (IG) measurements with CGM, and high-frequency multimodal data collected by two different non-invasive sensor devices. The follow-up study involved more than 14,400 IG measurements. Using ML approaches, correlations between glycemic measures and sensor data were assessed to estimate the feasibility of accurately predicting personalized IG alterations in real-time. An ensemble feature selection-based light gradient boosting machine (LightGBM) algorithm, omitting the need for food logs, was developed. This algorithm achieved a root mean squared error (RMSE) of 18.49 ± 0.1 mg/dL and a mean absolute percentage error (MAPE) of 15.58 ± 0.09%, demonstrating the feasibility of non-invasive glucose monitoring with high accuracy, which paves the way for novel approaches in the objective prevention of diet-related diseases.
A personalized low-glycemic diet, maintaining stable blood glucose levels, aids in weight reduction and managing (pre-)diabetes and migraines in individuals. However, invasiveness, high cost, and limited lifecycle of continuous glucose monitoring (CGM) devices restrict their widespread use. To address these issues, we investigated machine learning (ML) approaches for glucose monitoring using data from non-invasive wearables. Our study comprised two phases involving healthy participants: The main study included two experimental sessions lasting 7-8 h with two standardized test meals, totaling over 1550 interstitial glucose (IG) measurements with CGM, and high-frequency multimodal data collected by two different non-invasive sensor devices. The follow-up study involved more than 14,400 IG measurements. Using ML approaches, correlations between glycemic measures and sensor data were assessed to estimate the feasibility of accurately predicting personalized IG alterations in real-time. An ensemble feature selection-based light gradient boosting machine (LightGBM) algorithm, omitting the need for food logs, was developed. This algorithm achieved a root mean squared error (RMSE) of 18.49 ± 0.1 mg/dL and a mean absolute percentage error (MAPE) of 15.58 ± 0.09%, demonstrating the feasibility of non-invasive glucose monitoring with high accuracy, which paves the way for novel approaches in the objective prevention of diet-related diseases.A personalized low-glycemic diet, maintaining stable blood glucose levels, aids in weight reduction and managing (pre-)diabetes and migraines in individuals. However, invasiveness, high cost, and limited lifecycle of continuous glucose monitoring (CGM) devices restrict their widespread use. To address these issues, we investigated machine learning (ML) approaches for glucose monitoring using data from non-invasive wearables. Our study comprised two phases involving healthy participants: The main study included two experimental sessions lasting 7-8 h with two standardized test meals, totaling over 1550 interstitial glucose (IG) measurements with CGM, and high-frequency multimodal data collected by two different non-invasive sensor devices. The follow-up study involved more than 14,400 IG measurements. Using ML approaches, correlations between glycemic measures and sensor data were assessed to estimate the feasibility of accurately predicting personalized IG alterations in real-time. An ensemble feature selection-based light gradient boosting machine (LightGBM) algorithm, omitting the need for food logs, was developed. This algorithm achieved a root mean squared error (RMSE) of 18.49 ± 0.1 mg/dL and a mean absolute percentage error (MAPE) of 15.58 ± 0.09%, demonstrating the feasibility of non-invasive glucose monitoring with high accuracy, which paves the way for novel approaches in the objective prevention of diet-related diseases.
ArticleNumber 30164
Author Martensen, Lars
Schröder, Torsten
Piet, Artur
Seitzer, Christian
Otzen, Hans
Günther, Ulrich L.
Schmelter, Franziska
Sina, Christian
Witt, Oliver
Marshall, Lisa
Grzegorzek, Marcin
Huang, Xinyu
Author_xml – sequence: 1
  givenname: Xinyu
  surname: Huang
  fullname: Huang, Xinyu
  email: hxy101726462@gmail.com
  organization: Institute of Medical Informatics, University of Luebeck
– sequence: 2
  givenname: Franziska
  surname: Schmelter
  fullname: Schmelter, Franziska
  organization: Institute of Nutritional Medicine, University of Luebeck and University Medical Center Schleswig-Holstein
– sequence: 3
  givenname: Christian
  surname: Seitzer
  fullname: Seitzer, Christian
  organization: Institute of Medical Informatics, University of Luebeck
– sequence: 4
  givenname: Lars
  surname: Martensen
  fullname: Martensen, Lars
  organization: Institute of Nutritional Medicine, University of Luebeck and University Medical Center Schleswig-Holstein, Perfood GmbH, Research and Development
– sequence: 5
  givenname: Hans
  surname: Otzen
  fullname: Otzen, Hans
  organization: Institute of Nutritional Medicine, University of Luebeck and University Medical Center Schleswig-Holstein
– sequence: 6
  givenname: Artur
  surname: Piet
  fullname: Piet, Artur
  organization: Institute of Medical Informatics, University of Luebeck
– sequence: 7
  givenname: Oliver
  surname: Witt
  fullname: Witt, Oliver
  organization: Perfood GmbH, Research and Development
– sequence: 8
  givenname: Torsten
  surname: Schröder
  fullname: Schröder, Torsten
  organization: Institute of Nutritional Medicine, University of Luebeck and University Medical Center Schleswig-Holstein, Perfood GmbH, Research and Development
– sequence: 9
  givenname: Ulrich L.
  surname: Günther
  fullname: Günther, Ulrich L.
  organization: Institute of Chemistry and Metabolomics, University of Luebeck
– sequence: 10
  givenname: Lisa
  surname: Marshall
  fullname: Marshall, Lisa
  organization: Institute of Experimental and Clinical Pharmacology and Toxicology, University of Luebeck, and University Medical Center Schleswig-Holstein, Center of Brain, Behavior and Metabolism (CBBM)
– sequence: 11
  givenname: Marcin
  surname: Grzegorzek
  fullname: Grzegorzek, Marcin
  organization: Institute of Medical Informatics, University of Luebeck, German Research Center for Artificial Intelligence (DFKI)
– sequence: 12
  givenname: Christian
  surname: Sina
  fullname: Sina, Christian
  organization: Institute of Nutritional Medicine, University of Luebeck and University Medical Center Schleswig-Holstein, Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering (IMTE)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40825804$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhi1URMvSP8ABReLCJcWfSXxCqHxVqsQFzpbjjLNevPZiJ63aX493U_rBAV88mnnm9dh-X6KjEAMg9JrgM4JZ9z5zImRXYypqwklL69tn6IRiLmrKKD16FB-j05w3uCxBJSfyBTrmuKOiw_wEpU9udJP2Ve_iVqdfkHJlY6pcmEo4ucmV2uhnEzNUuwSDM5OLodSrNWg_rW9KOLgrN8za52rOLozVNeikew-50mGottqsXYDKl2wo5VfouS0snN7tK_Tzy-cf59_qy-9fL84_XtaGSz7VVDPNcYsHYaWRDBgmLaecguhbRii0YqCG99aaxgBjtjcEJO0oNmRgDSNshS4W3SHqjdolV-53o6J26pCIaVQ6Tc54ULZvONhBcIk73gnWW2m5NEVMQieL_Ap9WLR2c7-FwUCYkvZPRJ9WglurMV4pQllDRIOLwrs7hRR_z5AntXXZgPc6QJyzYpRjSWgr9oO__QfdxDmF8lYHSrRS8D315vFI97P8_dsC0AUwKeacwN4jBKu9h9TiIVU8pA4eUreliS1NucBhhPRw9n-6_gBoG8s_
Cites_doi 10.1007/s00109-004-0552-1
10.5194/gmd-7-1247-2014
10.1540/jsmr.40.169
10.1016/j.irbm.2023.100776
10.1038/s41598-017-13018-7
10.3390/nu14142927
10.1161/01.CIR.101.23.e215
10.1371/journal.pcbi.1010718
10.1186/s40104-017-0164-6
10.1530/JOE-16-0449
10.2340/00015555-1346
10.1109/ANTS63515.2024.10898929
10.1080/00207450600675027
10.2337/dc22-2290
10.1016/S0140-6736(14)60613-9
10.1186/s12916-022-02254-y
10.4239/wjd.v6.i13.1246
10.1177/1932296819855670
10.1109/ACCESS.2021.3079182
10.1016/j.jval.2022.07.020
10.2337/db09-1128
10.1093/bioinformatics/bty373
10.1109/ICAIIC60209.2024.10463200
10.1007/s12553-022-00690-7
10.1145/3715669.3726796
10.1111/dme.12184
10.1007/s00125-012-2525-1
10.1016/S2213-8587(18)30037-8
10.1038/s41746-020-0260-4
10.1145/2598394.2609856
10.2337/dc18-1843
10.1097/00000542-200612000-00011
10.1016/j.cell.2015.11.001
10.1111/j.1748-1716.1988.tb08353.x
10.1177/02537176211046525
10.1007/BF00403180
10.1016/j.imed.2024.05.002
10.3390/diagnostics3040385
10.1096/fasebj.31.1_supplement.lb797
10.1016/j.metabol.2023.155640
10.1093/ajcn/78.4.850S
10.3390/bios12030166
10.1038/s41746-021-00465-w
10.1109/PSGEC54663.2022.9880963
10.1371/journal.pone.0225613
10.1023/A:1010933404324
10.1016/j.arr.2017.10.003
10.1001/jamanetworkopen.2018.8102
10.21203/rs.2.20798/v1
10.1109/ICCSP48568.2020.9182434
10.2337/dc21-0162
10.1145/3220127.3220133
10.1109/BioCAS.2012.6418424
10.1007/978-1-4842-4470-8_18
10.1007/s11306-019-1532-3
10.1088/1757-899X/803/1/012012
10.1038/s41592-019-0686-2
10.1186/s43094-020-00151-w
10.1016/j.procir.2021.03.088
10.3390/e24050687
10.3390/ijerph192316080
10.1109/ICACCE.2018.8441729
10.1136/jim-2021-002278
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-14172-z
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (ProQuest)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database

CrossRef
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 19
ExternalDocumentID oai_doaj_org_article_fb64efd549084853bf9f49c8209e89ce
PMC12361560
40825804
10_1038_s41598_025_14172_z
Genre Journal Article
GrantInformation_xml – fundername: Universität zu Lübeck (3165)
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PUEGO
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c494t-2a3a4070d5f9c93e30174242e5b7312e75d2c4bffc6ce33fbc1e92820c1d36313
IEDL.DBID BENPR
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001553537500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Oct 14 18:49:47 EDT 2025
Tue Nov 04 02:04:36 EST 2025
Fri Sep 05 15:19:32 EDT 2025
Tue Oct 07 08:34:28 EDT 2025
Mon Sep 15 01:52:32 EDT 2025
Sat Nov 29 07:34:15 EST 2025
Tue Aug 19 01:10:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Personalized nutrition
Wearables
Engineered biomarker
Non-invasive CGM
Interstitial glucose prediction
Machine learning
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-2a3a4070d5f9c93e30174242e5b7312e75d2c4bffc6ce33fbc1e92820c1d36313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3240579541?pq-origsite=%requestingapplication%
PMID 40825804
PQID 3240579541
PQPubID 2041939
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_fb64efd549084853bf9f49c8209e89ce
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12361560
proquest_miscellaneous_3240912751
proquest_journals_3240579541
pubmed_primary_40825804
crossref_primary_10_1038_s41598_025_14172_z
springer_journals_10_1038_s41598_025_14172_z
PublicationCentury 2000
PublicationDate 2025-08-18
PublicationDateYYYYMMDD 2025-08-18
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-18
  day: 18
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References S Nembrini (14172_CR25) 2018; 34
KCJ Yuen (14172_CR47) 2013; 30
R Lenhardt (14172_CR38) 2006; 105
AJ Lloyd (14172_CR23) 2019; 15
PRE Jarvis (14172_CR58) 2023; 146
BM Leon (14172_CR6) 2015; 6
T Chai (14172_CR32) 2014; 7
14172_CR63
P Virtanen (14172_CR71) 2020; 17
14172_CR62
L Heinemann (14172_CR49) 2019; 14
14172_CR65
K Prakash (14172_CR46) 2023; 132
JC Goldsack (14172_CR59) 2020; 3
C Andrade (14172_CR69) 2021; 43
14172_CR29
Z Geng (14172_CR50) 2017; 7
NM Templeman (14172_CR2) 2017; 232
SK Vashist (14172_CR48) 2013; 3
MO Bekkink (14172_CR19) 2019; 42
A Aloraynan (14172_CR54) 2022; 12
H Hoon Kwon (14172_CR9) 2012; 92
AI Adler (14172_CR26) 2022; 24
L Breiman (14172_CR28) 2001; 45
O Ben-Yacov (14172_CR16) 2021; 44
14172_CR60
14172_CR52
M Shokrekhodaei (14172_CR57) 2021; 9
14172_CR56
Y Hagiwara (14172_CR68) 2023; 26
14172_CR55
A Ramón (14172_CR67) 2022; 70
14172_CR15
AL Goldberger (14172_CR36) 2000; 101
WJ van den Brink (14172_CR34) 2022; 14
SH Ley (14172_CR11) 2014; 383
D Zeevi (14172_CR14) 2015; 163
D Chiccoid (14172_CR27) 2022
M Mayo (14172_CR61) 2019; 14
B Bent (14172_CR22) 2021
RM Ortega (14172_CR24) 2015; 31
A Sharma (14172_CR8) 2020; 6
F Prattichizzo (14172_CR3) 2018; 41
H Mendes-Soares (14172_CR12) 2019; 2
H Agrawal (14172_CR53) 2022; 12
WHM Saris (14172_CR4) 2003; 78
P Cho (14172_CR37) 2023; 101
J Oberle (14172_CR43) 1988; 132
DD Wang (14172_CR13) 2018; 6
CJ Popp (14172_CR18) 2023; 5
E Ferrannini (14172_CR1) 1991; 34
L Hu (14172_CR66) 2022; 19
M Rein (14172_CR17) 2022; 20
M Maritsch (14172_CR20) 2020; 152
SG Rosen (14172_CR44) 1983; 245
H Cheng (14172_CR31) 2017; 8
M Ristow (14172_CR7) 2004; 82
M Benchekroun (14172_CR64) 2023; 44
N Misu (14172_CR41) 2004; 40
V Lehmann (14172_CR21) 2023; 46
JA Johnson (14172_CR5) 2012; 55
B Lindemann (14172_CR30) 2021; 99
X Huang (14172_CR51) 2024; 4
E Bisong (14172_CR70) 2019
14172_CR72
14172_CR35
N Dolu (14172_CR45) 2006; 116
14172_CR33
M Sanchez-Alavez (14172_CR42) 2009; 59
14172_CR39
VV Lelleck (14172_CR10) 2022; 14
TC Barbosa (14172_CR40) 2017; 31
References_xml – volume: 82
  start-page: 510
  year: 2004
  ident: 14172_CR7
  publication-title: J. Mol. Med.
  doi: 10.1007/s00109-004-0552-1
– volume: 7
  start-page: 1247
  year: 2014
  ident: 14172_CR32
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-7-1247-2014
– volume: 40
  start-page: 169
  issue: 4–5
  year: 2004
  ident: 14172_CR41
  publication-title: J. Smooth Muscle Res Nihon Heikatsukin Gakkai Kikanshi
  doi: 10.1540/jsmr.40.169
– volume: 44
  start-page: 100776
  year: 2023
  ident: 14172_CR64
  publication-title: IRBM
  doi: 10.1016/j.irbm.2023.100776
– volume: 7
  start-page: 12650
  year: 2017
  ident: 14172_CR50
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-13018-7
– volume: 14
  start-page: 2927
  year: 2022
  ident: 14172_CR10
  publication-title: Nutrients
  doi: 10.3390/nu14142927
– volume: 101
  start-page: e215
  year: 2000
  ident: 14172_CR36
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– year: 2022
  ident: 14172_CR27
  publication-title: PLOS Comput. Biol.
  doi: 10.1371/journal.pcbi.1010718
– volume: 8
  start-page: 38
  year: 2017
  ident: 14172_CR31
  publication-title: J. Anim. Sci. Biotechnol.
  doi: 10.1186/s40104-017-0164-6
– volume: 232
  start-page: 173
  year: 2017
  ident: 14172_CR2
  publication-title: J. Endocrinol.
  doi: 10.1530/JOE-16-0449
– volume: 92
  start-page: 241
  year: 2012
  ident: 14172_CR9
  publication-title: Acta Derm. Venereol.
  doi: 10.2340/00015555-1346
– ident: 14172_CR62
  doi: 10.1109/ANTS63515.2024.10898929
– volume: 14
  start-page: 4465
  year: 2022
  ident: 14172_CR34
  publication-title: Wearable Technol. Nutr.
– volume: 116
  start-page: 715
  year: 2006
  ident: 14172_CR45
  publication-title: Int. J. Neurosci.
  doi: 10.1080/00207450600675027
– volume: 46
  start-page: 1
  year: 2023
  ident: 14172_CR21
  publication-title: Diabetes Care
  doi: 10.2337/dc22-2290
– volume: 383
  start-page: 1999
  year: 2014
  ident: 14172_CR11
  publication-title: Lancet
  doi: 10.1016/S0140-6736(14)60613-9
– volume: 20
  start-page: 56
  year: 2022
  ident: 14172_CR17
  publication-title: BMC Med.
  doi: 10.1186/s12916-022-02254-y
– volume: 6
  start-page: 1246
  year: 2015
  ident: 14172_CR6
  publication-title: World J. Diabetes
  doi: 10.4239/wjd.v6.i13.1246
– volume: 14
  start-page: 135
  year: 2019
  ident: 14172_CR49
  publication-title: J. Diabetes Sci. Technol.
  doi: 10.1177/1932296819855670
– volume: 9
  start-page: 73029
  year: 2021
  ident: 14172_CR57
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3079182
– volume: 26
  start-page: 269
  year: 2023
  ident: 14172_CR68
  publication-title: Value Health
  doi: 10.1016/j.jval.2022.07.020
– volume: 59
  start-page: 43
  year: 2009
  ident: 14172_CR42
  publication-title: Diabetes
  doi: 10.2337/db09-1128
– volume: 34
  start-page: 3711
  year: 2018
  ident: 14172_CR25
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty373
– ident: 14172_CR56
  doi: 10.1109/ICAIIC60209.2024.10463200
– volume: 12
  start-page: 955
  year: 2022
  ident: 14172_CR53
  publication-title: Health Technol.
  doi: 10.1007/s12553-022-00690-7
– ident: 14172_CR39
  doi: 10.1145/3715669.3726796
– volume: 30
  start-page: 651
  year: 2013
  ident: 14172_CR47
  publication-title: Diabet. Med.
  doi: 10.1111/dme.12184
– volume: 55
  start-page: 1607
  year: 2012
  ident: 14172_CR5
  publication-title: Diabetologia
  doi: 10.1007/s00125-012-2525-1
– volume: 6
  start-page: 416
  year: 2018
  ident: 14172_CR13
  publication-title: Lancet Diabetes Endocrinol.
  doi: 10.1016/S2213-8587(18)30037-8
– volume: 3
  start-page: 55
  year: 2020
  ident: 14172_CR59
  publication-title: Npj Digit. Med.
  doi: 10.1038/s41746-020-0260-4
– ident: 14172_CR33
  doi: 10.1145/2598394.2609856
– volume: 42
  start-page: 689
  year: 2019
  ident: 14172_CR19
  publication-title: Diabetes Care
  doi: 10.2337/dc18-1843
– volume: 105
  start-page: 1117
  year: 2006
  ident: 14172_CR38
  publication-title: Anesthesiology
  doi: 10.1097/00000542-200612000-00011
– volume: 163
  start-page: 1079
  year: 2015
  ident: 14172_CR14
  publication-title: Cell
  doi: 10.1016/j.cell.2015.11.001
– volume: 132
  start-page: 459
  year: 1988
  ident: 14172_CR43
  publication-title: Acta Physiol. Scand.
  doi: 10.1111/j.1748-1716.1988.tb08353.x
– volume: 245
  start-page: E616
  issue: 6
  year: 1983
  ident: 14172_CR44
  publication-title: Am. J. Physiol.
– volume: 43
  start-page: 555
  year: 2021
  ident: 14172_CR69
  publication-title: Indian J. Psychol. Med.
  doi: 10.1177/02537176211046525
– volume: 34
  start-page: 416
  year: 1991
  ident: 14172_CR1
  publication-title: Diabetologia
  doi: 10.1007/BF00403180
– volume: 4
  start-page: 226
  year: 2024
  ident: 14172_CR51
  publication-title: Intell. Med.
  doi: 10.1016/j.imed.2024.05.002
– volume: 3
  start-page: 385
  year: 2013
  ident: 14172_CR48
  publication-title: Diagnostics
  doi: 10.3390/diagnostics3040385
– ident: 14172_CR29
– volume: 152
  start-page: 1
  year: 2020
  ident: 14172_CR20
  publication-title: Ext. Abstr. 2020 CHI Conf. Hum. Factors Comput. Syst.
– volume: 31
  start-page: lb797
  year: 2017
  ident: 14172_CR40
  publication-title: FASEB J.
  doi: 10.1096/fasebj.31.1_supplement.lb797
– volume: 146
  start-page: 155640
  year: 2023
  ident: 14172_CR58
  publication-title: Metab. Clin. Exp.
  doi: 10.1016/j.metabol.2023.155640
– volume: 78
  start-page: 850
  year: 2003
  ident: 14172_CR4
  publication-title: Am. J. Clin. Nutr.
  doi: 10.1093/ajcn/78.4.850S
– volume: 12
  start-page: 166
  year: 2022
  ident: 14172_CR54
  publication-title: Biosensors
  doi: 10.3390/bios12030166
– year: 2021
  ident: 14172_CR22
  publication-title: Npj Digit. Med.
  doi: 10.1038/s41746-021-00465-w
– ident: 14172_CR35
  doi: 10.1109/PSGEC54663.2022.9880963
– volume: 14
  start-page: e0225613
  year: 2019
  ident: 14172_CR61
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0225613
– volume: 45
  start-page: 5
  year: 2001
  ident: 14172_CR28
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 41
  start-page: 1
  year: 2018
  ident: 14172_CR3
  publication-title: Ageing Res. Rev.
  doi: 10.1016/j.arr.2017.10.003
– ident: 14172_CR72
– volume: 2
  start-page: e188102
  year: 2019
  ident: 14172_CR12
  publication-title: JAMA Netw. Open
  doi: 10.1001/jamanetworkopen.2018.8102
– ident: 14172_CR15
  doi: 10.21203/rs.2.20798/v1
– ident: 14172_CR55
  doi: 10.1109/ICCSP48568.2020.9182434
– volume: 44
  start-page: 1980
  year: 2021
  ident: 14172_CR16
  publication-title: Diabetes Care
  doi: 10.2337/dc21-0162
– volume: 5
  start-page: 1
  year: 2023
  ident: 14172_CR18
  publication-title: JAMA Netw. Open
– ident: 14172_CR60
  doi: 10.1145/3220127.3220133
– ident: 14172_CR63
  doi: 10.1109/BioCAS.2012.6418424
– start-page: 215
  volume-title: Building Machine Learning and Deep Learning Models on Google Cloud Platform: A Comprehensive Guide for Beginners
  year: 2019
  ident: 14172_CR70
  doi: 10.1007/978-1-4842-4470-8_18
– volume: 15
  start-page: 1
  year: 2019
  ident: 14172_CR23
  publication-title: Metabolomics
  doi: 10.1007/s11306-019-1532-3
– ident: 14172_CR65
  doi: 10.1088/1757-899X/803/1/012012
– volume: 17
  start-page: 261
  year: 2020
  ident: 14172_CR71
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0686-2
– volume: 6
  start-page: 1
  year: 2020
  ident: 14172_CR8
  publication-title: Futur. J. Pharm. Sci.
  doi: 10.1186/s43094-020-00151-w
– volume: 99
  start-page: 650
  year: 2021
  ident: 14172_CR30
  publication-title: Proc. CIRP
  doi: 10.1016/j.procir.2021.03.088
– volume: 132
  start-page: 444
  year: 2023
  ident: 14172_CR46
  publication-title: Exp. Clin. Endocrinol. Diabetes
– volume: 31
  start-page: 38
  year: 2015
  ident: 14172_CR24
  publication-title: Nutr. Hosp.
– volume: 24
  start-page: 687
  year: 2022
  ident: 14172_CR26
  publication-title: Entropy
  doi: 10.3390/e24050687
– volume: 19
  start-page: 16080
  year: 2022
  ident: 14172_CR66
  publication-title: Int. J. Environ. Res. Publ. Health
  doi: 10.3390/ijerph192316080
– ident: 14172_CR52
  doi: 10.1109/ICACCE.2018.8441729
– volume: 70
  start-page: 1472
  year: 2022
  ident: 14172_CR67
  publication-title: J. Investig. Med.
  doi: 10.1136/jim-2021-002278
– volume: 101
  start-page: e215
  year: 2023
  ident: 14172_CR37
  publication-title: PhysioNet
SSID ssj0000529419
Score 2.456928
Snippet A personalized low-glycemic diet, maintaining stable blood glucose levels, aids in weight reduction and managing (pre-)diabetes and migraines in individuals....
Abstract A personalized low-glycemic diet, maintaining stable blood glucose levels, aids in weight reduction and managing (pre-)diabetes and migraines in...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 30164
SubjectTerms 692/53/2423
692/700/478
Ablation
Adult
Algorithms
Biomarkers - analysis
Biomarkers - blood
Blood Glucose - analysis
Blood Glucose Self-Monitoring - instrumentation
Blood Glucose Self-Monitoring - methods
Blood levels
Diabetes
Diabetes mellitus
Diet
Engineered biomarker
Feature selection
Female
Glucose
Glucose - analysis
Glucose - metabolism
Glucose monitoring
Healthy Volunteers
Humanities and Social Sciences
Humans
Hypoglycemia
Interstitial glucose prediction
Invasiveness
Learning algorithms
Machine Learning
Male
Metabolism
Middle Aged
multidisciplinary
Non-invasive CGM
Nutrient deficiency
Personalized nutrition
Science
Science (multidisciplinary)
Sensors
Wearable Electronic Devices
Wearables
Young Adult
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxQxDI5QVSQuiDcDLQoSN4g6ec0kR1qoOKCKA6Deopk8lj0wrWa2oPbXYyezS5eHuHDd5ODNZ49t2f5MyAstAOQ-WGaNaZiCCJeZYDWLdeQqyVaEPMf9-X17cmJOT-2Ha6u-sCes0AOXhztIfaNiChoLVAp8S59sUtaD47LRWB_x6wtRz7VkqrB6C6u4nadkamkOJvBUOE0mNOMKvDa72vJEmbD_T1Hm782Sv1RMsyM6vkNuzxEkfV0kv0tuxOEeuVl2Sl7eJ-Ob5QIXgVAcrMfem3GiEJhS5IUYsTEAFI7Ojer0fMQ6DWID57TMRF7S5WZIa6LYF7-g38EecMZqot0Q6NfcgBnpvHFi8YB8On778egdmxcrMK-sWjHRyQ4SuTroZL2VEYwcMmQlou5byUVsdRBe9Sn5xkcpU-95tJCb1Z4H2UguH5Kd4WyIjwlNfRJW9yFFiKx8r4zVHW90m1rtQydVRV6uH9mdF_4Ml-ve0rgCiQNIXIbEXVXkEHHY3ETu6_wDaISbNcL9SyMqsrdG0c0GOTnkHdSt1YpX5PnmGEwJ6yPdEM8uyh2LhPdw51EBfSMJ7uXWpob_Y7bUYUvU7ZNh-SXTdWd-GwgsK_JqrTk_5fr7Wzz5H2_xlNwSqPLI4Wv2yM5qvIj7ZNd_Wy2n8Vm2mR9fYxxN
  priority: 102
  providerName: Directory of Open Access Journals
Title Digital biomarkers for interstitial glucose prediction in healthy individuals using wearables and machine learning
URI https://link.springer.com/article/10.1038/s41598-025-14172-z
https://www.ncbi.nlm.nih.gov/pubmed/40825804
https://www.proquest.com/docview/3240579541
https://www.proquest.com/docview/3240912751
https://pubmed.ncbi.nlm.nih.gov/PMC12361560
https://doaj.org/article/fb64efd549084853bf9f49c8209e89ce
Volume 15
WOSCitedRecordID wos001553537500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest - Health & Medical Complete保健、医学与药学数据库
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbYFiQuvBcCS2UkbhBtEtuJfUIs7AoktqoQoHKKEj9KD6Ql6YJ2fz0zjptVeV24-BD7YOebsceemW8IeSoyALk2KlZS5jEHCzeWRonYJjbljhWZ8Xncn94V06mcz9UsPLh1Iaxyuyf6jdqsNL6RHyJxnCiU4OmL9bcYq0ahdzWU0NgjY2Qq4yMyPjqezt4Pryzox-KpCtkyCZOHHZxYmFWWiTjlcHrHFzsnkifu_5O1-XvQ5C-eU38gndz836XcIjeCKUpf9rJzm1yxzR1yrS9OeX6XtK-XC6woQjFDH4N42o6ChUuRYKLFCAOQXBoi3um6RYcPggz9tE-uPKfLIduroxhgv6A_QLEwWaujVWPoVx_JaWkoXbG4Rz6eHH949SYOFRpizRXfxFnFKrgRJkY4pRWzsFvAVZtnVtQFSzNbCJNpXjunc20Zc7VOrYJLXqJTw3KWsn0yalaNfUCoq12mRG2cBRNN11wqUaW5KFwhtKkYj8izLUrluifiKL0Dncmyx7QETEuPaXkRkSMEchiJJNr-w6pdlEEnS1fn3Doj0PfJwWypnXJcaZieslJpG5GDLX5l0OyuvAQvIk-GbtBJdLRUjV2d9WMUMufDmPu91AwzwQLfQiawHrkjTztT3e1pll8877cnygELNSLPt6J3Oa-__4uH_17GI3I9Q21Aml95QEab9sw-Jlf1982yaydkr5gXvpWToFwT_24B7Wk2w7aAdjx7ezr7_BMruDGo
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JbxMxFLZKAcGFfQkUMBKcYNSMl4x9QAgoVauGiENBubkzXkIOTMJMSpX-KH4j73lmUoXt1gPXsTXy8r3nZ7_lI-SZZLDJhdOJVmqQCLBwE-W0THzfpyLwjLmYx_15mI1GajzWHzfIjy4XBsMqO50YFbWbWXwj38bCcTLTUqSv598SZI1C72pHodHA4sAvT-DKVr_a34H9fc7Y7vvDd3tJyyqQWKHFImE5z-EW03cyaKu5B4TD9VAwL4uMp8xn0jErihDswHrOQ2FTr-Fi0rep4wOecvjvBXIR9HiGIWTZOFu96aDXTKS6zc3pc7Vdw_mIOWxMJqkAWyE5XTv_Ik3An2zb30M0f_HTxuNv9_r_tnA3yLXW0KZvGsm4STZ8eYtcbqg3l7dJtTOdIF8KxfoDGKJU1RTsd4rlMyqMnwC5pG08P51X6M5CCEM7bVJHl3S6ymWrKaYPTOgJTBNT0Wqal45-jXGqnrbEHJM75NO5TPgu2Sxnpb9PaCgC07JwwYMBaguhtMzTgcxCJq3LueiRFx0qzLwpM2JieABXpsGQAQyZiCFz2iNvETirnlgiPH6YVRPTahwTioHwwUn07Aowyoqgg9AWhqe90tb3yFaHF9PqrdqcgaVHnq6aQeOgGykv_ey46aORFwD63GtQuhoJ0pdL1Yf5qDX8rg11vaWcfolVzWMZILC_e-RlB_Wzcf19LR78expPyJW9ww9DM9wfHTwkVxlKIhY0Vltkc1Ed-0fkkv2-mNbV4yjKlBydtwj8BFMxhcE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jj9MwFLaGYREX9qUwgJHgBFEbL419QAgoI0YzVD0AmptJvJQeSEvSYdT5afw63nOSjsp2mwPX2Iq8fO_52W_5CHkiGWxy4XSilRomAizcRDktEz_wqQg8Yy7mcX86yMZjdXioJ1vkR5cLg2GVnU6MitrNLb6R97FwnMy0FGk_tGERk9Huy8W3BBmk0NPa0Wk0ENn3q2O4vtUv9kaw108Z23374c27pGUYSKzQYpmwnOdwoxk4GbTV3APa4aoomJdFxlPmM-mYFUUIdmg956GwqddwSRnY1PEhTzn89xw5nwkpUbres8n6fQc9aCLVbZ7OgKt-DWcl5rMxmaQC7IbkZOMsjJQBf7Jzfw_X_MVnG4_C3av_8yJeI1daA5y-aiTmOtny5Q1ysaHkXN0k1Wg2RR4VinUJMHSpqinY9RTLalQYVwHySts4f7qo0M2F0IZ22qSUruhsneNWU0wrmNJjmCamqNU0Lx39GuNXPW0JO6a3yMczmfBtsl3OS3-X0FAEpmXhggfD1BZCaZmnQ5mFTFqXc9EjzzqEmEVTfsTEsAGuTIMnA3gyEU_mpEdeI4jWPbF0ePwwr6am1UQmFEPhg5Po8RVgrBVBB6EtDE97pa3vkZ0OO6bVZ7U5BU6PPF43gyZC91Je-vlR00cjXwD0udMgdj0SpDWXagDzURtY3hjqZks5-xKrncfyQGCX98jzDvan4_r7Wtz79zQekUuAfHOwN96_Ty4zFEqsc6x2yPayOvIPyAX7fTmrq4dRqin5fNYS8BODLI6O
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digital+biomarkers+for+interstitial+glucose+prediction+in+healthy+individuals+using+wearables+and+machine+learning&rft.jtitle=Scientific+reports&rft.au=Huang%2C+Xinyu&rft.au=Schmelter%2C+Franziska&rft.au=Seitzer%2C+Christian&rft.au=Martensen%2C+Lars&rft.date=2025-08-18&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=30164&rft_id=info:doi/10.1038%2Fs41598-025-14172-z&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon