Bias, optimal linear estimation, and the differences between open-loop simulation and closed-loop performance of spiking-based brain–computer interface algorithms

The activity of dozens of simultaneously recorded neurons can be used to control the movement of a robotic arm or a cursor on a computer screen. This motor neural prosthetic technology has spurred an increased interest in the algorithms by which motor intention can be inferred. The simplest of these...

Full description

Saved in:
Bibliographic Details
Published in:Neural networks Vol. 22; no. 9; pp. 1203 - 1213
Main Authors: Chase, Steven M., Schwartz, Andrew B., Kass, Robert E.
Format: Journal Article
Language:English
Published: United States Elsevier Ltd 01.11.2009
Subjects:
ISSN:0893-6080, 1879-2782, 1879-2782
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The activity of dozens of simultaneously recorded neurons can be used to control the movement of a robotic arm or a cursor on a computer screen. This motor neural prosthetic technology has spurred an increased interest in the algorithms by which motor intention can be inferred. The simplest of these algorithms is the population vector algorithm (PVA), where the activity of each cell is used to weight a vector pointing in that neuron’s preferred direction. Off-line, it is possible to show that more complicated algorithms, such as the optimal linear estimator (OLE), can yield substantial improvements in the accuracy of reconstructed hand movements over the PVA. We call this open-loop performance. In contrast, this performance difference may not be present in closed-loop, on-line control. The obvious difference between open and closed-loop control is the ability to adapt to the specifics of the decoder in use at the time. In order to predict performance gains that an algorithm may yield in closed-loop control, it is necessary to build a model that captures aspects of this adaptation process. Here we present a framework for modeling the closed-loop performance of the PVA and the OLE. Using both simulations and experiments, we show that (1) the performance gain with certain decoders can be far less extreme than predicted by off-line results, (2) that subjects are able to compensate for certain types of bias in decoders, and (3) that care must be taken to ensure that estimation error does not degrade the performance of theoretically optimal decoders.
AbstractList The activity of dozens of simultaneously recorded neurons can be used to control the movement of a robotic arm or a cursor on a computer screen. This motor neural prosthetic technology has spurred an increased interest in the algorithms by which motor intention can be inferred. The simplest of these algorithms is the population vector algorithm (PVA), where the activity of each cell is used to weight a vector pointing in that neuron's preferred direction. Off-line, it is possible to show that more complicated algorithms, such as the optimal linear estimator (OLE), can yield substantial improvements in the accuracy of reconstructed hand movements over the PVA. We call this open-loop performance. In contrast, this performance difference may not be present in closed-loop, on-line control. The obvious difference between open and closed-loop control is the ability to adapt to the specifics of the decoder in use at the time. In order to predict performance gains that an algorithm may yield in closed-loop control, it is necessary to build a model that captures aspects of this adaptation process. Here we present a framework for modeling the closed-loop performance of the PVA and the OLE. Using both simulations and experiments, we show that (1) the performance gain with certain decoders can be far less extreme than predicted by off-line results, (2) that subjects are able to compensate for certain types of bias in decoders, and (3) that care must be taken to ensure that estimation error does not degrade the performance of theoretically optimal decoders.
The activity of dozens of simultaneously recorded neurons can be used to control the movement of a robotic arm or a cursor on a computer screen. This motor neural prosthetic technology has spurred an increased interest in the algorithms by which motor intention can be inferred. The simplest of these algorithms is the population vector algorithm (PVA), where the activity of each cell is used to weight a vector pointing in that neuron's preferred direction. Off-line, it is possible to show that more complicated algorithms, such as the optimal linear estimator (OLE), can yield substantial improvements in the accuracy of reconstructed hand movements over the PVA. We call this open-loop performance. In contrast, this performance difference may not be present in closed-loop, on-line control. The obvious difference between open and closed-loop control is the ability to adapt to the specifics of the decoder in use at the time. In order to predict performance gains that an algorithm may yield in closed-loop control, it is necessary to build a model that captures aspects of this adaptation process. Here we present a framework for modeling the closed-loop performance of the PVA and the OLE. Using both simulations and experiments, we show that (1) the performance gain with certain decoders can be far less extreme than predicted by off-line results, (2) that subjects are able to compensate for certain types of bias in decoders, and (3) that care must be taken to ensure that estimation error does not degrade the performance of theoretically optimal decoders.The activity of dozens of simultaneously recorded neurons can be used to control the movement of a robotic arm or a cursor on a computer screen. This motor neural prosthetic technology has spurred an increased interest in the algorithms by which motor intention can be inferred. The simplest of these algorithms is the population vector algorithm (PVA), where the activity of each cell is used to weight a vector pointing in that neuron's preferred direction. Off-line, it is possible to show that more complicated algorithms, such as the optimal linear estimator (OLE), can yield substantial improvements in the accuracy of reconstructed hand movements over the PVA. We call this open-loop performance. In contrast, this performance difference may not be present in closed-loop, on-line control. The obvious difference between open and closed-loop control is the ability to adapt to the specifics of the decoder in use at the time. In order to predict performance gains that an algorithm may yield in closed-loop control, it is necessary to build a model that captures aspects of this adaptation process. Here we present a framework for modeling the closed-loop performance of the PVA and the OLE. Using both simulations and experiments, we show that (1) the performance gain with certain decoders can be far less extreme than predicted by off-line results, (2) that subjects are able to compensate for certain types of bias in decoders, and (3) that care must be taken to ensure that estimation error does not degrade the performance of theoretically optimal decoders.
The activity of dozens of simultaneously recorded neurons can be used to control the movement of a robotic arm or a cursor on a computer screen. This motor neural prosthetic technology has spurred an increased interest in the algorithms by which motor intention can be inferred. The simplest of these algorithms is the population vector algorithm (PVA), where the activity of each cell is used to weight a vector pointing in that neuron’s preferred direction. Off-line, it is possible to show that more complicated algorithms, such as the optimal linear estimator (OLE), can yield substantial improvements in the accuracy of reconstructed hand movements over the PVA. We call this open-loop performance. In contrast, this performance difference may not be present in closed-loop, on-line control. The obvious difference between open and closed-loop control is the ability to adapt to the specifics of the decoder in use at the time. In order to predict performance gains that an algorithm may yield in closed-loop control, it is necessary to build a model that captures aspects of this adaptation process. Here we present a framework for modeling the closed-loop performance of the PVA and the OLE. Using both simulations and experiments, we show that (1) the performance gain with certain decoders can be far less extreme than predicted by off-line results, (2) that subjects are able to compensate for certain types of bias in decoders, and (3) that care must be taken to ensure that estimation error does not degrade the performance of theoretically optimal decoders.
Author Kass, Robert E.
Schwartz, Andrew B.
Chase, Steven M.
AuthorAffiliation 1 Department of Statistics, Carnegie Mellon University
3 Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University
2 Department of Neurobiology, University of Pittsburgh
AuthorAffiliation_xml – name: 3 Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University
– name: 2 Department of Neurobiology, University of Pittsburgh
– name: 1 Department of Statistics, Carnegie Mellon University
Author_xml – sequence: 1
  givenname: Steven M.
  surname: Chase
  fullname: Chase, Steven M.
  email: schase@andrew.cmu.edu
  organization: Department of Statistics, Carnegie Mellon University, United States
– sequence: 2
  givenname: Andrew B.
  surname: Schwartz
  fullname: Schwartz, Andrew B.
  organization: Department of Neurobiology, University of Pittsburgh, United States
– sequence: 3
  givenname: Robert E.
  surname: Kass
  fullname: Kass, Robert E.
  organization: Department of Statistics, Carnegie Mellon University, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19502004$$D View this record in MEDLINE/PubMed
BookMark eNqFks1u1TAQhS1URG8Lb4CQd2ya4MRO4rBAKhV_UiU2sLYce3KvL44dbKeIHe_AK_BkPAm-P1TAomxsWXO-o_HMOUMnzjtA6HFFyopU7bNt6WBxkMqakL4kTUlIcw-tKt71Rd3x-gStCO9p0RJOTtFZjFtCSMsZfYBOq74hGWMr9OOlkfEC-zmZSVpsjQMZMMTdMxnvLrB0GqcNYG3GEQI4BREPkL4AuIyBK6z3M45mWuye2APK-gj6UJohjD5MMpPYjzjO5pNx62KQWYGHII37-e278tO8JAjYuHyOMmulXftg0maKD9H9UdoIj473Ofr4-tWHq7fF9fs3764urwvFepbyrzuqa01kA0ozrUdKmGq5VMMwslZpDlVH22ZQQ0N5rRk0wBvJFAcJ_ThQeo5eHHznZZhAK3ApSCvmkIcRvgovjfi74sxGrP2NyPPOxk02eHo0CP7zkqcoJhMVWCsd-CUK3jJW97zu_6vsKKuqltMqK5_82dRtN793mAXPDwIVfIwBRqFM2q8i92isqIjYBUZsxSEwYhcYQRqRA5Nh9g986383dpwU5HXcGAgiKrPLhjYBVBLam7sNfgHvBeQg
CitedBy_id crossref_primary_10_1038_s43586_025_00399_7
crossref_primary_10_1146_annurev_control_061720_012348
crossref_primary_10_1088_1741_2552_adaef0
crossref_primary_10_3389_fncom_2023_1135783
crossref_primary_10_1088_1741_2560_12_3_036009
crossref_primary_10_1016_j_neuron_2017_05_023
crossref_primary_10_1016_j_ijhcs_2023_103180
crossref_primary_10_1016_j_cobme_2018_11_005
crossref_primary_10_1109_TNSRE_2017_2677443
crossref_primary_10_1016_j_cmpb_2024_108208
crossref_primary_10_1146_annurev_bioeng_110220_110833
crossref_primary_10_1038_s41551_020_0595_9
crossref_primary_10_1109_TNSRE_2016_2639501
crossref_primary_10_1109_TNSRE_2013_2251664
crossref_primary_10_1162_NECO_a_00394
crossref_primary_10_1007_s10827_015_0566_4
crossref_primary_10_1109_TNSRE_2014_2302212
crossref_primary_10_1152_jn_00371_2011
crossref_primary_10_1016_j_jneumeth_2014_12_010
crossref_primary_10_1109_TAFFC_2025_3530318
crossref_primary_10_1146_annurev_bioeng_071910_124640
crossref_primary_10_1038_s41551_020_0542_9
crossref_primary_10_3389_fnins_2016_00312
crossref_primary_10_1109_TBME_2017_2783358
crossref_primary_10_1088_1741_2552_aa9bfb
crossref_primary_10_1109_TNSRE_2012_2221743
crossref_primary_10_1186_s42490_019_0022_z
crossref_primary_10_1016_j_neuron_2025_07_030
crossref_primary_10_1088_1741_2560_12_1_016015
crossref_primary_10_1016_j_neuron_2014_08_038
crossref_primary_10_1109_TNSRE_2013_2287768
crossref_primary_10_1088_1741_2560_12_1_016011
crossref_primary_10_1038_s41598_019_44166_7
crossref_primary_10_1093_iwc_iww026
crossref_primary_10_1152_jn_00503_2010
crossref_primary_10_1523_JNEUROSCI_2325_10_2010
crossref_primary_10_2196_25771
crossref_primary_10_1016_j_robot_2014_08_012
crossref_primary_10_1088_1741_2552_aa9ee7
crossref_primary_10_1088_1741_2552_abfaaa
crossref_primary_10_1109_TRO_2015_2395731
crossref_primary_10_1371_journal_pone_0059049
crossref_primary_10_1109_TBME_2019_2955722
crossref_primary_10_1088_1741_2552_aa5990
crossref_primary_10_1088_1741_2560_11_1_016004
crossref_primary_10_1109_TBME_2016_2582691
crossref_primary_10_1109_TBME_2011_2107553
crossref_primary_10_1162_neco_a_01076
crossref_primary_10_1152_jn_00070_2017
crossref_primary_10_1088_1741_2560_13_4_046009
crossref_primary_10_1038_s41467_018_07647_3
crossref_primary_10_1080_07388551_2021_1993126
crossref_primary_10_1088_1741_2560_14_1_016001
crossref_primary_10_1088_1741_2552_ac97c3
crossref_primary_10_1088_1741_2560_12_4_046031
crossref_primary_10_1152_jn_00293_2014
crossref_primary_10_1038_nn_3265
crossref_primary_10_7554_eLife_21409
crossref_primary_10_1088_1741_2552_adbcd9
crossref_primary_10_1088_1741_2560_10_4_046012
crossref_primary_10_1126_science_aaa5417
crossref_primary_10_3390_rs12244078
crossref_primary_10_1088_1741_2560_11_5_051001
crossref_primary_10_1016_j_cobme_2023_100462
crossref_primary_10_1109_JPROC_2014_2307357
crossref_primary_10_1109_TNSRE_2014_2329698
crossref_primary_10_1152_jn_00466_2018
crossref_primary_10_1088_1741_2552_ac2c4e
crossref_primary_10_1088_1741_2560_11_2_026001
crossref_primary_10_1152_jn_00391_2013
crossref_primary_10_1007_s00422_014_0589_3
crossref_primary_10_1016_j_cub_2014_07_068
crossref_primary_10_1109_TBME_2022_3182588
crossref_primary_10_3389_fnbot_2014_00022
crossref_primary_10_1038_s41467_025_59652_y
crossref_primary_10_1186_s12938_018_0459_7
crossref_primary_10_1038_s42003_020_01484_1
crossref_primary_10_1038_ncomms13749
crossref_primary_10_1038_s41598_020_58097_1
crossref_primary_10_1038_nn_3250
crossref_primary_10_1088_1741_2560_11_3_035001
crossref_primary_10_1088_1741_2560_8_4_045005
crossref_primary_10_1523_JNEUROSCI_0076_10_2010
crossref_primary_10_1088_1741_2560_11_5_056005
Cites_doi 10.1038/nature06996
10.1523/JNEUROSCI.08-08-02928.1988
10.1126/science.3749885
10.1007/s00221-004-2061-4
10.1016/S0893-6080(03)00108-4
10.1152/jn.1998.79.2.1017
10.1126/science.1070291
10.1523/JNEUROSCI.02-11-01527.1982
10.1162/neco.2006.18.10.2465
10.1371/journal.pbio.0000025
10.1038/nature04970
10.1038/nature04968
10.1162/089976606774841585
10.1007/s00221-002-1260-0
10.1088/1741-2560/5/4/010
10.1152/jn.1994.72.1.299
10.1523/JNEUROSCI.4415-07.2008
10.1523/JNEUROSCI.5317-05.2006
10.1007/s00221-003-1643-x
10.1016/j.neuron.2007.04.030
10.1126/science.7569931
10.1038/35042582
10.1111/j.0006-341X.2001.01173.x
10.1109/MSP.2008.4408444
10.1109/TBME.2004.826675
10.1523/JNEUROSCI.14-05-03208.1994
10.1371/journal.pbio.0000042
10.1152/jn.00648.2004
10.1126/science.1097938
10.1126/science.142.3591.455
10.1523/JNEUROSCI.1463-08.2008
10.1037/0096-1523.15.3.493
10.1038/10223
10.1038/416141a
10.1007/BF00962720
10.1523/JNEUROSCI.16-21-07085.1996
10.1523/JNEUROSCI.20-23-08916.2000
10.1152/jn.00438.2003
ContentType Journal Article
Copyright 2009 Elsevier Ltd
Copyright_xml – notice: 2009 Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
DOI 10.1016/j.neunet.2009.05.005
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList Neurosciences Abstracts
MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
EndPage 1213
ExternalDocumentID PMC2783655
19502004
10_1016_j_neunet_2009_05_005
S0893608009000951
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R01 EB005847
– fundername: NIBIB NIH HHS
  grantid: R01-EB005847
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
7TK
5PM
ID FETCH-LOGICAL-c494t-2773d2d0a5ecd4ddf304c68acbbf46cd8e17365bcb5382d4e5e85a4c8eae9fb33
ISICitedReferencesCount 105
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000272073800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0893-6080
1879-2782
IngestDate Tue Sep 30 16:57:20 EDT 2025
Sun Sep 28 08:32:54 EDT 2025
Mon Sep 29 06:19:26 EDT 2025
Mon Jul 21 06:03:50 EDT 2025
Tue Nov 18 22:36:05 EST 2025
Sat Nov 29 02:39:40 EST 2025
Fri Feb 23 02:28:38 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Brain–machine interface
Neural prosthetics
Decoding algorithms
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c494t-2773d2d0a5ecd4ddf304c68acbbf46cd8e17365bcb5382d4e5e85a4c8eae9fb33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/2783655
PMID 19502004
PQID 734116831
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2783655
proquest_miscellaneous_864429829
proquest_miscellaneous_734116831
pubmed_primary_19502004
crossref_citationtrail_10_1016_j_neunet_2009_05_005
crossref_primary_10_1016_j_neunet_2009_05_005
elsevier_sciencedirect_doi_10_1016_j_neunet_2009_05_005
PublicationCentury 2000
PublicationDate 2009-11-01
PublicationDateYYYYMMDD 2009-11-01
PublicationDate_xml – month: 11
  year: 2009
  text: 2009-11-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2009
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Mazzoni, Krakauer (b23) 2006; 26
Taylor, Tillery, Schwartz (b33) 2002; 296
Rokni, Richardson, Bizzi, Seung (b27) 2007; 54
Srinivasan, Eden, Willsky, Brown (b32) 2006; 18
Shadmehr, Mussa-Ivaldi (b31) 1994; 14
Wessberg, Stambaugh, Kralik, Beck, Laubach, Chapin, Kim, Biggs, Srinivasan, Nicolelis (b36) 2000; 408
Carmena, Lebedev, Crist, O’Doherty, Santucci, Dimitrov, Patil, Henriquez, Nicolelis (b3) 2003; 1
Kim, Sanchez, Erdogmus, Rao, Wessberg, Principe, Nicolelis (b18) 2003; 16
Cunningham (b5) 1989; 15
Velliste, Perel, Spalding, Whitford, Schwartz (b35) 2008; 453
Serruya, Hatsopoulos, Paninski, Fellows, Donoghue (b30) 2002; 416
Daniels, Kass (b6) 2001; 57
Held, Freedman (b13) 1963; 142
Kemere, Shenoy, Meng (b17) 2004; 51
Hwang, Donchin, Smith, Shadmehr (b15) 2003; 1
Mulliken, Musallam, Andersen (b24) 2008; 28
Santhanam, Ryu, Yu, Afshar, Shenoy (b29) 2006; 442
Zhang, Ginzburg, McNaughton, Sejnowski (b39) 1998; 79
Chapin, Moxon, Markowitz, Nicolelis (b4) 1999; 2
Truccolo, Friehs, Donoghue, Hochberg (b34) 2008; 28
Kass, Ventura, Brown (b16) 2005; 94
Georgopoulos, Kalaska, Caminiti, Massey (b9) 1982; 2
Georgopoulos, Kettner, Schwartz (b10) 1988; 8
Musallam, Corneil, Greger, Scherberger, Andersen (b25) 2004; 305
Paz, Nathan, Boraud, Bergman, Vaadia (b26) 2005; 161
Ghahramani, Wolpert, Jordan (b12) 1996; 16
Fukushi, Ashe (b8) 2003; 148
Flash, Gurevich (b7) 1991; 13
Georgopoulos, Schwartz, Kettner (b11) 1986; 233
Krakauer, Pine, Ghilardi, Ghez (b20) 2000; 20
Salinas, Abbott (b28) 1994; 1
Lackner, Dizio (b22) 1994; 72
Kulkarni, Paninski (b21) 2008; 25
Hochberg, Serruya, Friehs, Mukand, Saleh, Caplan, Branner, Chen, Penn, Donoghue (b14) 2006; 442
Brockwell, Rojas, Kass (b2) 2004; 91
Kim, Simeral, Hochberg, Donoghue, Black (b19) 2008; 5
Bock, Abeele, Eversheim (b1) 2003; 152
Wu, Gao, Bienenstock, Donoghue, Black (b38) 2006; 18
Wolpert, Ghahramani, Jordan (b37) 1995; 269
Truccolo (10.1016/j.neunet.2009.05.005_b34) 2008; 28
Zhang (10.1016/j.neunet.2009.05.005_b39) 1998; 79
Brockwell (10.1016/j.neunet.2009.05.005_b2) 2004; 91
Kim (10.1016/j.neunet.2009.05.005_b18) 2003; 16
Musallam (10.1016/j.neunet.2009.05.005_b25) 2004; 305
Ghahramani (10.1016/j.neunet.2009.05.005_b12) 1996; 16
Kass (10.1016/j.neunet.2009.05.005_b16) 2005; 94
Lackner (10.1016/j.neunet.2009.05.005_b22) 1994; 72
Paz (10.1016/j.neunet.2009.05.005_b26) 2005; 161
Hochberg (10.1016/j.neunet.2009.05.005_b14) 2006; 442
Mulliken (10.1016/j.neunet.2009.05.005_b24) 2008; 28
Rokni (10.1016/j.neunet.2009.05.005_b27) 2007; 54
Wessberg (10.1016/j.neunet.2009.05.005_b36) 2000; 408
Kemere (10.1016/j.neunet.2009.05.005_b17) 2004; 51
Georgopoulos (10.1016/j.neunet.2009.05.005_b10) 1988; 8
Kulkarni (10.1016/j.neunet.2009.05.005_b21) 2008; 25
Wolpert (10.1016/j.neunet.2009.05.005_b37) 1995; 269
Shadmehr (10.1016/j.neunet.2009.05.005_b31) 1994; 14
Srinivasan (10.1016/j.neunet.2009.05.005_b32) 2006; 18
Cunningham (10.1016/j.neunet.2009.05.005_b5) 1989; 15
Georgopoulos (10.1016/j.neunet.2009.05.005_b9) 1982; 2
Mazzoni (10.1016/j.neunet.2009.05.005_b23) 2006; 26
Held (10.1016/j.neunet.2009.05.005_b13) 1963; 142
Krakauer (10.1016/j.neunet.2009.05.005_b20) 2000; 20
Fukushi (10.1016/j.neunet.2009.05.005_b8) 2003; 148
Velliste (10.1016/j.neunet.2009.05.005_b35) 2008; 453
Daniels (10.1016/j.neunet.2009.05.005_b6) 2001; 57
Carmena (10.1016/j.neunet.2009.05.005_b3) 2003; 1
Hwang (10.1016/j.neunet.2009.05.005_b15) 2003; 1
Santhanam (10.1016/j.neunet.2009.05.005_b29) 2006; 442
Bock (10.1016/j.neunet.2009.05.005_b1) 2003; 152
Flash (10.1016/j.neunet.2009.05.005_b7) 1991; 13
Serruya (10.1016/j.neunet.2009.05.005_b30) 2002; 416
Kim (10.1016/j.neunet.2009.05.005_b19) 2008; 5
Salinas (10.1016/j.neunet.2009.05.005_b28) 1994; 1
Taylor (10.1016/j.neunet.2009.05.005_b33) 2002; 296
Georgopoulos (10.1016/j.neunet.2009.05.005_b11) 1986; 233
Chapin (10.1016/j.neunet.2009.05.005_b4) 1999; 2
Wu (10.1016/j.neunet.2009.05.005_b38) 2006; 18
References_xml – volume: 142
  start-page: 455
  year: 1963
  end-page: 462
  ident: b13
  article-title: Plasticity in Human Sensorimotor Control
  publication-title: Science
– volume: 8
  start-page: 2928
  year: 1988
  end-page: 2937
  ident: b10
  article-title: Primate motor cortex and free arm movements to visual targets in three-dimensional space. II. Coding of the direction of movement by a neuronal population
  publication-title: Journal of Neuroscience
– volume: 442
  start-page: 164
  year: 2006
  end-page: 171
  ident: b14
  article-title: Neuronal ensemble control of prosthetic devices by a human with tetraplegia
  publication-title: Nature
– volume: 453
  start-page: 1098
  year: 2008
  end-page: 1101
  ident: b35
  article-title: Cortical control of a prosthetic arm for self-feeding
  publication-title: Nature
– volume: 408
  start-page: 361
  year: 2000
  end-page: 365
  ident: b36
  article-title: Real-time prediction of hand trajectory by ensembles of cortical neurons in primates
  publication-title: Nature
– volume: 28
  start-page: 12913
  year: 2008
  end-page: 12926
  ident: b24
  article-title: Decoding trajectories from posterior parietal cortex ensembles
  publication-title: Journal of Neuroscience
– volume: 1
  start-page: 89
  year: 1994
  end-page: 107
  ident: b28
  article-title: Vector reconstruction from firing rates
  publication-title: Journal of Computational Neuroscience
– volume: 16
  start-page: 7085
  year: 1996
  end-page: 7096
  ident: b12
  article-title: Generalization to local remappings of the visuomotor coordinate transformation
  publication-title: Journal of Neuroscience
– volume: 18
  start-page: 80
  year: 2006
  end-page: 118
  ident: b38
  article-title: Bayesian population decoding of motor cortical activity using a Kalman filter
  publication-title: Neural Computation
– volume: 14
  start-page: 3208
  year: 1994
  end-page: 3224
  ident: b31
  article-title: Adaptive representation of dynamics during learning of a motor task
  publication-title: Journal of Neuroscience
– volume: 2
  start-page: 664
  year: 1999
  end-page: 670
  ident: b4
  article-title: Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex
  publication-title: Nature Neuroscience
– volume: 94
  start-page: 8
  year: 2005
  end-page: 25
  ident: b16
  article-title: Statistical issues in the analysis of neuronal data
  publication-title: Journal of Neurophysiology
– volume: 20
  start-page: 8916
  year: 2000
  end-page: 8924
  ident: b20
  article-title: Learning of visuomotor transformations for vectorial planning of reaching trajectories
  publication-title: Journal of Neuroscience
– volume: 91
  start-page: 1899
  year: 2004
  end-page: 1907
  ident: b2
  article-title: Recursive bayesian decoding of motor cortical signals by particle filtering
  publication-title: Journal of Neurophysiology
– volume: 1
  start-page: E25
  year: 2003
  ident: b15
  article-title: A gain-field encoding of limb position and velocity in the internal model of arm dynamics
  publication-title: PLoS Biology
– volume: 416
  start-page: 141
  year: 2002
  end-page: 142
  ident: b30
  article-title: Instant neural control of a movement signal
  publication-title: Nature
– volume: 51
  start-page: 925
  year: 2004
  end-page: 932
  ident: b17
  article-title: Model-based neural decoding of reaching movements: A maximum likelihood approach
  publication-title: IEEE Transactions in Biomedecal Engineering
– volume: 28
  start-page: 1163
  year: 2008
  end-page: 1178
  ident: b34
  article-title: Primary motor cortex tuning to intended movement kinematics in humans with tetraplegia
  publication-title: Journal of Neuroscience
– volume: 161
  start-page: 209
  year: 2005
  end-page: 219
  ident: b26
  article-title: Acquisition and generalization of visuomotor transformations by nonhuman primates
  publication-title: Experimental Brain Research
– volume: 79
  start-page: 1017
  year: 1998
  end-page: 1044
  ident: b39
  article-title: Interpreting neuronal population activity by reconstruction: Unified framework with application to hippocampal place cells
  publication-title: Journal of Neurophysiology
– volume: 16
  start-page: 865
  year: 2003
  end-page: 871
  ident: b18
  article-title: Divide-and-conquer approach for brain machine interfaces: Nonlinear mixture of competitive linear models
  publication-title: Neural Networks
– volume: 5
  start-page: 455
  year: 2008
  end-page: 476
  ident: b19
  article-title: Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia
  publication-title: Journal of Neural Engineering
– volume: 269
  start-page: 1880
  year: 1995
  end-page: 1882
  ident: b37
  article-title: An internal model for sensorimotor integration
  publication-title: Science
– volume: 442
  start-page: 195
  year: 2006
  end-page: 198
  ident: b29
  article-title: A high-performance brain–computer interface
  publication-title: Nature
– volume: 2
  start-page: 1527
  year: 1982
  end-page: 1537
  ident: b9
  article-title: On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex
  publication-title: Journal of Neuroscience
– volume: 72
  start-page: 299
  year: 1994
  end-page: 313
  ident: b22
  article-title: Rapid adaptation to Coriolis force perturbations of arm trajectory
  publication-title: Journal of Neurophysiology
– volume: 305
  start-page: 258
  year: 2004
  end-page: 262
  ident: b25
  article-title: Cognitive control signals for neural prosthetics
  publication-title: Science
– volume: 152
  start-page: 528
  year: 2003
  end-page: 532
  ident: b1
  article-title: Human adaptation to rotated vision: Interplay of a continuous and a discrete process
  publication-title: Experimental Brain Research
– volume: 13
  start-page: 885
  year: 1991
  end-page: 886
  ident: b7
  article-title: Arm stiffness and movement adaptation to external loads
  publication-title: Proceedings of IEEE Engineering in Medical and Biology Society Conference
– volume: 233
  start-page: 1416
  year: 1986
  end-page: 1419
  ident: b11
  article-title: Neuronal population coding of movement direction
  publication-title: Science
– volume: 26
  start-page: 3642
  year: 2006
  end-page: 3645
  ident: b23
  article-title: An implicit plan overrides an explicit strategy during visuomotor adaptation
  publication-title: Journal of Neuroscience
– volume: 54
  start-page: 653
  year: 2007
  end-page: 666
  ident: b27
  article-title: Motor learning with unstable neural representations
  publication-title: Neuron
– volume: 57
  start-page: 1173
  year: 2001
  end-page: 1184
  ident: b6
  article-title: Shrinkage estimators for covariance matrices
  publication-title: Biometrics
– volume: 148
  start-page: 95
  year: 2003
  end-page: 104
  ident: b8
  article-title: Adaptation of arm trajectory during continuous drawing movements in different dynamic environments
  publication-title: Experimental Brain Research
– volume: 296
  start-page: 1829
  year: 2002
  end-page: 1832
  ident: b33
  article-title: Direct cortical control of 3D neuroprosthetic devices
  publication-title: Science
– volume: 15
  start-page: 493
  year: 1989
  end-page: 506
  ident: b5
  article-title: Aiming error under transformed spatial mappings suggests a structure for visual-motor maps
  publication-title: Journal of Experimental Psychology: Human Perception and Performance
– volume: 18
  start-page: 2465
  year: 2006
  end-page: 2494
  ident: b32
  article-title: A state-space analysis for reconstruction of goal-directed movements using neural signals
  publication-title: Neural Computation
– volume: 1
  start-page: E42
  year: 2003
  ident: b3
  article-title: Learning to control a brain–machine interface for reaching and grasping by primates
  publication-title: PLoS Biology
– volume: 25
  start-page: 78
  year: 2008
  end-page: 86
  ident: b21
  article-title: State-space decoding of goal-directed movements
  publication-title: IEEE Signal Processing Magazine
– volume: 453
  start-page: 1098
  year: 2008
  ident: 10.1016/j.neunet.2009.05.005_b35
  article-title: Cortical control of a prosthetic arm for self-feeding
  publication-title: Nature
  doi: 10.1038/nature06996
– volume: 8
  start-page: 2928
  year: 1988
  ident: 10.1016/j.neunet.2009.05.005_b10
  article-title: Primate motor cortex and free arm movements to visual targets in three-dimensional space. II. Coding of the direction of movement by a neuronal population
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.08-08-02928.1988
– volume: 233
  start-page: 1416
  year: 1986
  ident: 10.1016/j.neunet.2009.05.005_b11
  article-title: Neuronal population coding of movement direction
  publication-title: Science
  doi: 10.1126/science.3749885
– volume: 161
  start-page: 209
  year: 2005
  ident: 10.1016/j.neunet.2009.05.005_b26
  article-title: Acquisition and generalization of visuomotor transformations by nonhuman primates
  publication-title: Experimental Brain Research
  doi: 10.1007/s00221-004-2061-4
– volume: 16
  start-page: 865
  year: 2003
  ident: 10.1016/j.neunet.2009.05.005_b18
  article-title: Divide-and-conquer approach for brain machine interfaces: Nonlinear mixture of competitive linear models
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(03)00108-4
– volume: 79
  start-page: 1017
  year: 1998
  ident: 10.1016/j.neunet.2009.05.005_b39
  article-title: Interpreting neuronal population activity by reconstruction: Unified framework with application to hippocampal place cells
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.1998.79.2.1017
– volume: 296
  start-page: 1829
  year: 2002
  ident: 10.1016/j.neunet.2009.05.005_b33
  article-title: Direct cortical control of 3D neuroprosthetic devices
  publication-title: Science
  doi: 10.1126/science.1070291
– volume: 2
  start-page: 1527
  year: 1982
  ident: 10.1016/j.neunet.2009.05.005_b9
  article-title: On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.02-11-01527.1982
– volume: 18
  start-page: 2465
  year: 2006
  ident: 10.1016/j.neunet.2009.05.005_b32
  article-title: A state-space analysis for reconstruction of goal-directed movements using neural signals
  publication-title: Neural Computation
  doi: 10.1162/neco.2006.18.10.2465
– volume: 1
  start-page: E25
  year: 2003
  ident: 10.1016/j.neunet.2009.05.005_b15
  article-title: A gain-field encoding of limb position and velocity in the internal model of arm dynamics
  publication-title: PLoS Biology
  doi: 10.1371/journal.pbio.0000025
– volume: 442
  start-page: 164
  year: 2006
  ident: 10.1016/j.neunet.2009.05.005_b14
  article-title: Neuronal ensemble control of prosthetic devices by a human with tetraplegia
  publication-title: Nature
  doi: 10.1038/nature04970
– volume: 442
  start-page: 195
  year: 2006
  ident: 10.1016/j.neunet.2009.05.005_b29
  article-title: A high-performance brain–computer interface
  publication-title: Nature
  doi: 10.1038/nature04968
– volume: 18
  start-page: 80
  year: 2006
  ident: 10.1016/j.neunet.2009.05.005_b38
  article-title: Bayesian population decoding of motor cortical activity using a Kalman filter
  publication-title: Neural Computation
  doi: 10.1162/089976606774841585
– volume: 148
  start-page: 95
  year: 2003
  ident: 10.1016/j.neunet.2009.05.005_b8
  article-title: Adaptation of arm trajectory during continuous drawing movements in different dynamic environments
  publication-title: Experimental Brain Research
  doi: 10.1007/s00221-002-1260-0
– volume: 5
  start-page: 455
  year: 2008
  ident: 10.1016/j.neunet.2009.05.005_b19
  article-title: Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2560/5/4/010
– volume: 72
  start-page: 299
  year: 1994
  ident: 10.1016/j.neunet.2009.05.005_b22
  article-title: Rapid adaptation to Coriolis force perturbations of arm trajectory
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.1994.72.1.299
– volume: 28
  start-page: 1163
  year: 2008
  ident: 10.1016/j.neunet.2009.05.005_b34
  article-title: Primary motor cortex tuning to intended movement kinematics in humans with tetraplegia
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.4415-07.2008
– volume: 26
  start-page: 3642
  year: 2006
  ident: 10.1016/j.neunet.2009.05.005_b23
  article-title: An implicit plan overrides an explicit strategy during visuomotor adaptation
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.5317-05.2006
– volume: 152
  start-page: 528
  year: 2003
  ident: 10.1016/j.neunet.2009.05.005_b1
  article-title: Human adaptation to rotated vision: Interplay of a continuous and a discrete process
  publication-title: Experimental Brain Research
  doi: 10.1007/s00221-003-1643-x
– volume: 54
  start-page: 653
  year: 2007
  ident: 10.1016/j.neunet.2009.05.005_b27
  article-title: Motor learning with unstable neural representations
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.04.030
– volume: 13
  start-page: 885
  year: 1991
  ident: 10.1016/j.neunet.2009.05.005_b7
  article-title: Arm stiffness and movement adaptation to external loads
  publication-title: Proceedings of IEEE Engineering in Medical and Biology Society Conference
– volume: 269
  start-page: 1880
  year: 1995
  ident: 10.1016/j.neunet.2009.05.005_b37
  article-title: An internal model for sensorimotor integration
  publication-title: Science
  doi: 10.1126/science.7569931
– volume: 408
  start-page: 361
  year: 2000
  ident: 10.1016/j.neunet.2009.05.005_b36
  article-title: Real-time prediction of hand trajectory by ensembles of cortical neurons in primates
  publication-title: Nature
  doi: 10.1038/35042582
– volume: 57
  start-page: 1173
  year: 2001
  ident: 10.1016/j.neunet.2009.05.005_b6
  article-title: Shrinkage estimators for covariance matrices
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2001.01173.x
– volume: 25
  start-page: 78
  year: 2008
  ident: 10.1016/j.neunet.2009.05.005_b21
  article-title: State-space decoding of goal-directed movements
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2008.4408444
– volume: 51
  start-page: 925
  year: 2004
  ident: 10.1016/j.neunet.2009.05.005_b17
  article-title: Model-based neural decoding of reaching movements: A maximum likelihood approach
  publication-title: IEEE Transactions in Biomedecal Engineering
  doi: 10.1109/TBME.2004.826675
– volume: 14
  start-page: 3208
  year: 1994
  ident: 10.1016/j.neunet.2009.05.005_b31
  article-title: Adaptive representation of dynamics during learning of a motor task
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.14-05-03208.1994
– volume: 1
  start-page: E42
  year: 2003
  ident: 10.1016/j.neunet.2009.05.005_b3
  article-title: Learning to control a brain–machine interface for reaching and grasping by primates
  publication-title: PLoS Biology
  doi: 10.1371/journal.pbio.0000042
– volume: 94
  start-page: 8
  year: 2005
  ident: 10.1016/j.neunet.2009.05.005_b16
  article-title: Statistical issues in the analysis of neuronal data
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.00648.2004
– volume: 305
  start-page: 258
  year: 2004
  ident: 10.1016/j.neunet.2009.05.005_b25
  article-title: Cognitive control signals for neural prosthetics
  publication-title: Science
  doi: 10.1126/science.1097938
– volume: 142
  start-page: 455
  year: 1963
  ident: 10.1016/j.neunet.2009.05.005_b13
  article-title: Plasticity in Human Sensorimotor Control
  publication-title: Science
  doi: 10.1126/science.142.3591.455
– volume: 28
  start-page: 12913
  year: 2008
  ident: 10.1016/j.neunet.2009.05.005_b24
  article-title: Decoding trajectories from posterior parietal cortex ensembles
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.1463-08.2008
– volume: 15
  start-page: 493
  year: 1989
  ident: 10.1016/j.neunet.2009.05.005_b5
  article-title: Aiming error under transformed spatial mappings suggests a structure for visual-motor maps
  publication-title: Journal of Experimental Psychology: Human Perception and Performance
  doi: 10.1037/0096-1523.15.3.493
– volume: 2
  start-page: 664
  year: 1999
  ident: 10.1016/j.neunet.2009.05.005_b4
  article-title: Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex
  publication-title: Nature Neuroscience
  doi: 10.1038/10223
– volume: 416
  start-page: 141
  year: 2002
  ident: 10.1016/j.neunet.2009.05.005_b30
  article-title: Instant neural control of a movement signal
  publication-title: Nature
  doi: 10.1038/416141a
– volume: 1
  start-page: 89
  year: 1994
  ident: 10.1016/j.neunet.2009.05.005_b28
  article-title: Vector reconstruction from firing rates
  publication-title: Journal of Computational Neuroscience
  doi: 10.1007/BF00962720
– volume: 16
  start-page: 7085
  year: 1996
  ident: 10.1016/j.neunet.2009.05.005_b12
  article-title: Generalization to local remappings of the visuomotor coordinate transformation
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.16-21-07085.1996
– volume: 20
  start-page: 8916
  year: 2000
  ident: 10.1016/j.neunet.2009.05.005_b20
  article-title: Learning of visuomotor transformations for vectorial planning of reaching trajectories
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.20-23-08916.2000
– volume: 91
  start-page: 1899
  year: 2004
  ident: 10.1016/j.neunet.2009.05.005_b2
  article-title: Recursive bayesian decoding of motor cortical signals by particle filtering
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.00438.2003
SSID ssj0006843
Score 2.2908468
Snippet The activity of dozens of simultaneously recorded neurons can be used to control the movement of a robotic arm or a cursor on a computer screen. This motor...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1203
SubjectTerms Action Potentials
Algorithms
Animals
Brain - physiology
Brain–machine interface
Computer Simulation
Decoding algorithms
Electrodes, Implanted
Linear Models
Macaca mulatta
Male
Microelectrodes
Neural prosthetics
Time Factors
User-Computer Interface
Title Bias, optimal linear estimation, and the differences between open-loop simulation and closed-loop performance of spiking-based brain–computer interface algorithms
URI https://dx.doi.org/10.1016/j.neunet.2009.05.005
https://www.ncbi.nlm.nih.gov/pubmed/19502004
https://www.proquest.com/docview/734116831
https://www.proquest.com/docview/864429829
https://pubmed.ncbi.nlm.nih.gov/PMC2783655
Volume 22
WOSCitedRecordID wos000272073800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb5wwELY2SQ-99P3YPiIfql4SKtYYsI9ptFEfUdrDRtobMsZ0WW2A7iON-nP6D_oPO17bwDaNtj1USAiBDVjzMTM2M_Mh9Ipx5iu9UAXWSXk058RLI8E9mtGByiMZi8yQTcRnZ2w85p97vZ8uF-ZyFpclu7ri9X8VNZwDYevU2X8Qd3NTOAHHIHTYg9hh_1eCf1uYHK0KlMEFCED7kWJ-oKtpmDRFF7CpXU7Hj6LjslzIlibU8mZVVR8sigvL7mXS32bVQmXmUt1JOAB_c1EXes3d00YRXFrNO-FJSxixLkkxz4VOTZh9qebFcmJLpE9d6ah17Y_SRKQ3Tv7xRBjWR8O81mE-lpNvMPDvbUBmyx39URgWeBMxbvMs3KoGt-l9HeXHAy_yDcuT09SEdBDJO2p3QPygY8J1mbo_mgezUjF9U6oVjMlWK9WLamFrDl0IwNmn5OT89DQZDcej1_VXTxOV6R_6lrVlB-2ROOSgSPeO3g_HHxrzHzETqukG4PI110GF1x98kz90fb7ze9huxw8a3UN37AQGHxng3Uc9VT5Adx05CLa24iH6oXF4iC0KsUEhblF4iAFSGDCIOxjEFoO4wSBuMbju0MEg7mAQVznewCDexCBuMIhbDD5C5yfD0fE7zxKCeJJyuvRIHAcZyXwRKpnRLMsDn8qICZmmOY1kxtQgDqIwlSmYcZJRFSoWCiqZEornaRA8RrtlVaqnCIMSgrkRJUJR2FIigjyAuUsqoGUsud9HgRNLIm21fE3aMktcWOQ0McLURK488cMEhNlHXtOrNtVitrSPncQT6_EaTzYBxG7piR1AEjAI-i-fKFW1WiQx-KWDiAWDm5swmAQRzgjvoycGUu3b8tDX2hTebANsTQNdjn7zSllM1mXpNWdPFIbPtj_2ObrdfvMv0O5yvlIv0S15uSwW8320E4_Zvv2sfgFOTw13
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bias%2C+optimal+linear+estimation%2C+and+the+differences+between+open-loop+simulation+and+closed-loop+performance+of+spiking-based+brain-computer+interface+algorithms&rft.jtitle=Neural+networks&rft.au=Chase%2C+Steven+M&rft.au=Schwartz%2C+Andrew+B&rft.au=Kass%2C+Robert+E&rft.date=2009-11-01&rft.issn=0893-6080&rft.volume=22&rft.issue=9&rft.spage=1203&rft.epage=1213&rft_id=info:doi/10.1016%2Fj.neunet.2009.05.005&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon