Optimization of TCN-BiLSTM for dissolved oxygen prediction based on improved sparrow search algorithm
Dissolved oxygen (DO) is a crucial indicator of water quality in river ecosystems, and its accurate prediction plays a vital role in the protection and sustainable utilization of these ecosystems. However, current DO prediction models often struggle with issues such as noise in the water quality dat...
Saved in:
| Published in: | Scientific reports Vol. 15; no. 1; pp. 30790 - 18 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
21.08.2025
Nature Publishing Group Nature Portfolio |
| Subjects: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Dissolved oxygen (DO) is a crucial indicator of water quality in river ecosystems, and its accurate prediction plays a vital role in the protection and sustainable utilization of these ecosystems. However, current DO prediction models often struggle with issues such as noise in the water quality data and insufficient feature extraction. To address these challenges, this paper proposes a dissolved oxygen prediction method based on an improved sparrow search algorithm optimized TCN- BiLSTM (SMI-TCN BiLSTM). Initially, the Savitzky-Golay (SG) filter is employed to denoise the water quality data, producing smoother and more consistent datasets. Next, the Maximum Information Coefficient (MIC) is applied to quantify the correlation between input features, enabling the identification and selection of key influencing factors. In addition, the traditional Temporal Convolutional Network (TCN) often fails to capture the dynamic fluctuations present in DO data, resulting in suboptimal prediction performance. To overcome this limitation, a Bi-directional Long Short-Term Memory (BiLSTM) network is integrated into the TCN framework, forming a TCN-BiLSTM prediction module. This module effectively captures both forward and backward temporal dependencies, improving the model’s ability to track the dynamic trends in the data and enhancing its prediction accuracy. Finally, to address the stochastic nature of hyperparameter optimization in the TCN-BiLSTM module, we introduce an improved Sparrow Search Algorithm (ISSA). The ISSA is applied to optimize the hyperparameters of the TCN-BiLSTM model, thereby improving the overall prediction performance. To validate the proposed model, experiments are conducted on real datasets and compared with other water quality prediction models. The experimental results demonstrate that our method achieves the best prediction results. |
|---|---|
| AbstractList | Dissolved oxygen (DO) is a crucial indicator of water quality in river ecosystems, and its accurate prediction plays a vital role in the protection and sustainable utilization of these ecosystems. However, current DO prediction models often struggle with issues such as noise in the water quality data and insufficient feature extraction. To address these challenges, this paper proposes a dissolved oxygen prediction method based on an improved sparrow search algorithm optimized TCN- BiLSTM (SMI-TCN BiLSTM). Initially, the Savitzky-Golay (SG) filter is employed to denoise the water quality data, producing smoother and more consistent datasets. Next, the Maximum Information Coefficient (MIC) is applied to quantify the correlation between input features, enabling the identification and selection of key influencing factors. In addition, the traditional Temporal Convolutional Network (TCN) often fails to capture the dynamic fluctuations present in DO data, resulting in suboptimal prediction performance. To overcome this limitation, a Bi-directional Long Short-Term Memory (BiLSTM) network is integrated into the TCN framework, forming a TCN-BiLSTM prediction module. This module effectively captures both forward and backward temporal dependencies, improving the model's ability to track the dynamic trends in the data and enhancing its prediction accuracy. Finally, to address the stochastic nature of hyperparameter optimization in the TCN-BiLSTM module, we introduce an improved Sparrow Search Algorithm (ISSA). The ISSA is applied to optimize the hyperparameters of the TCN-BiLSTM model, thereby improving the overall prediction performance. To validate the proposed model, experiments are conducted on real datasets and compared with other water quality prediction models. The experimental results demonstrate that our method achieves the best prediction results. Dissolved oxygen (DO) is a crucial indicator of water quality in river ecosystems, and its accurate prediction plays a vital role in the protection and sustainable utilization of these ecosystems. However, current DO prediction models often struggle with issues such as noise in the water quality data and insufficient feature extraction. To address these challenges, this paper proposes a dissolved oxygen prediction method based on an improved sparrow search algorithm optimized TCN- BiLSTM (SMI-TCN BiLSTM). Initially, the Savitzky-Golay (SG) filter is employed to denoise the water quality data, producing smoother and more consistent datasets. Next, the Maximum Information Coefficient (MIC) is applied to quantify the correlation between input features, enabling the identification and selection of key influencing factors. In addition, the traditional Temporal Convolutional Network (TCN) often fails to capture the dynamic fluctuations present in DO data, resulting in suboptimal prediction performance. To overcome this limitation, a Bi-directional Long Short-Term Memory (BiLSTM) network is integrated into the TCN framework, forming a TCN-BiLSTM prediction module. This module effectively captures both forward and backward temporal dependencies, improving the model's ability to track the dynamic trends in the data and enhancing its prediction accuracy. Finally, to address the stochastic nature of hyperparameter optimization in the TCN-BiLSTM module, we introduce an improved Sparrow Search Algorithm (ISSA). The ISSA is applied to optimize the hyperparameters of the TCN-BiLSTM model, thereby improving the overall prediction performance. To validate the proposed model, experiments are conducted on real datasets and compared with other water quality prediction models. The experimental results demonstrate that our method achieves the best prediction results.Dissolved oxygen (DO) is a crucial indicator of water quality in river ecosystems, and its accurate prediction plays a vital role in the protection and sustainable utilization of these ecosystems. However, current DO prediction models often struggle with issues such as noise in the water quality data and insufficient feature extraction. To address these challenges, this paper proposes a dissolved oxygen prediction method based on an improved sparrow search algorithm optimized TCN- BiLSTM (SMI-TCN BiLSTM). Initially, the Savitzky-Golay (SG) filter is employed to denoise the water quality data, producing smoother and more consistent datasets. Next, the Maximum Information Coefficient (MIC) is applied to quantify the correlation between input features, enabling the identification and selection of key influencing factors. In addition, the traditional Temporal Convolutional Network (TCN) often fails to capture the dynamic fluctuations present in DO data, resulting in suboptimal prediction performance. To overcome this limitation, a Bi-directional Long Short-Term Memory (BiLSTM) network is integrated into the TCN framework, forming a TCN-BiLSTM prediction module. This module effectively captures both forward and backward temporal dependencies, improving the model's ability to track the dynamic trends in the data and enhancing its prediction accuracy. Finally, to address the stochastic nature of hyperparameter optimization in the TCN-BiLSTM module, we introduce an improved Sparrow Search Algorithm (ISSA). The ISSA is applied to optimize the hyperparameters of the TCN-BiLSTM model, thereby improving the overall prediction performance. To validate the proposed model, experiments are conducted on real datasets and compared with other water quality prediction models. The experimental results demonstrate that our method achieves the best prediction results. Abstract Dissolved oxygen (DO) is a crucial indicator of water quality in river ecosystems, and its accurate prediction plays a vital role in the protection and sustainable utilization of these ecosystems. However, current DO prediction models often struggle with issues such as noise in the water quality data and insufficient feature extraction. To address these challenges, this paper proposes a dissolved oxygen prediction method based on an improved sparrow search algorithm optimized TCN- BiLSTM (SMI-TCN BiLSTM). Initially, the Savitzky-Golay (SG) filter is employed to denoise the water quality data, producing smoother and more consistent datasets. Next, the Maximum Information Coefficient (MIC) is applied to quantify the correlation between input features, enabling the identification and selection of key influencing factors. In addition, the traditional Temporal Convolutional Network (TCN) often fails to capture the dynamic fluctuations present in DO data, resulting in suboptimal prediction performance. To overcome this limitation, a Bi-directional Long Short-Term Memory (BiLSTM) network is integrated into the TCN framework, forming a TCN-BiLSTM prediction module. This module effectively captures both forward and backward temporal dependencies, improving the model’s ability to track the dynamic trends in the data and enhancing its prediction accuracy. Finally, to address the stochastic nature of hyperparameter optimization in the TCN-BiLSTM module, we introduce an improved Sparrow Search Algorithm (ISSA). The ISSA is applied to optimize the hyperparameters of the TCN-BiLSTM model, thereby improving the overall prediction performance. To validate the proposed model, experiments are conducted on real datasets and compared with other water quality prediction models. The experimental results demonstrate that our method achieves the best prediction results. |
| ArticleNumber | 30790 |
| Author | Ma, Xiaofei Tang, Mingjie Wang, Quan Shi, Pei |
| Author_xml | – sequence: 1 givenname: Pei surname: Shi fullname: Shi, Pei organization: School of Internet of Things Engineering, Wuxi University, School of Automation, Nanjing University of Information Science and Technology – sequence: 2 givenname: Mingjie surname: Tang fullname: Tang, Mingjie organization: School of Automation, Nanjing University of Information Science and Technology – sequence: 3 givenname: Quan surname: Wang fullname: Wang, Quan email: wangquan@cwxu.edu.cn organization: School of Internet of Things Engineering, Wuxi University, School of Automation, Nanjing University of Information Science and Technology – sequence: 4 givenname: Xiaofei surname: Ma fullname: Ma, Xiaofei organization: Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40841579$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9ks1u1DAUhS3UipbSF2CBIrFhE-rf2F4hOqJQaUoXDGvLcZyMR4kd7EyhfXo8k1LaLvDG1vV3jq98zytw4IO3ALxB8AOCRJwlipgUJcSsRKzitKxegGMMKSsxwfjg0fkInKa0gXkxLCmSL8ERhSLLuTwG9nqc3ODu9OSCL0JbrBbfynO3_L66KtoQi8alFPob2xTh921nfTFG2zizp2uddnVfuGGMYcekUccYfhXJ6mjWhe67EN20Hl6Dw1b3yZ7e7yfgx8Xn1eJrubz-crn4tCwNlXQqEa_qCnJmjWBCE1wTwlCNDW5Nw1qiBW8hE1zjSsLGoszWTHMOuawlZaQmJ-By9m2C3qgxukHHWxW0U_tCiJ3ScXKmt4pyJhFsiOCwonUlBcESEq45hUaLBmWvj7PXuK0H2xjrp6j7J6ZPb7xbqy7cKIQJzyPi2eH9vUMMP7c2TWpwydi-196GbVIE04pAKLDI6Ltn6CZso89_taPyv9A87Ey9fdzSQy9_x5kBPAMmhpSibR8QBNUuNmqOjcqxUfvYqCqLyCxKGfadjf_e_o_qD84Nwyw |
| Cites_doi | 10.1007/s11356-023-29920-9 10.1007/s11356-024-32228-x 10.1016/j.jhydrol.2024.130637 10.1016/j.jenvman.2017.11.049 10.3390/w15244227 10.1016/j.jhydrol.2022.127934 10.2166/ws.2024.060 10.1007/s00521-023-08287-5 10.1016/j.apr.2023.101836 10.3390/su11072058 10.1016/j.jwpe.2023.103889 10.1016/j.epsr.2021.107761 10.1016/j.neunet.2005.06.042 10.1038/s41598-023-38465-3 10.3390/w16050707 10.1109/ACCESS.2022.3180482 10.1007/s00521-013-1538-0 10.1016/j.watres.2023.121092 10.1016/j.energy.2023.126844 10.1007/s00477-020-01776-2 10.1109/TITS.2020.3038457 10.3390/rs14071714 10.3390/e24040457 10.1007/s11270-023-06117-x 10.1109/ACCESS.2019.2935504 10.1016/j.jenvman.2021.113085 10.3390/su151713209 10.1016/j.ins.2024.121736 10.1016/j.ins.2022.12.091 10.1166/sl.2010.1208 10.3390/su131910690 10.3390/w13202907 10.3390/w10060806 10.1166/sl.2011.1396 10.1016/j.apenergy.2022.120479 10.3390/w15081625 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-025-15674-6 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (via ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 18 |
| ExternalDocumentID | oai_doaj_org_article_475910d387064b698329037a740ca8d1 PMC12371037 40841579 10_1038_s41598_025_15674_6 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: 2023 Outstanding Science and Technology Innovation Team Project in Jiangsu Universities – fundername: National Natural Science Foundation of China grantid: 62072216 – fundername: Wuxi “Light of Taihu Lake” Science and Technology Research Project grantid: K20221044 – fundername: Natural Science Research Program for Universities in Jiangsu Province grantid: 21KJB520020 – fundername: Wuxi “Xishan Talent Program” Innovation Leadership Talent Project grantid: 2022xsyc002 – fundername: Funding for the “Green and Blue” Project in Jiangsu Universities – fundername: Wuxi "Light of Taihu Lake" Science and Technology Research Project grantid: K20221044 – fundername: Wuxi "Xishan Talent Program" Innovation Leadership Talent Project grantid: 2022xsyc002 |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX AFFHD CITATION NPM PUEGO 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c494t-176b6075ec858a32b3351b2c2fcd5f3a87f0587a2690de1b60b5a77079b9453b3 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001587719800046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:37:18 EDT 2025 Tue Nov 04 02:05:55 EST 2025 Sat Nov 01 14:03:10 EDT 2025 Tue Oct 07 09:13:01 EDT 2025 Thu Sep 04 05:01:27 EDT 2025 Mon Nov 10 02:50:48 EST 2025 Fri Aug 22 01:10:49 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Sparrow optimization algorithm Combinatorial models Temporal convolutional networks Dissolved oxygen prediction |
| Language | English |
| License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c494t-176b6075ec858a32b3351b2c2fcd5f3a87f0587a2690de1b60b5a77079b9453b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/3241764598?pq-origsite=%requestingapplication% |
| PMID | 40841579 |
| PQID | 3241764598 |
| PQPubID | 2041939 |
| PageCount | 18 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_475910d387064b698329037a740ca8d1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12371037 proquest_miscellaneous_3246300828 proquest_journals_3241764598 pubmed_primary_40841579 crossref_primary_10_1038_s41598_025_15674_6 springer_journals_10_1038_s41598_025_15674_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-21 |
| PublicationDateYYYYMMDD | 2025-08-21 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-21 day: 21 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | J Che (15674_CR20) 2023; 331 Z Wang (15674_CR1) 2024; 629 W Lu (15674_CR26) 2020; 23 D Pan (15674_CR36) 2024; 16 J Che (15674_CR21) 2025; 695 C Xu (15674_CR8) 2021; 295 Y Xie (15674_CR33) 2024; 250 Y Wei (15674_CR35) 2011; 9 R Avila (15674_CR3) 2018; 206 F Li (15674_CR34) 2010; 8 A Graves (15674_CR30) 2005; 18 ARR Niknam (15674_CR4) 2024 R Barzegar (15674_CR32) 2020; 34 T Wang (15674_CR12) 2024; 24 G Wu (15674_CR18) 2023; 15 P Liu (15674_CR9) 2019; 11 M Li (15674_CR17) 2023 R Wang (15674_CR24) 2023; 30 WF Alfwzan (15674_CR11) 2023; 53 H Choi (15674_CR2) 2021; 13 S Chen (15674_CR5) 2018; 10 Z Yang (15674_CR7) 2022; 14 H Zuo (15674_CR13) 2023; 15 J Jiange (15674_CR22) 2023; 234 KRA Haq (15674_CR15) 2022; 10 Y Fu (15674_CR10) 2021; 13 I Lou (15674_CR6) 2016; 27 L Luo (15674_CR31) 2023; 15 X Tang (15674_CR27) 2022; 205 C Yin (15674_CR16) 2023; 269 A Utku (15674_CR19) 2023; 14 D Chi (15674_CR28) 2022; 24 J Bi (15674_CR23) 2023; 625 W Zhao (15674_CR29) 2019; 7 P Mei (15674_CR14) 2022; 610 Y Hu (15674_CR25) 2023; 13 |
| References_xml | – volume: 30 start-page: 109299 year: 2023 ident: 15674_CR24 publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-023-29920-9 – year: 2024 ident: 15674_CR4 publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-024-32228-x – volume: 629 year: 2024 ident: 15674_CR1 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2024.130637 – volume: 206 start-page: 910 year: 2018 ident: 15674_CR3 publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2017.11.049 – volume: 15 start-page: 4227 year: 2023 ident: 15674_CR13 publication-title: Water doi: 10.3390/w15244227 – volume: 610 year: 2022 ident: 15674_CR14 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2022.127934 – volume: 24 start-page: 1282 year: 2024 ident: 15674_CR12 publication-title: Water Supply doi: 10.2166/ws.2024.060 – year: 2023 ident: 15674_CR17 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-023-08287-5 – volume: 14 start-page: 101836 year: 2023 ident: 15674_CR19 publication-title: Atmos. Pollut. Res. doi: 10.1016/j.apr.2023.101836 – volume: 11 start-page: 2058 year: 2019 ident: 15674_CR9 publication-title: Sustainability doi: 10.3390/su11072058 – volume: 53 year: 2023 ident: 15674_CR11 publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2023.103889 – volume: 205 year: 2022 ident: 15674_CR27 publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2021.107761 – volume: 18 start-page: 602 year: 2005 ident: 15674_CR30 publication-title: Neural Netw. doi: 10.1016/j.neunet.2005.06.042 – volume: 13 start-page: 11260 year: 2023 ident: 15674_CR25 publication-title: Sci. Rep. doi: 10.1038/s41598-023-38465-3 – volume: 16 start-page: 707 year: 2024 ident: 15674_CR36 publication-title: Water doi: 10.3390/w16050707 – volume: 10 start-page: 60078 year: 2022 ident: 15674_CR15 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3180482 – volume: 27 start-page: 19 year: 2016 ident: 15674_CR6 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-013-1538-0 – volume: 250 year: 2024 ident: 15674_CR33 publication-title: Water Res. doi: 10.1016/j.watres.2023.121092 – volume: 269 year: 2023 ident: 15674_CR16 publication-title: Energy doi: 10.1016/j.energy.2023.126844 – volume: 34 start-page: 415 year: 2020 ident: 15674_CR32 publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-020-01776-2 – volume: 23 start-page: 3601 year: 2020 ident: 15674_CR26 publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.3038457 – volume: 14 start-page: 1714 year: 2022 ident: 15674_CR7 publication-title: Remote Sens. doi: 10.3390/rs14071714 – volume: 24 start-page: 457 year: 2022 ident: 15674_CR28 publication-title: Entropy doi: 10.3390/e24040457 – volume: 234 start-page: 172 year: 2023 ident: 15674_CR22 publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-023-06117-x – volume: 7 start-page: 114496 year: 2019 ident: 15674_CR29 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2935504 – volume: 295 year: 2021 ident: 15674_CR8 publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2021.113085 – volume: 15 start-page: 13209 year: 2023 ident: 15674_CR18 publication-title: Sustainability doi: 10.3390/su151713209 – volume: 695 year: 2025 ident: 15674_CR21 publication-title: Inf. Sci. doi: 10.1016/j.ins.2024.121736 – volume: 625 start-page: 65 year: 2023 ident: 15674_CR23 publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.12.091 – volume: 8 start-page: 95 year: 2010 ident: 15674_CR34 publication-title: Sens. Lett. doi: 10.1166/sl.2010.1208 – volume: 13 start-page: 10690 year: 2021 ident: 15674_CR2 publication-title: Sustainability doi: 10.3390/su131910690 – volume: 13 start-page: 2907 year: 2021 ident: 15674_CR10 publication-title: Water doi: 10.3390/w13202907 – volume: 10 start-page: 806 year: 2018 ident: 15674_CR5 publication-title: Water doi: 10.3390/w10060806 – volume: 9 start-page: 1075 year: 2011 ident: 15674_CR35 publication-title: Sens. Lett. doi: 10.1166/sl.2011.1396 – volume: 331 year: 2023 ident: 15674_CR20 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.120479 – volume: 15 start-page: 1625 year: 2023 ident: 15674_CR31 publication-title: Water doi: 10.3390/w15081625 |
| SSID | ssj0000529419 |
| Score | 2.4571922 |
| Snippet | Dissolved oxygen (DO) is a crucial indicator of water quality in river ecosystems, and its accurate prediction plays a vital role in the protection and... Abstract Dissolved oxygen (DO) is a crucial indicator of water quality in river ecosystems, and its accurate prediction plays a vital role in the protection... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 30790 |
| SubjectTerms | 639/705/1042 639/705/117 Accuracy Algorithms Aquatic ecosystems Artificial intelligence Combinatorial models Datasets Deep learning Dissolved oxygen Dissolved oxygen prediction Feature selection Genetic algorithms Humanities and Social Sciences Long short-term memory Machine learning multidisciplinary Neural networks Optimization algorithms Oxygen Prediction models Research methodology Science Science (multidisciplinary) Sparrow optimization algorithm Temporal convolutional networks Time series Trends Water quality Wavelet transforms |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hCiQuiDehLTISN4jqxHZsH2nVikNZkFhQb5ZfSyO1SbW7rdp_z9jJLl0e4sItskfKZGbsmcl4PgO8scGhFwq09JqHktfRlQrj4pJG5ZvGeiZzF_-3YzmZqJMT_fnWVV_pTNgADzwIbi_h0VU0sFSP467RaIGaMmklp96qkBMfKvWtZGpA9a41r_TYJUOZ2lugp0rdZLUoMWWRvGw2PFEG7P9TlPn7YclfKqbZER09hAdjBEneD5w_gjuxewz3hjslb55A_ISbwPnYXUn6GZkeTMr99vjL9CPBAJWkAnx_dhUD6a9v0HrIxTzVajJ1cmk43pE2_2rAZ9xvEkgjGRYEsWff-3m7PD1_Cl-PDqcHH8rxLoXSc82XCQfSNRgeRK-Esqx2jInK1b6e-SBmzCo5o0JJW2O2HGKFtE5YmeDznOaCOfYMtrq-iy-ABNd4z4OobVCpCqidlzLhnnEnIgYEBbxdydVcDJAZJpe6mTKDFgxqwWQtmKaA_ST6NWWCu84DaARmNALzLyMoYGelODOuwYXBUBG_muP7Cni9nsbVk0oitov9ZaZJmGOYdhbwfNDzmhNOFXIrdQFqwwI2WN2c6drTjNCN4YBMDZgFvFsZy0--_i6Ll_9DFttwv05WTnEHrHZgazm_jLtw118t28X8VV4mPwAQ8hH3 priority: 102 providerName: Directory of Open Access Journals |
| Title | Optimization of TCN-BiLSTM for dissolved oxygen prediction based on improved sparrow search algorithm |
| URI | https://link.springer.com/article/10.1038/s41598-025-15674-6 https://www.ncbi.nlm.nih.gov/pubmed/40841579 https://www.proquest.com/docview/3241764598 https://www.proquest.com/docview/3246300828 https://pubmed.ncbi.nlm.nih.gov/PMC12371037 https://doaj.org/article/475910d387064b698329037a740ca8d1 |
| Volume | 15 |
| WOSCitedRecordID | wos001587719800046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbYChIv3C-BURmJN7CWxE7sPCE6bQJpLREUVJ4i37pV2pLSdhP795zjpJ3K7YUXK0os5STn6nN8PhPySjsDXsjFzBbCMZF6wxTExSz2yua5tlyGLv6vx3I0UpNJUXYJt2W3rXJtE4Ohdo3FHPk-OP5EIvKJejv_zvDUKKyudkdo7JAeRDYJbukapuUmx4JVLJEUXa9MzNX-EvwV9pSlGYOFixQs3_JHAbb_T7Hm71smf6mbBnd0dPd_P-QeudMFovRdKzn3yQ1fPyC32qMprx4S_xFsyXnXpEmbKR0fjNhgdvx5PKQQ51Ks4zdnl97R5scVCCGdL7DkE2ajZ4T7NZ2FjAVcg9lCrEfa6hXVZydA0er0_BH5cnQ4PnjPuiMZmBWFWCGcpMkhyvBWZUrz1HCeJSa16dS6bMq1ktM4U1KnsOh2PoG5JtMSUfhMITJu-GOyWze1f0qoM7m1wmWpdgqLiYWxUiJ8mjCZh38UkddrxlTzFnmjChVzrqqWjRWwsQpsrPKIDJB3m5mImh1uNIuTqlPCCrENk9hxrO0KkxdgzYqYSy1FbLVy8Mq9NcuqTpWX1TW_IvJy8xiUECsruvbNRZiD0GWweo3Ik1ZQNpSIWAG1soiI2hKhLVK3n9Sz0wD0DVGFxD7OiLxZS9s1XX__F8_-_RnPye0UFSAGE5nskd3V4sK_IDft5Wq2XPTJjpzIMKo-6Q0OR-WnfkhU9INu4Shh7JUfhuW3n4LMKTg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKAcGF9yNQwEhwgqiJ7cTOASFaqFp1u1RiqXoLfm27Upssu9tC_xS_kRkn2Wp53XrgFiVWYjufZ8aemW8IeaGdAS3kktgWwsWCeRMrsIvjxCub59pyGbL493qy31f7-8XuEvnR5cJgWGUnE4OgdrXFM_JVUPypROYT9Xb8NcaqUehd7UpoNLDY9mffYMs2fbP1Hv7vS8Y2PgzWN-O2qkBsRSFmyIhoclCU3qpMac4M51lqmGVD67Ih10oOk0xJzWDf6HwKbU2mJRLJmUJk3HB47yVyWSCzGIYKst35mQ56zURatLk5CVerU9CPmMPGshg2SlLE-YL-C2UC_mTb_h6i-YufNqi_jZv_28TdIjdaQ5u-a1bGbbLkqzvkalN68-wu8R9BVh63Sai0HtLBej9eG_U-DXYo2PEU4xTqo1PvaP39DBYZHU_QpRVao-aH-xUdhRMZuAaxjFyWtBkn1UcHMAOzw-N75POFjPE-Wa7qyj8k1JncWuEypp1CZ2lhrJRIDydM5uGfRORVB4Ry3DCLlCEigKuygU0JsCkDbMo8ImuIlXlLZAUPN-rJQdkKmRK5G9PEcfRdC5MXIK2LhEstRWK1cvDJlQ4iZSuqpuU5PiLyfP4YhAx6jnTl65PQBqnZYHcekQcNMOc9EYmC3soiImoBsgtdXXxSjQ4DkTlYTRLzVCPyukP3eb_-PheP_j2MZ-Ta5mCnV_a2-tuPyXWGiy8BdZCukOXZ5MQ_IVfs6Ww0nTwNq5eSLxeN-p9vJH0p |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCouvAuGAosEJ7Dix9q7PiBEWyKipiESoSon432kjdTaIUkL-Wv8Omb8SBVetx64WfbK3l1_OzO7M_MNwPPMKNRCxnN1wo3LA6tciXax61mp4zjToSiz-A96ot-Xh4fJYA1-NLkwFFbZyMRSUJtC0xl5GxW_L4j5RLZHdVjEYLfzZvLVpQpS5GltymlUENmzi2-4fZu97u7iv34RBJ13w533bl1hwNU84XNiR1QxKk2rZSSzMFBhGPkq0MFIm2gUZlKMvEiKLMA9pLE-tlVRJohUTiU8ClWI770C62iS86AF64Pu_uDz8oSHfGjcT-pMHS-U7RlqS8poCyIXt02Cu_GKNiyLBvzJ0v09YPMXr22pDDs3_-dpvAU3ahOcva3WzG1Ys_kduFYV5VzcBfsBpehpnZ7KihEb7vTd7XHv43CfoYXPKIKhODm3hhXfF7j82GRKzq6yNdkEeD9n4_KsBq9RYBPLJavGybKTI5yB-fHpPfh0KWPchFZe5PYBMKNirbmJgsxIcqMmSgtBxHFcRRb_jwMvG1Ckk4pzJC1jBUKZVhBKEUJpCaE0dmCbcLNsSXzh5Y1iepTW4iclVkffMyF5tbmKE5TjiReKTHBPZ9LgJ7cauKS1EJulF1hx4NnyMYof8illuS3OyjZE2ob7dgfuVyBd9oR7EnsrEgfkCnxXurr6JB8flxTnaE8JymB14FWD9It-_X0uHv57GE9hA8Ge9rr9vUdwPaB16KGe8LegNZ-e2cdwVZ_Px7Ppk3opM_hy2bD_CSRnh3I |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+TCN-BiLSTM+for+dissolved+oxygen+prediction+based+on+improved+sparrow+search+algorithm&rft.jtitle=Scientific+reports&rft.au=Shi%2C+Pei&rft.au=Tang%2C+Mingjie&rft.au=Wang%2C+Quan&rft.au=Ma%2C+Xiaofei&rft.date=2025-08-21&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=30790&rft_id=info:doi/10.1038%2Fs41598-025-15674-6&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |