Bias, optimal linear estimation, and the differences between open-loop simulation and closed-loop performance of spiking-based brain–computer interface algorithms
The activity of dozens of simultaneously recorded neurons can be used to control the movement of a robotic arm or a cursor on a computer screen. This motor neural prosthetic technology has spurred an increased interest in the algorithms by which motor intention can be inferred. The simplest of these...
Gespeichert in:
| Veröffentlicht in: | Neural networks Jg. 22; H. 9; S. 1203 - 1213 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Elsevier Ltd
01.11.2009
|
| Schlagworte: | |
| ISSN: | 0893-6080, 1879-2782, 1879-2782 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The activity of dozens of simultaneously recorded neurons can be used to control the movement of a robotic arm or a cursor on a computer screen. This motor neural prosthetic technology has spurred an increased interest in the algorithms by which motor intention can be inferred. The simplest of these algorithms is the population vector algorithm (PVA), where the activity of each cell is used to weight a vector pointing in that neuron’s preferred direction. Off-line, it is possible to show that more complicated algorithms, such as the optimal linear estimator (OLE), can yield substantial improvements in the accuracy of reconstructed hand movements over the PVA. We call this open-loop performance. In contrast, this performance difference may not be present in closed-loop, on-line control.
The obvious difference between open and closed-loop control is the ability to adapt to the specifics of the decoder in use at the time. In order to predict performance gains that an algorithm may yield in closed-loop control, it is necessary to build a model that captures aspects of this adaptation process. Here we present a framework for modeling the closed-loop performance of the PVA and the OLE. Using both simulations and experiments, we show that (1) the performance gain with certain decoders can be far less extreme than predicted by off-line results, (2) that subjects are able to compensate for certain types of bias in decoders, and (3) that care must be taken to ensure that estimation error does not degrade the performance of theoretically optimal decoders. |
|---|---|
| AbstractList | The activity of dozens of simultaneously recorded neurons can be used to control the movement of a robotic arm or a cursor on a computer screen. This motor neural prosthetic technology has spurred an increased interest in the algorithms by which motor intention can be inferred. The simplest of these algorithms is the population vector algorithm (PVA), where the activity of each cell is used to weight a vector pointing in that neuron's preferred direction. Off-line, it is possible to show that more complicated algorithms, such as the optimal linear estimator (OLE), can yield substantial improvements in the accuracy of reconstructed hand movements over the PVA. We call this open-loop performance. In contrast, this performance difference may not be present in closed-loop, on-line control. The obvious difference between open and closed-loop control is the ability to adapt to the specifics of the decoder in use at the time. In order to predict performance gains that an algorithm may yield in closed-loop control, it is necessary to build a model that captures aspects of this adaptation process. Here we present a framework for modeling the closed-loop performance of the PVA and the OLE. Using both simulations and experiments, we show that (1) the performance gain with certain decoders can be far less extreme than predicted by off-line results, (2) that subjects are able to compensate for certain types of bias in decoders, and (3) that care must be taken to ensure that estimation error does not degrade the performance of theoretically optimal decoders. The activity of dozens of simultaneously recorded neurons can be used to control the movement of a robotic arm or a cursor on a computer screen. This motor neural prosthetic technology has spurred an increased interest in the algorithms by which motor intention can be inferred. The simplest of these algorithms is the population vector algorithm (PVA), where the activity of each cell is used to weight a vector pointing in that neuron's preferred direction. Off-line, it is possible to show that more complicated algorithms, such as the optimal linear estimator (OLE), can yield substantial improvements in the accuracy of reconstructed hand movements over the PVA. We call this open-loop performance. In contrast, this performance difference may not be present in closed-loop, on-line control. The obvious difference between open and closed-loop control is the ability to adapt to the specifics of the decoder in use at the time. In order to predict performance gains that an algorithm may yield in closed-loop control, it is necessary to build a model that captures aspects of this adaptation process. Here we present a framework for modeling the closed-loop performance of the PVA and the OLE. Using both simulations and experiments, we show that (1) the performance gain with certain decoders can be far less extreme than predicted by off-line results, (2) that subjects are able to compensate for certain types of bias in decoders, and (3) that care must be taken to ensure that estimation error does not degrade the performance of theoretically optimal decoders.The activity of dozens of simultaneously recorded neurons can be used to control the movement of a robotic arm or a cursor on a computer screen. This motor neural prosthetic technology has spurred an increased interest in the algorithms by which motor intention can be inferred. The simplest of these algorithms is the population vector algorithm (PVA), where the activity of each cell is used to weight a vector pointing in that neuron's preferred direction. Off-line, it is possible to show that more complicated algorithms, such as the optimal linear estimator (OLE), can yield substantial improvements in the accuracy of reconstructed hand movements over the PVA. We call this open-loop performance. In contrast, this performance difference may not be present in closed-loop, on-line control. The obvious difference between open and closed-loop control is the ability to adapt to the specifics of the decoder in use at the time. In order to predict performance gains that an algorithm may yield in closed-loop control, it is necessary to build a model that captures aspects of this adaptation process. Here we present a framework for modeling the closed-loop performance of the PVA and the OLE. Using both simulations and experiments, we show that (1) the performance gain with certain decoders can be far less extreme than predicted by off-line results, (2) that subjects are able to compensate for certain types of bias in decoders, and (3) that care must be taken to ensure that estimation error does not degrade the performance of theoretically optimal decoders. The activity of dozens of simultaneously recorded neurons can be used to control the movement of a robotic arm or a cursor on a computer screen. This motor neural prosthetic technology has spurred an increased interest in the algorithms by which motor intention can be inferred. The simplest of these algorithms is the population vector algorithm (PVA), where the activity of each cell is used to weight a vector pointing in that neuron’s preferred direction. Off-line, it is possible to show that more complicated algorithms, such as the optimal linear estimator (OLE), can yield substantial improvements in the accuracy of reconstructed hand movements over the PVA. We call this open-loop performance. In contrast, this performance difference may not be present in closed-loop, on-line control. The obvious difference between open and closed-loop control is the ability to adapt to the specifics of the decoder in use at the time. In order to predict performance gains that an algorithm may yield in closed-loop control, it is necessary to build a model that captures aspects of this adaptation process. Here we present a framework for modeling the closed-loop performance of the PVA and the OLE. Using both simulations and experiments, we show that (1) the performance gain with certain decoders can be far less extreme than predicted by off-line results, (2) that subjects are able to compensate for certain types of bias in decoders, and (3) that care must be taken to ensure that estimation error does not degrade the performance of theoretically optimal decoders. |
| Author | Kass, Robert E. Schwartz, Andrew B. Chase, Steven M. |
| AuthorAffiliation | 1 Department of Statistics, Carnegie Mellon University 3 Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University 2 Department of Neurobiology, University of Pittsburgh |
| AuthorAffiliation_xml | – name: 3 Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University – name: 2 Department of Neurobiology, University of Pittsburgh – name: 1 Department of Statistics, Carnegie Mellon University |
| Author_xml | – sequence: 1 givenname: Steven M. surname: Chase fullname: Chase, Steven M. email: schase@andrew.cmu.edu organization: Department of Statistics, Carnegie Mellon University, United States – sequence: 2 givenname: Andrew B. surname: Schwartz fullname: Schwartz, Andrew B. organization: Department of Neurobiology, University of Pittsburgh, United States – sequence: 3 givenname: Robert E. surname: Kass fullname: Kass, Robert E. organization: Department of Statistics, Carnegie Mellon University, United States |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19502004$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFks1u1TAQhS1URG8Lb4CQd2ya4MRO4rBAKhV_UiU2sLYce3KvL44dbKeIHe_AK_BkPAm-P1TAomxsWXO-o_HMOUMnzjtA6HFFyopU7bNt6WBxkMqakL4kTUlIcw-tKt71Rd3x-gStCO9p0RJOTtFZjFtCSMsZfYBOq74hGWMr9OOlkfEC-zmZSVpsjQMZMMTdMxnvLrB0GqcNYG3GEQI4BREPkL4AuIyBK6z3M45mWuye2APK-gj6UJohjD5MMpPYjzjO5pNx62KQWYGHII37-e278tO8JAjYuHyOMmulXftg0maKD9H9UdoIj473Ofr4-tWHq7fF9fs3764urwvFepbyrzuqa01kA0ozrUdKmGq5VMMwslZpDlVH22ZQQ0N5rRk0wBvJFAcJ_ThQeo5eHHznZZhAK3ApSCvmkIcRvgovjfi74sxGrP2NyPPOxk02eHo0CP7zkqcoJhMVWCsd-CUK3jJW97zu_6vsKKuqltMqK5_82dRtN793mAXPDwIVfIwBRqFM2q8i92isqIjYBUZsxSEwYhcYQRqRA5Nh9g986383dpwU5HXcGAgiKrPLhjYBVBLam7sNfgHvBeQg |
| CitedBy_id | crossref_primary_10_1038_s43586_025_00399_7 crossref_primary_10_1146_annurev_control_061720_012348 crossref_primary_10_1088_1741_2552_adaef0 crossref_primary_10_3389_fncom_2023_1135783 crossref_primary_10_1088_1741_2560_12_3_036009 crossref_primary_10_1016_j_neuron_2017_05_023 crossref_primary_10_1016_j_ijhcs_2023_103180 crossref_primary_10_1016_j_cobme_2018_11_005 crossref_primary_10_1109_TNSRE_2017_2677443 crossref_primary_10_1016_j_cmpb_2024_108208 crossref_primary_10_1146_annurev_bioeng_110220_110833 crossref_primary_10_1038_s41551_020_0595_9 crossref_primary_10_1109_TNSRE_2016_2639501 crossref_primary_10_1109_TNSRE_2013_2251664 crossref_primary_10_1162_NECO_a_00394 crossref_primary_10_1007_s10827_015_0566_4 crossref_primary_10_1109_TNSRE_2014_2302212 crossref_primary_10_1152_jn_00371_2011 crossref_primary_10_1016_j_jneumeth_2014_12_010 crossref_primary_10_1109_TAFFC_2025_3530318 crossref_primary_10_1146_annurev_bioeng_071910_124640 crossref_primary_10_1038_s41551_020_0542_9 crossref_primary_10_3389_fnins_2016_00312 crossref_primary_10_1109_TBME_2017_2783358 crossref_primary_10_1088_1741_2552_aa9bfb crossref_primary_10_1109_TNSRE_2012_2221743 crossref_primary_10_1186_s42490_019_0022_z crossref_primary_10_1016_j_neuron_2025_07_030 crossref_primary_10_1088_1741_2560_12_1_016015 crossref_primary_10_1016_j_neuron_2014_08_038 crossref_primary_10_1109_TNSRE_2013_2287768 crossref_primary_10_1088_1741_2560_12_1_016011 crossref_primary_10_1038_s41598_019_44166_7 crossref_primary_10_1093_iwc_iww026 crossref_primary_10_1152_jn_00503_2010 crossref_primary_10_1523_JNEUROSCI_2325_10_2010 crossref_primary_10_2196_25771 crossref_primary_10_1016_j_robot_2014_08_012 crossref_primary_10_1088_1741_2552_aa9ee7 crossref_primary_10_1088_1741_2552_abfaaa crossref_primary_10_1109_TRO_2015_2395731 crossref_primary_10_1371_journal_pone_0059049 crossref_primary_10_1109_TBME_2019_2955722 crossref_primary_10_1088_1741_2552_aa5990 crossref_primary_10_1088_1741_2560_11_1_016004 crossref_primary_10_1109_TBME_2016_2582691 crossref_primary_10_1109_TBME_2011_2107553 crossref_primary_10_1162_neco_a_01076 crossref_primary_10_1152_jn_00070_2017 crossref_primary_10_1088_1741_2560_13_4_046009 crossref_primary_10_1038_s41467_018_07647_3 crossref_primary_10_1080_07388551_2021_1993126 crossref_primary_10_1088_1741_2560_14_1_016001 crossref_primary_10_1088_1741_2552_ac97c3 crossref_primary_10_1088_1741_2560_12_4_046031 crossref_primary_10_1152_jn_00293_2014 crossref_primary_10_1038_nn_3265 crossref_primary_10_7554_eLife_21409 crossref_primary_10_1088_1741_2552_adbcd9 crossref_primary_10_1088_1741_2560_10_4_046012 crossref_primary_10_1126_science_aaa5417 crossref_primary_10_3390_rs12244078 crossref_primary_10_1088_1741_2560_11_5_051001 crossref_primary_10_1016_j_cobme_2023_100462 crossref_primary_10_1109_JPROC_2014_2307357 crossref_primary_10_1109_TNSRE_2014_2329698 crossref_primary_10_1152_jn_00466_2018 crossref_primary_10_1088_1741_2552_ac2c4e crossref_primary_10_1088_1741_2560_11_2_026001 crossref_primary_10_1152_jn_00391_2013 crossref_primary_10_1007_s00422_014_0589_3 crossref_primary_10_1016_j_cub_2014_07_068 crossref_primary_10_1109_TBME_2022_3182588 crossref_primary_10_3389_fnbot_2014_00022 crossref_primary_10_1038_s41467_025_59652_y crossref_primary_10_1186_s12938_018_0459_7 crossref_primary_10_1038_s42003_020_01484_1 crossref_primary_10_1038_ncomms13749 crossref_primary_10_1038_s41598_020_58097_1 crossref_primary_10_1038_nn_3250 crossref_primary_10_1088_1741_2560_11_3_035001 crossref_primary_10_1088_1741_2560_8_4_045005 crossref_primary_10_1523_JNEUROSCI_0076_10_2010 crossref_primary_10_1088_1741_2560_11_5_056005 |
| Cites_doi | 10.1038/nature06996 10.1523/JNEUROSCI.08-08-02928.1988 10.1126/science.3749885 10.1007/s00221-004-2061-4 10.1016/S0893-6080(03)00108-4 10.1152/jn.1998.79.2.1017 10.1126/science.1070291 10.1523/JNEUROSCI.02-11-01527.1982 10.1162/neco.2006.18.10.2465 10.1371/journal.pbio.0000025 10.1038/nature04970 10.1038/nature04968 10.1162/089976606774841585 10.1007/s00221-002-1260-0 10.1088/1741-2560/5/4/010 10.1152/jn.1994.72.1.299 10.1523/JNEUROSCI.4415-07.2008 10.1523/JNEUROSCI.5317-05.2006 10.1007/s00221-003-1643-x 10.1016/j.neuron.2007.04.030 10.1126/science.7569931 10.1038/35042582 10.1111/j.0006-341X.2001.01173.x 10.1109/MSP.2008.4408444 10.1109/TBME.2004.826675 10.1523/JNEUROSCI.14-05-03208.1994 10.1371/journal.pbio.0000042 10.1152/jn.00648.2004 10.1126/science.1097938 10.1126/science.142.3591.455 10.1523/JNEUROSCI.1463-08.2008 10.1037/0096-1523.15.3.493 10.1038/10223 10.1038/416141a 10.1007/BF00962720 10.1523/JNEUROSCI.16-21-07085.1996 10.1523/JNEUROSCI.20-23-08916.2000 10.1152/jn.00438.2003 |
| ContentType | Journal Article |
| Copyright | 2009 Elsevier Ltd |
| Copyright_xml | – notice: 2009 Elsevier Ltd |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
| DOI | 10.1016/j.neunet.2009.05.005 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
| DatabaseTitleList | Neurosciences Abstracts MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1879-2782 |
| EndPage | 1213 |
| ExternalDocumentID | PMC2783655 19502004 10_1016_j_neunet_2009_05_005 S0893608009000951 |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: R01 EB005847 – fundername: NIBIB NIH HHS grantid: R01-EB005847 |
| GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYFN ABAOU ABBOA ABCQJ ABEFU ABFNM ABFRF ABHFT ABIVO ABJNI ABLJU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADRHT AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HMQ HVGLF HZ~ IHE J1W JJJVA K-O KOM KZ1 LG9 LMP M2V M41 MHUIS MO0 MOBAO MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCC SDF SDG SDP SES SEW SNS SPC SPCBC SSN SST SSV SSW SSZ T5K TAE UAP UNMZH VOH WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AGCQF AGRNS BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 7TK 5PM |
| ID | FETCH-LOGICAL-c494t-2773d2d0a5ecd4ddf304c68acbbf46cd8e17365bcb5382d4e5e85a4c8eae9fb33 |
| ISICitedReferencesCount | 105 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000272073800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0893-6080 1879-2782 |
| IngestDate | Tue Sep 30 16:57:20 EDT 2025 Sun Sep 28 08:32:54 EDT 2025 Mon Sep 29 06:19:26 EDT 2025 Mon Jul 21 06:03:50 EDT 2025 Tue Nov 18 22:36:05 EST 2025 Sat Nov 29 02:39:40 EST 2025 Fri Feb 23 02:28:38 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Brain–machine interface Neural prosthetics Decoding algorithms |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c494t-2773d2d0a5ecd4ddf304c68acbbf46cd8e17365bcb5382d4e5e85a4c8eae9fb33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/2783655 |
| PMID | 19502004 |
| PQID | 734116831 |
| PQPubID | 23479 |
| PageCount | 11 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2783655 proquest_miscellaneous_864429829 proquest_miscellaneous_734116831 pubmed_primary_19502004 crossref_citationtrail_10_1016_j_neunet_2009_05_005 crossref_primary_10_1016_j_neunet_2009_05_005 elsevier_sciencedirect_doi_10_1016_j_neunet_2009_05_005 |
| PublicationCentury | 2000 |
| PublicationDate | 2009-11-01 |
| PublicationDateYYYYMMDD | 2009-11-01 |
| PublicationDate_xml | – month: 11 year: 2009 text: 2009-11-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Neural networks |
| PublicationTitleAlternate | Neural Netw |
| PublicationYear | 2009 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Mazzoni, Krakauer (b23) 2006; 26 Taylor, Tillery, Schwartz (b33) 2002; 296 Rokni, Richardson, Bizzi, Seung (b27) 2007; 54 Srinivasan, Eden, Willsky, Brown (b32) 2006; 18 Shadmehr, Mussa-Ivaldi (b31) 1994; 14 Wessberg, Stambaugh, Kralik, Beck, Laubach, Chapin, Kim, Biggs, Srinivasan, Nicolelis (b36) 2000; 408 Carmena, Lebedev, Crist, O’Doherty, Santucci, Dimitrov, Patil, Henriquez, Nicolelis (b3) 2003; 1 Kim, Sanchez, Erdogmus, Rao, Wessberg, Principe, Nicolelis (b18) 2003; 16 Cunningham (b5) 1989; 15 Velliste, Perel, Spalding, Whitford, Schwartz (b35) 2008; 453 Serruya, Hatsopoulos, Paninski, Fellows, Donoghue (b30) 2002; 416 Daniels, Kass (b6) 2001; 57 Held, Freedman (b13) 1963; 142 Kemere, Shenoy, Meng (b17) 2004; 51 Hwang, Donchin, Smith, Shadmehr (b15) 2003; 1 Mulliken, Musallam, Andersen (b24) 2008; 28 Santhanam, Ryu, Yu, Afshar, Shenoy (b29) 2006; 442 Zhang, Ginzburg, McNaughton, Sejnowski (b39) 1998; 79 Chapin, Moxon, Markowitz, Nicolelis (b4) 1999; 2 Truccolo, Friehs, Donoghue, Hochberg (b34) 2008; 28 Kass, Ventura, Brown (b16) 2005; 94 Georgopoulos, Kalaska, Caminiti, Massey (b9) 1982; 2 Georgopoulos, Kettner, Schwartz (b10) 1988; 8 Musallam, Corneil, Greger, Scherberger, Andersen (b25) 2004; 305 Paz, Nathan, Boraud, Bergman, Vaadia (b26) 2005; 161 Ghahramani, Wolpert, Jordan (b12) 1996; 16 Fukushi, Ashe (b8) 2003; 148 Flash, Gurevich (b7) 1991; 13 Georgopoulos, Schwartz, Kettner (b11) 1986; 233 Krakauer, Pine, Ghilardi, Ghez (b20) 2000; 20 Salinas, Abbott (b28) 1994; 1 Lackner, Dizio (b22) 1994; 72 Kulkarni, Paninski (b21) 2008; 25 Hochberg, Serruya, Friehs, Mukand, Saleh, Caplan, Branner, Chen, Penn, Donoghue (b14) 2006; 442 Brockwell, Rojas, Kass (b2) 2004; 91 Kim, Simeral, Hochberg, Donoghue, Black (b19) 2008; 5 Bock, Abeele, Eversheim (b1) 2003; 152 Wu, Gao, Bienenstock, Donoghue, Black (b38) 2006; 18 Wolpert, Ghahramani, Jordan (b37) 1995; 269 Truccolo (10.1016/j.neunet.2009.05.005_b34) 2008; 28 Zhang (10.1016/j.neunet.2009.05.005_b39) 1998; 79 Brockwell (10.1016/j.neunet.2009.05.005_b2) 2004; 91 Kim (10.1016/j.neunet.2009.05.005_b18) 2003; 16 Musallam (10.1016/j.neunet.2009.05.005_b25) 2004; 305 Ghahramani (10.1016/j.neunet.2009.05.005_b12) 1996; 16 Kass (10.1016/j.neunet.2009.05.005_b16) 2005; 94 Lackner (10.1016/j.neunet.2009.05.005_b22) 1994; 72 Paz (10.1016/j.neunet.2009.05.005_b26) 2005; 161 Hochberg (10.1016/j.neunet.2009.05.005_b14) 2006; 442 Mulliken (10.1016/j.neunet.2009.05.005_b24) 2008; 28 Rokni (10.1016/j.neunet.2009.05.005_b27) 2007; 54 Wessberg (10.1016/j.neunet.2009.05.005_b36) 2000; 408 Kemere (10.1016/j.neunet.2009.05.005_b17) 2004; 51 Georgopoulos (10.1016/j.neunet.2009.05.005_b10) 1988; 8 Kulkarni (10.1016/j.neunet.2009.05.005_b21) 2008; 25 Wolpert (10.1016/j.neunet.2009.05.005_b37) 1995; 269 Shadmehr (10.1016/j.neunet.2009.05.005_b31) 1994; 14 Srinivasan (10.1016/j.neunet.2009.05.005_b32) 2006; 18 Cunningham (10.1016/j.neunet.2009.05.005_b5) 1989; 15 Georgopoulos (10.1016/j.neunet.2009.05.005_b9) 1982; 2 Mazzoni (10.1016/j.neunet.2009.05.005_b23) 2006; 26 Held (10.1016/j.neunet.2009.05.005_b13) 1963; 142 Krakauer (10.1016/j.neunet.2009.05.005_b20) 2000; 20 Fukushi (10.1016/j.neunet.2009.05.005_b8) 2003; 148 Velliste (10.1016/j.neunet.2009.05.005_b35) 2008; 453 Daniels (10.1016/j.neunet.2009.05.005_b6) 2001; 57 Carmena (10.1016/j.neunet.2009.05.005_b3) 2003; 1 Hwang (10.1016/j.neunet.2009.05.005_b15) 2003; 1 Santhanam (10.1016/j.neunet.2009.05.005_b29) 2006; 442 Bock (10.1016/j.neunet.2009.05.005_b1) 2003; 152 Flash (10.1016/j.neunet.2009.05.005_b7) 1991; 13 Serruya (10.1016/j.neunet.2009.05.005_b30) 2002; 416 Kim (10.1016/j.neunet.2009.05.005_b19) 2008; 5 Salinas (10.1016/j.neunet.2009.05.005_b28) 1994; 1 Taylor (10.1016/j.neunet.2009.05.005_b33) 2002; 296 Georgopoulos (10.1016/j.neunet.2009.05.005_b11) 1986; 233 Chapin (10.1016/j.neunet.2009.05.005_b4) 1999; 2 Wu (10.1016/j.neunet.2009.05.005_b38) 2006; 18 |
| References_xml | – volume: 142 start-page: 455 year: 1963 end-page: 462 ident: b13 article-title: Plasticity in Human Sensorimotor Control publication-title: Science – volume: 8 start-page: 2928 year: 1988 end-page: 2937 ident: b10 article-title: Primate motor cortex and free arm movements to visual targets in three-dimensional space. II. Coding of the direction of movement by a neuronal population publication-title: Journal of Neuroscience – volume: 442 start-page: 164 year: 2006 end-page: 171 ident: b14 article-title: Neuronal ensemble control of prosthetic devices by a human with tetraplegia publication-title: Nature – volume: 453 start-page: 1098 year: 2008 end-page: 1101 ident: b35 article-title: Cortical control of a prosthetic arm for self-feeding publication-title: Nature – volume: 408 start-page: 361 year: 2000 end-page: 365 ident: b36 article-title: Real-time prediction of hand trajectory by ensembles of cortical neurons in primates publication-title: Nature – volume: 28 start-page: 12913 year: 2008 end-page: 12926 ident: b24 article-title: Decoding trajectories from posterior parietal cortex ensembles publication-title: Journal of Neuroscience – volume: 1 start-page: 89 year: 1994 end-page: 107 ident: b28 article-title: Vector reconstruction from firing rates publication-title: Journal of Computational Neuroscience – volume: 16 start-page: 7085 year: 1996 end-page: 7096 ident: b12 article-title: Generalization to local remappings of the visuomotor coordinate transformation publication-title: Journal of Neuroscience – volume: 18 start-page: 80 year: 2006 end-page: 118 ident: b38 article-title: Bayesian population decoding of motor cortical activity using a Kalman filter publication-title: Neural Computation – volume: 14 start-page: 3208 year: 1994 end-page: 3224 ident: b31 article-title: Adaptive representation of dynamics during learning of a motor task publication-title: Journal of Neuroscience – volume: 2 start-page: 664 year: 1999 end-page: 670 ident: b4 article-title: Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex publication-title: Nature Neuroscience – volume: 94 start-page: 8 year: 2005 end-page: 25 ident: b16 article-title: Statistical issues in the analysis of neuronal data publication-title: Journal of Neurophysiology – volume: 20 start-page: 8916 year: 2000 end-page: 8924 ident: b20 article-title: Learning of visuomotor transformations for vectorial planning of reaching trajectories publication-title: Journal of Neuroscience – volume: 91 start-page: 1899 year: 2004 end-page: 1907 ident: b2 article-title: Recursive bayesian decoding of motor cortical signals by particle filtering publication-title: Journal of Neurophysiology – volume: 1 start-page: E25 year: 2003 ident: b15 article-title: A gain-field encoding of limb position and velocity in the internal model of arm dynamics publication-title: PLoS Biology – volume: 416 start-page: 141 year: 2002 end-page: 142 ident: b30 article-title: Instant neural control of a movement signal publication-title: Nature – volume: 51 start-page: 925 year: 2004 end-page: 932 ident: b17 article-title: Model-based neural decoding of reaching movements: A maximum likelihood approach publication-title: IEEE Transactions in Biomedecal Engineering – volume: 28 start-page: 1163 year: 2008 end-page: 1178 ident: b34 article-title: Primary motor cortex tuning to intended movement kinematics in humans with tetraplegia publication-title: Journal of Neuroscience – volume: 161 start-page: 209 year: 2005 end-page: 219 ident: b26 article-title: Acquisition and generalization of visuomotor transformations by nonhuman primates publication-title: Experimental Brain Research – volume: 79 start-page: 1017 year: 1998 end-page: 1044 ident: b39 article-title: Interpreting neuronal population activity by reconstruction: Unified framework with application to hippocampal place cells publication-title: Journal of Neurophysiology – volume: 16 start-page: 865 year: 2003 end-page: 871 ident: b18 article-title: Divide-and-conquer approach for brain machine interfaces: Nonlinear mixture of competitive linear models publication-title: Neural Networks – volume: 5 start-page: 455 year: 2008 end-page: 476 ident: b19 article-title: Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia publication-title: Journal of Neural Engineering – volume: 269 start-page: 1880 year: 1995 end-page: 1882 ident: b37 article-title: An internal model for sensorimotor integration publication-title: Science – volume: 442 start-page: 195 year: 2006 end-page: 198 ident: b29 article-title: A high-performance brain–computer interface publication-title: Nature – volume: 2 start-page: 1527 year: 1982 end-page: 1537 ident: b9 article-title: On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex publication-title: Journal of Neuroscience – volume: 72 start-page: 299 year: 1994 end-page: 313 ident: b22 article-title: Rapid adaptation to Coriolis force perturbations of arm trajectory publication-title: Journal of Neurophysiology – volume: 305 start-page: 258 year: 2004 end-page: 262 ident: b25 article-title: Cognitive control signals for neural prosthetics publication-title: Science – volume: 152 start-page: 528 year: 2003 end-page: 532 ident: b1 article-title: Human adaptation to rotated vision: Interplay of a continuous and a discrete process publication-title: Experimental Brain Research – volume: 13 start-page: 885 year: 1991 end-page: 886 ident: b7 article-title: Arm stiffness and movement adaptation to external loads publication-title: Proceedings of IEEE Engineering in Medical and Biology Society Conference – volume: 233 start-page: 1416 year: 1986 end-page: 1419 ident: b11 article-title: Neuronal population coding of movement direction publication-title: Science – volume: 26 start-page: 3642 year: 2006 end-page: 3645 ident: b23 article-title: An implicit plan overrides an explicit strategy during visuomotor adaptation publication-title: Journal of Neuroscience – volume: 54 start-page: 653 year: 2007 end-page: 666 ident: b27 article-title: Motor learning with unstable neural representations publication-title: Neuron – volume: 57 start-page: 1173 year: 2001 end-page: 1184 ident: b6 article-title: Shrinkage estimators for covariance matrices publication-title: Biometrics – volume: 148 start-page: 95 year: 2003 end-page: 104 ident: b8 article-title: Adaptation of arm trajectory during continuous drawing movements in different dynamic environments publication-title: Experimental Brain Research – volume: 296 start-page: 1829 year: 2002 end-page: 1832 ident: b33 article-title: Direct cortical control of 3D neuroprosthetic devices publication-title: Science – volume: 15 start-page: 493 year: 1989 end-page: 506 ident: b5 article-title: Aiming error under transformed spatial mappings suggests a structure for visual-motor maps publication-title: Journal of Experimental Psychology: Human Perception and Performance – volume: 18 start-page: 2465 year: 2006 end-page: 2494 ident: b32 article-title: A state-space analysis for reconstruction of goal-directed movements using neural signals publication-title: Neural Computation – volume: 1 start-page: E42 year: 2003 ident: b3 article-title: Learning to control a brain–machine interface for reaching and grasping by primates publication-title: PLoS Biology – volume: 25 start-page: 78 year: 2008 end-page: 86 ident: b21 article-title: State-space decoding of goal-directed movements publication-title: IEEE Signal Processing Magazine – volume: 453 start-page: 1098 year: 2008 ident: 10.1016/j.neunet.2009.05.005_b35 article-title: Cortical control of a prosthetic arm for self-feeding publication-title: Nature doi: 10.1038/nature06996 – volume: 8 start-page: 2928 year: 1988 ident: 10.1016/j.neunet.2009.05.005_b10 article-title: Primate motor cortex and free arm movements to visual targets in three-dimensional space. II. Coding of the direction of movement by a neuronal population publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.08-08-02928.1988 – volume: 233 start-page: 1416 year: 1986 ident: 10.1016/j.neunet.2009.05.005_b11 article-title: Neuronal population coding of movement direction publication-title: Science doi: 10.1126/science.3749885 – volume: 161 start-page: 209 year: 2005 ident: 10.1016/j.neunet.2009.05.005_b26 article-title: Acquisition and generalization of visuomotor transformations by nonhuman primates publication-title: Experimental Brain Research doi: 10.1007/s00221-004-2061-4 – volume: 16 start-page: 865 year: 2003 ident: 10.1016/j.neunet.2009.05.005_b18 article-title: Divide-and-conquer approach for brain machine interfaces: Nonlinear mixture of competitive linear models publication-title: Neural Networks doi: 10.1016/S0893-6080(03)00108-4 – volume: 79 start-page: 1017 year: 1998 ident: 10.1016/j.neunet.2009.05.005_b39 article-title: Interpreting neuronal population activity by reconstruction: Unified framework with application to hippocampal place cells publication-title: Journal of Neurophysiology doi: 10.1152/jn.1998.79.2.1017 – volume: 296 start-page: 1829 year: 2002 ident: 10.1016/j.neunet.2009.05.005_b33 article-title: Direct cortical control of 3D neuroprosthetic devices publication-title: Science doi: 10.1126/science.1070291 – volume: 2 start-page: 1527 year: 1982 ident: 10.1016/j.neunet.2009.05.005_b9 article-title: On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.02-11-01527.1982 – volume: 18 start-page: 2465 year: 2006 ident: 10.1016/j.neunet.2009.05.005_b32 article-title: A state-space analysis for reconstruction of goal-directed movements using neural signals publication-title: Neural Computation doi: 10.1162/neco.2006.18.10.2465 – volume: 1 start-page: E25 year: 2003 ident: 10.1016/j.neunet.2009.05.005_b15 article-title: A gain-field encoding of limb position and velocity in the internal model of arm dynamics publication-title: PLoS Biology doi: 10.1371/journal.pbio.0000025 – volume: 442 start-page: 164 year: 2006 ident: 10.1016/j.neunet.2009.05.005_b14 article-title: Neuronal ensemble control of prosthetic devices by a human with tetraplegia publication-title: Nature doi: 10.1038/nature04970 – volume: 442 start-page: 195 year: 2006 ident: 10.1016/j.neunet.2009.05.005_b29 article-title: A high-performance brain–computer interface publication-title: Nature doi: 10.1038/nature04968 – volume: 18 start-page: 80 year: 2006 ident: 10.1016/j.neunet.2009.05.005_b38 article-title: Bayesian population decoding of motor cortical activity using a Kalman filter publication-title: Neural Computation doi: 10.1162/089976606774841585 – volume: 148 start-page: 95 year: 2003 ident: 10.1016/j.neunet.2009.05.005_b8 article-title: Adaptation of arm trajectory during continuous drawing movements in different dynamic environments publication-title: Experimental Brain Research doi: 10.1007/s00221-002-1260-0 – volume: 5 start-page: 455 year: 2008 ident: 10.1016/j.neunet.2009.05.005_b19 article-title: Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia publication-title: Journal of Neural Engineering doi: 10.1088/1741-2560/5/4/010 – volume: 72 start-page: 299 year: 1994 ident: 10.1016/j.neunet.2009.05.005_b22 article-title: Rapid adaptation to Coriolis force perturbations of arm trajectory publication-title: Journal of Neurophysiology doi: 10.1152/jn.1994.72.1.299 – volume: 28 start-page: 1163 year: 2008 ident: 10.1016/j.neunet.2009.05.005_b34 article-title: Primary motor cortex tuning to intended movement kinematics in humans with tetraplegia publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.4415-07.2008 – volume: 26 start-page: 3642 year: 2006 ident: 10.1016/j.neunet.2009.05.005_b23 article-title: An implicit plan overrides an explicit strategy during visuomotor adaptation publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.5317-05.2006 – volume: 152 start-page: 528 year: 2003 ident: 10.1016/j.neunet.2009.05.005_b1 article-title: Human adaptation to rotated vision: Interplay of a continuous and a discrete process publication-title: Experimental Brain Research doi: 10.1007/s00221-003-1643-x – volume: 54 start-page: 653 year: 2007 ident: 10.1016/j.neunet.2009.05.005_b27 article-title: Motor learning with unstable neural representations publication-title: Neuron doi: 10.1016/j.neuron.2007.04.030 – volume: 13 start-page: 885 year: 1991 ident: 10.1016/j.neunet.2009.05.005_b7 article-title: Arm stiffness and movement adaptation to external loads publication-title: Proceedings of IEEE Engineering in Medical and Biology Society Conference – volume: 269 start-page: 1880 year: 1995 ident: 10.1016/j.neunet.2009.05.005_b37 article-title: An internal model for sensorimotor integration publication-title: Science doi: 10.1126/science.7569931 – volume: 408 start-page: 361 year: 2000 ident: 10.1016/j.neunet.2009.05.005_b36 article-title: Real-time prediction of hand trajectory by ensembles of cortical neurons in primates publication-title: Nature doi: 10.1038/35042582 – volume: 57 start-page: 1173 year: 2001 ident: 10.1016/j.neunet.2009.05.005_b6 article-title: Shrinkage estimators for covariance matrices publication-title: Biometrics doi: 10.1111/j.0006-341X.2001.01173.x – volume: 25 start-page: 78 year: 2008 ident: 10.1016/j.neunet.2009.05.005_b21 article-title: State-space decoding of goal-directed movements publication-title: IEEE Signal Processing Magazine doi: 10.1109/MSP.2008.4408444 – volume: 51 start-page: 925 year: 2004 ident: 10.1016/j.neunet.2009.05.005_b17 article-title: Model-based neural decoding of reaching movements: A maximum likelihood approach publication-title: IEEE Transactions in Biomedecal Engineering doi: 10.1109/TBME.2004.826675 – volume: 14 start-page: 3208 year: 1994 ident: 10.1016/j.neunet.2009.05.005_b31 article-title: Adaptive representation of dynamics during learning of a motor task publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.14-05-03208.1994 – volume: 1 start-page: E42 year: 2003 ident: 10.1016/j.neunet.2009.05.005_b3 article-title: Learning to control a brain–machine interface for reaching and grasping by primates publication-title: PLoS Biology doi: 10.1371/journal.pbio.0000042 – volume: 94 start-page: 8 year: 2005 ident: 10.1016/j.neunet.2009.05.005_b16 article-title: Statistical issues in the analysis of neuronal data publication-title: Journal of Neurophysiology doi: 10.1152/jn.00648.2004 – volume: 305 start-page: 258 year: 2004 ident: 10.1016/j.neunet.2009.05.005_b25 article-title: Cognitive control signals for neural prosthetics publication-title: Science doi: 10.1126/science.1097938 – volume: 142 start-page: 455 year: 1963 ident: 10.1016/j.neunet.2009.05.005_b13 article-title: Plasticity in Human Sensorimotor Control publication-title: Science doi: 10.1126/science.142.3591.455 – volume: 28 start-page: 12913 year: 2008 ident: 10.1016/j.neunet.2009.05.005_b24 article-title: Decoding trajectories from posterior parietal cortex ensembles publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.1463-08.2008 – volume: 15 start-page: 493 year: 1989 ident: 10.1016/j.neunet.2009.05.005_b5 article-title: Aiming error under transformed spatial mappings suggests a structure for visual-motor maps publication-title: Journal of Experimental Psychology: Human Perception and Performance doi: 10.1037/0096-1523.15.3.493 – volume: 2 start-page: 664 year: 1999 ident: 10.1016/j.neunet.2009.05.005_b4 article-title: Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex publication-title: Nature Neuroscience doi: 10.1038/10223 – volume: 416 start-page: 141 year: 2002 ident: 10.1016/j.neunet.2009.05.005_b30 article-title: Instant neural control of a movement signal publication-title: Nature doi: 10.1038/416141a – volume: 1 start-page: 89 year: 1994 ident: 10.1016/j.neunet.2009.05.005_b28 article-title: Vector reconstruction from firing rates publication-title: Journal of Computational Neuroscience doi: 10.1007/BF00962720 – volume: 16 start-page: 7085 year: 1996 ident: 10.1016/j.neunet.2009.05.005_b12 article-title: Generalization to local remappings of the visuomotor coordinate transformation publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.16-21-07085.1996 – volume: 20 start-page: 8916 year: 2000 ident: 10.1016/j.neunet.2009.05.005_b20 article-title: Learning of visuomotor transformations for vectorial planning of reaching trajectories publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.20-23-08916.2000 – volume: 91 start-page: 1899 year: 2004 ident: 10.1016/j.neunet.2009.05.005_b2 article-title: Recursive bayesian decoding of motor cortical signals by particle filtering publication-title: Journal of Neurophysiology doi: 10.1152/jn.00438.2003 |
| SSID | ssj0006843 |
| Score | 2.2908468 |
| Snippet | The activity of dozens of simultaneously recorded neurons can be used to control the movement of a robotic arm or a cursor on a computer screen. This motor... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1203 |
| SubjectTerms | Action Potentials Algorithms Animals Brain - physiology Brain–machine interface Computer Simulation Decoding algorithms Electrodes, Implanted Linear Models Macaca mulatta Male Microelectrodes Neural prosthetics Time Factors User-Computer Interface |
| Title | Bias, optimal linear estimation, and the differences between open-loop simulation and closed-loop performance of spiking-based brain–computer interface algorithms |
| URI | https://dx.doi.org/10.1016/j.neunet.2009.05.005 https://www.ncbi.nlm.nih.gov/pubmed/19502004 https://www.proquest.com/docview/734116831 https://www.proquest.com/docview/864429829 https://pubmed.ncbi.nlm.nih.gov/PMC2783655 |
| Volume | 22 |
| WOSCitedRecordID | wos000272073800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECWcpIdeui_uEvBQ9JKwkLWSxzRw0MVIe3AK3wSKpGIbjuR6SYN-Tv-gf9ihSEpy08DtoRfBkChL1DxxhtTMewi9ElQG0lOS9FguSRhklGQ5FSQBf55JzqXh0vsySE5P6WjEPnc6P10tzOUsKQp6dcXm_9XUsA-MrUtn_8Hc9Z_CDvgNRoctmB22f2X4txNTo1XCYHABBtBxJF8caDYNU6boEjZ1yOn0UXRelkvZ0oJaZFaW84Pl5MKqe5nyt1m5hOddHZq3Cg4g3lzOJ3rNnWinCCGt1p0gwgpGVJQUi5zr0oTZebmYrMaWIn3qqKMq7o_CZKTXQf7xmBvVR6O81lI-FuNv0PHvTUJmox39kRsVeJMxbuss3KoGs-V9rcGPBST2jMqTG6l9v4VI1hp2e74XtFy4pqn7o3swKxXTN4VaQ58sW6leVIsad-hSAE4_pSdng0E67I-Gr-dfiRYq0x_0rWrLDtrzk4jBQLp39L4_-lC7_5iaVE3XAVevWSUVXr_wTfHQ9fnO72m7rThoeA_dsRMYfGSAdx91VPEA3XXiINj6iofoh8bhIbYoxAaFuEHhIQZIYcAgbmEQWwziGoO4wWB1QguDuIVBXOZ4A4N4E4O4xiBuMPgInZ30h8fviBUEISJk4Yr4SRJIX3o8UkKGUuaBF4qYcpFleRgLSVUvCeIoExm4cV-GKlI04qGgiiuWZ0HwGO0WZaGeIkyV5_MQvA8PVciUx2VcUWNWmQnUy7socGZJhWXL16Its9SlRU5TY0wt5MpSL0rBmF1E6rPmhi1mS_vEWTy1Ea-JZFNA7JYzsQNICg5Bf-XjhSrXyzSBuLQX06B3cxMKkyCfUZ910RMDqeZuWeTp0RTubANsdQNNR795pJiMK1p6rdkTR9Gz7Zd9jm437_wLtLtarNVLdEtcribLxT7aSUZ0375WvwBLBQ1R |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bias%2C+optimal+linear+estimation%2C+and+the+differences+between+open-loop+simulation+and+closed-loop+performance+of+spiking-based+brain-computer+interface+algorithms&rft.jtitle=Neural+networks&rft.au=Chase%2C+Steven+M&rft.au=Schwartz%2C+Andrew+B&rft.au=Kass%2C+Robert+E&rft.date=2009-11-01&rft.issn=0893-6080&rft.volume=22&rft.issue=9&rft.spage=1203&rft.epage=1213&rft_id=info:doi/10.1016%2Fj.neunet.2009.05.005&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon |