Optimization of TCN-BiLSTM for dissolved oxygen prediction based on improved sparrow search algorithm

Dissolved oxygen (DO) is a crucial indicator of water quality in river ecosystems, and its accurate prediction plays a vital role in the protection and sustainable utilization of these ecosystems. However, current DO prediction models often struggle with issues such as noise in the water quality dat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific reports Ročník 15; číslo 1; s. 30790 - 18
Hlavní autoři: Shi, Pei, Tang, Mingjie, Wang, Quan, Ma, Xiaofei
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 21.08.2025
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Dissolved oxygen (DO) is a crucial indicator of water quality in river ecosystems, and its accurate prediction plays a vital role in the protection and sustainable utilization of these ecosystems. However, current DO prediction models often struggle with issues such as noise in the water quality data and insufficient feature extraction. To address these challenges, this paper proposes a dissolved oxygen prediction method based on an improved sparrow search algorithm optimized TCN- BiLSTM (SMI-TCN BiLSTM). Initially, the Savitzky-Golay (SG) filter is employed to denoise the water quality data, producing smoother and more consistent datasets. Next, the Maximum Information Coefficient (MIC) is applied to quantify the correlation between input features, enabling the identification and selection of key influencing factors. In addition, the traditional Temporal Convolutional Network (TCN) often fails to capture the dynamic fluctuations present in DO data, resulting in suboptimal prediction performance. To overcome this limitation, a Bi-directional Long Short-Term Memory (BiLSTM) network is integrated into the TCN framework, forming a TCN-BiLSTM prediction module. This module effectively captures both forward and backward temporal dependencies, improving the model’s ability to track the dynamic trends in the data and enhancing its prediction accuracy. Finally, to address the stochastic nature of hyperparameter optimization in the TCN-BiLSTM module, we introduce an improved Sparrow Search Algorithm (ISSA). The ISSA is applied to optimize the hyperparameters of the TCN-BiLSTM model, thereby improving the overall prediction performance. To validate the proposed model, experiments are conducted on real datasets and compared with other water quality prediction models. The experimental results demonstrate that our method achieves the best prediction results.
AbstractList Dissolved oxygen (DO) is a crucial indicator of water quality in river ecosystems, and its accurate prediction plays a vital role in the protection and sustainable utilization of these ecosystems. However, current DO prediction models often struggle with issues such as noise in the water quality data and insufficient feature extraction. To address these challenges, this paper proposes a dissolved oxygen prediction method based on an improved sparrow search algorithm optimized TCN- BiLSTM (SMI-TCN BiLSTM). Initially, the Savitzky-Golay (SG) filter is employed to denoise the water quality data, producing smoother and more consistent datasets. Next, the Maximum Information Coefficient (MIC) is applied to quantify the correlation between input features, enabling the identification and selection of key influencing factors. In addition, the traditional Temporal Convolutional Network (TCN) often fails to capture the dynamic fluctuations present in DO data, resulting in suboptimal prediction performance. To overcome this limitation, a Bi-directional Long Short-Term Memory (BiLSTM) network is integrated into the TCN framework, forming a TCN-BiLSTM prediction module. This module effectively captures both forward and backward temporal dependencies, improving the model's ability to track the dynamic trends in the data and enhancing its prediction accuracy. Finally, to address the stochastic nature of hyperparameter optimization in the TCN-BiLSTM module, we introduce an improved Sparrow Search Algorithm (ISSA). The ISSA is applied to optimize the hyperparameters of the TCN-BiLSTM model, thereby improving the overall prediction performance. To validate the proposed model, experiments are conducted on real datasets and compared with other water quality prediction models. The experimental results demonstrate that our method achieves the best prediction results.
Dissolved oxygen (DO) is a crucial indicator of water quality in river ecosystems, and its accurate prediction plays a vital role in the protection and sustainable utilization of these ecosystems. However, current DO prediction models often struggle with issues such as noise in the water quality data and insufficient feature extraction. To address these challenges, this paper proposes a dissolved oxygen prediction method based on an improved sparrow search algorithm optimized TCN- BiLSTM (SMI-TCN BiLSTM). Initially, the Savitzky-Golay (SG) filter is employed to denoise the water quality data, producing smoother and more consistent datasets. Next, the Maximum Information Coefficient (MIC) is applied to quantify the correlation between input features, enabling the identification and selection of key influencing factors. In addition, the traditional Temporal Convolutional Network (TCN) often fails to capture the dynamic fluctuations present in DO data, resulting in suboptimal prediction performance. To overcome this limitation, a Bi-directional Long Short-Term Memory (BiLSTM) network is integrated into the TCN framework, forming a TCN-BiLSTM prediction module. This module effectively captures both forward and backward temporal dependencies, improving the model's ability to track the dynamic trends in the data and enhancing its prediction accuracy. Finally, to address the stochastic nature of hyperparameter optimization in the TCN-BiLSTM module, we introduce an improved Sparrow Search Algorithm (ISSA). The ISSA is applied to optimize the hyperparameters of the TCN-BiLSTM model, thereby improving the overall prediction performance. To validate the proposed model, experiments are conducted on real datasets and compared with other water quality prediction models. The experimental results demonstrate that our method achieves the best prediction results.Dissolved oxygen (DO) is a crucial indicator of water quality in river ecosystems, and its accurate prediction plays a vital role in the protection and sustainable utilization of these ecosystems. However, current DO prediction models often struggle with issues such as noise in the water quality data and insufficient feature extraction. To address these challenges, this paper proposes a dissolved oxygen prediction method based on an improved sparrow search algorithm optimized TCN- BiLSTM (SMI-TCN BiLSTM). Initially, the Savitzky-Golay (SG) filter is employed to denoise the water quality data, producing smoother and more consistent datasets. Next, the Maximum Information Coefficient (MIC) is applied to quantify the correlation between input features, enabling the identification and selection of key influencing factors. In addition, the traditional Temporal Convolutional Network (TCN) often fails to capture the dynamic fluctuations present in DO data, resulting in suboptimal prediction performance. To overcome this limitation, a Bi-directional Long Short-Term Memory (BiLSTM) network is integrated into the TCN framework, forming a TCN-BiLSTM prediction module. This module effectively captures both forward and backward temporal dependencies, improving the model's ability to track the dynamic trends in the data and enhancing its prediction accuracy. Finally, to address the stochastic nature of hyperparameter optimization in the TCN-BiLSTM module, we introduce an improved Sparrow Search Algorithm (ISSA). The ISSA is applied to optimize the hyperparameters of the TCN-BiLSTM model, thereby improving the overall prediction performance. To validate the proposed model, experiments are conducted on real datasets and compared with other water quality prediction models. The experimental results demonstrate that our method achieves the best prediction results.
Abstract Dissolved oxygen (DO) is a crucial indicator of water quality in river ecosystems, and its accurate prediction plays a vital role in the protection and sustainable utilization of these ecosystems. However, current DO prediction models often struggle with issues such as noise in the water quality data and insufficient feature extraction. To address these challenges, this paper proposes a dissolved oxygen prediction method based on an improved sparrow search algorithm optimized TCN- BiLSTM (SMI-TCN BiLSTM). Initially, the Savitzky-Golay (SG) filter is employed to denoise the water quality data, producing smoother and more consistent datasets. Next, the Maximum Information Coefficient (MIC) is applied to quantify the correlation between input features, enabling the identification and selection of key influencing factors. In addition, the traditional Temporal Convolutional Network (TCN) often fails to capture the dynamic fluctuations present in DO data, resulting in suboptimal prediction performance. To overcome this limitation, a Bi-directional Long Short-Term Memory (BiLSTM) network is integrated into the TCN framework, forming a TCN-BiLSTM prediction module. This module effectively captures both forward and backward temporal dependencies, improving the model’s ability to track the dynamic trends in the data and enhancing its prediction accuracy. Finally, to address the stochastic nature of hyperparameter optimization in the TCN-BiLSTM module, we introduce an improved Sparrow Search Algorithm (ISSA). The ISSA is applied to optimize the hyperparameters of the TCN-BiLSTM model, thereby improving the overall prediction performance. To validate the proposed model, experiments are conducted on real datasets and compared with other water quality prediction models. The experimental results demonstrate that our method achieves the best prediction results.
ArticleNumber 30790
Author Ma, Xiaofei
Tang, Mingjie
Wang, Quan
Shi, Pei
Author_xml – sequence: 1
  givenname: Pei
  surname: Shi
  fullname: Shi, Pei
  organization: School of Internet of Things Engineering, Wuxi University, School of Automation, Nanjing University of Information Science and Technology
– sequence: 2
  givenname: Mingjie
  surname: Tang
  fullname: Tang, Mingjie
  organization: School of Automation, Nanjing University of Information Science and Technology
– sequence: 3
  givenname: Quan
  surname: Wang
  fullname: Wang, Quan
  email: wangquan@cwxu.edu.cn
  organization: School of Internet of Things Engineering, Wuxi University, School of Automation, Nanjing University of Information Science and Technology
– sequence: 4
  givenname: Xiaofei
  surname: Ma
  fullname: Ma, Xiaofei
  organization: Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40841579$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAUhS3UipbSF2CBIrFhE-rf2F4hOqJQaUoXDGvLcZyMR4kd7EyhfXo8k1LaLvDG1vV3jq98zytw4IO3ALxB8AOCRJwlipgUJcSsRKzitKxegGMMKSsxwfjg0fkInKa0gXkxLCmSL8ERhSLLuTwG9nqc3ODu9OSCL0JbrBbfynO3_L66KtoQi8alFPob2xTh921nfTFG2zizp2uddnVfuGGMYcekUccYfhXJ6mjWhe67EN20Hl6Dw1b3yZ7e7yfgx8Xn1eJrubz-crn4tCwNlXQqEa_qCnJmjWBCE1wTwlCNDW5Nw1qiBW8hE1zjSsLGoszWTHMOuawlZaQmJ-By9m2C3qgxukHHWxW0U_tCiJ3ScXKmt4pyJhFsiOCwonUlBcESEq45hUaLBmWvj7PXuK0H2xjrp6j7J6ZPb7xbqy7cKIQJzyPi2eH9vUMMP7c2TWpwydi-196GbVIE04pAKLDI6Ltn6CZso89_taPyv9A87Ey9fdzSQy9_x5kBPAMmhpSibR8QBNUuNmqOjcqxUfvYqCqLyCxKGfadjf_e_o_qD84Nwyw
Cites_doi 10.1007/s11356-023-29920-9
10.1007/s11356-024-32228-x
10.1016/j.jhydrol.2024.130637
10.1016/j.jenvman.2017.11.049
10.3390/w15244227
10.1016/j.jhydrol.2022.127934
10.2166/ws.2024.060
10.1007/s00521-023-08287-5
10.1016/j.apr.2023.101836
10.3390/su11072058
10.1016/j.jwpe.2023.103889
10.1016/j.epsr.2021.107761
10.1016/j.neunet.2005.06.042
10.1038/s41598-023-38465-3
10.3390/w16050707
10.1109/ACCESS.2022.3180482
10.1007/s00521-013-1538-0
10.1016/j.watres.2023.121092
10.1016/j.energy.2023.126844
10.1007/s00477-020-01776-2
10.1109/TITS.2020.3038457
10.3390/rs14071714
10.3390/e24040457
10.1007/s11270-023-06117-x
10.1109/ACCESS.2019.2935504
10.1016/j.jenvman.2021.113085
10.3390/su151713209
10.1016/j.ins.2024.121736
10.1016/j.ins.2022.12.091
10.1166/sl.2010.1208
10.3390/su131910690
10.3390/w13202907
10.3390/w10060806
10.1166/sl.2011.1396
10.1016/j.apenergy.2022.120479
10.3390/w15081625
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-15674-6
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 18
ExternalDocumentID oai_doaj_org_article_475910d387064b698329037a740ca8d1
PMC12371037
40841579
10_1038_s41598_025_15674_6
Genre Journal Article
GrantInformation_xml – fundername: 2023 Outstanding Science and Technology Innovation Team Project in Jiangsu Universities
– fundername: National Natural Science Foundation of China
  grantid: 62072216
– fundername: Wuxi “Light of Taihu Lake” Science and Technology Research Project
  grantid: K20221044
– fundername: Natural Science Research Program for Universities in Jiangsu Province
  grantid: 21KJB520020
– fundername: Wuxi “Xishan Talent Program” Innovation Leadership Talent Project
  grantid: 2022xsyc002
– fundername: Funding for the “Green and Blue” Project in Jiangsu Universities
– fundername: Wuxi "Light of Taihu Lake" Science and Technology Research Project
  grantid: K20221044
– fundername: Wuxi "Xishan Talent Program" Innovation Leadership Talent Project
  grantid: 2022xsyc002
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
NPM
PUEGO
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c494t-176b6075ec858a32b3351b2c2fcd5f3a87f0587a2690de1b60b5a77079b9453b3
IEDL.DBID M2P
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001587719800046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:37:18 EDT 2025
Tue Nov 04 02:05:55 EST 2025
Sat Nov 01 14:03:10 EDT 2025
Tue Oct 07 09:13:01 EDT 2025
Thu Sep 04 05:01:27 EDT 2025
Mon Nov 10 02:50:48 EST 2025
Fri Aug 22 01:10:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Sparrow optimization algorithm
Combinatorial models
Temporal convolutional networks
Dissolved oxygen prediction
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-176b6075ec858a32b3351b2c2fcd5f3a87f0587a2690de1b60b5a77079b9453b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3241764598?pq-origsite=%requestingapplication%
PMID 40841579
PQID 3241764598
PQPubID 2041939
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_475910d387064b698329037a740ca8d1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12371037
proquest_miscellaneous_3246300828
proquest_journals_3241764598
pubmed_primary_40841579
crossref_primary_10_1038_s41598_025_15674_6
springer_journals_10_1038_s41598_025_15674_6
PublicationCentury 2000
PublicationDate 2025-08-21
PublicationDateYYYYMMDD 2025-08-21
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-21
  day: 21
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References J Che (15674_CR20) 2023; 331
Z Wang (15674_CR1) 2024; 629
W Lu (15674_CR26) 2020; 23
D Pan (15674_CR36) 2024; 16
J Che (15674_CR21) 2025; 695
C Xu (15674_CR8) 2021; 295
Y Xie (15674_CR33) 2024; 250
Y Wei (15674_CR35) 2011; 9
R Avila (15674_CR3) 2018; 206
F Li (15674_CR34) 2010; 8
A Graves (15674_CR30) 2005; 18
ARR Niknam (15674_CR4) 2024
R Barzegar (15674_CR32) 2020; 34
T Wang (15674_CR12) 2024; 24
G Wu (15674_CR18) 2023; 15
P Liu (15674_CR9) 2019; 11
M Li (15674_CR17) 2023
R Wang (15674_CR24) 2023; 30
WF Alfwzan (15674_CR11) 2023; 53
H Choi (15674_CR2) 2021; 13
S Chen (15674_CR5) 2018; 10
Z Yang (15674_CR7) 2022; 14
H Zuo (15674_CR13) 2023; 15
J Jiange (15674_CR22) 2023; 234
KRA Haq (15674_CR15) 2022; 10
Y Fu (15674_CR10) 2021; 13
I Lou (15674_CR6) 2016; 27
L Luo (15674_CR31) 2023; 15
X Tang (15674_CR27) 2022; 205
C Yin (15674_CR16) 2023; 269
A Utku (15674_CR19) 2023; 14
D Chi (15674_CR28) 2022; 24
J Bi (15674_CR23) 2023; 625
W Zhao (15674_CR29) 2019; 7
P Mei (15674_CR14) 2022; 610
Y Hu (15674_CR25) 2023; 13
References_xml – volume: 30
  start-page: 109299
  year: 2023
  ident: 15674_CR24
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-023-29920-9
– year: 2024
  ident: 15674_CR4
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-024-32228-x
– volume: 629
  year: 2024
  ident: 15674_CR1
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2024.130637
– volume: 206
  start-page: 910
  year: 2018
  ident: 15674_CR3
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2017.11.049
– volume: 15
  start-page: 4227
  year: 2023
  ident: 15674_CR13
  publication-title: Water
  doi: 10.3390/w15244227
– volume: 610
  year: 2022
  ident: 15674_CR14
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2022.127934
– volume: 24
  start-page: 1282
  year: 2024
  ident: 15674_CR12
  publication-title: Water Supply
  doi: 10.2166/ws.2024.060
– year: 2023
  ident: 15674_CR17
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-023-08287-5
– volume: 14
  start-page: 101836
  year: 2023
  ident: 15674_CR19
  publication-title: Atmos. Pollut. Res.
  doi: 10.1016/j.apr.2023.101836
– volume: 11
  start-page: 2058
  year: 2019
  ident: 15674_CR9
  publication-title: Sustainability
  doi: 10.3390/su11072058
– volume: 53
  year: 2023
  ident: 15674_CR11
  publication-title: J. Water Process Eng.
  doi: 10.1016/j.jwpe.2023.103889
– volume: 205
  year: 2022
  ident: 15674_CR27
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2021.107761
– volume: 18
  start-page: 602
  year: 2005
  ident: 15674_CR30
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2005.06.042
– volume: 13
  start-page: 11260
  year: 2023
  ident: 15674_CR25
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-38465-3
– volume: 16
  start-page: 707
  year: 2024
  ident: 15674_CR36
  publication-title: Water
  doi: 10.3390/w16050707
– volume: 10
  start-page: 60078
  year: 2022
  ident: 15674_CR15
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3180482
– volume: 27
  start-page: 19
  year: 2016
  ident: 15674_CR6
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-013-1538-0
– volume: 250
  year: 2024
  ident: 15674_CR33
  publication-title: Water Res.
  doi: 10.1016/j.watres.2023.121092
– volume: 269
  year: 2023
  ident: 15674_CR16
  publication-title: Energy
  doi: 10.1016/j.energy.2023.126844
– volume: 34
  start-page: 415
  year: 2020
  ident: 15674_CR32
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-020-01776-2
– volume: 23
  start-page: 3601
  year: 2020
  ident: 15674_CR26
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.3038457
– volume: 14
  start-page: 1714
  year: 2022
  ident: 15674_CR7
  publication-title: Remote Sens.
  doi: 10.3390/rs14071714
– volume: 24
  start-page: 457
  year: 2022
  ident: 15674_CR28
  publication-title: Entropy
  doi: 10.3390/e24040457
– volume: 234
  start-page: 172
  year: 2023
  ident: 15674_CR22
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-023-06117-x
– volume: 7
  start-page: 114496
  year: 2019
  ident: 15674_CR29
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2935504
– volume: 295
  year: 2021
  ident: 15674_CR8
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2021.113085
– volume: 15
  start-page: 13209
  year: 2023
  ident: 15674_CR18
  publication-title: Sustainability
  doi: 10.3390/su151713209
– volume: 695
  year: 2025
  ident: 15674_CR21
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2024.121736
– volume: 625
  start-page: 65
  year: 2023
  ident: 15674_CR23
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.12.091
– volume: 8
  start-page: 95
  year: 2010
  ident: 15674_CR34
  publication-title: Sens. Lett.
  doi: 10.1166/sl.2010.1208
– volume: 13
  start-page: 10690
  year: 2021
  ident: 15674_CR2
  publication-title: Sustainability
  doi: 10.3390/su131910690
– volume: 13
  start-page: 2907
  year: 2021
  ident: 15674_CR10
  publication-title: Water
  doi: 10.3390/w13202907
– volume: 10
  start-page: 806
  year: 2018
  ident: 15674_CR5
  publication-title: Water
  doi: 10.3390/w10060806
– volume: 9
  start-page: 1075
  year: 2011
  ident: 15674_CR35
  publication-title: Sens. Lett.
  doi: 10.1166/sl.2011.1396
– volume: 331
  year: 2023
  ident: 15674_CR20
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.120479
– volume: 15
  start-page: 1625
  year: 2023
  ident: 15674_CR31
  publication-title: Water
  doi: 10.3390/w15081625
SSID ssj0000529419
Score 2.4571135
Snippet Dissolved oxygen (DO) is a crucial indicator of water quality in river ecosystems, and its accurate prediction plays a vital role in the protection and...
Abstract Dissolved oxygen (DO) is a crucial indicator of water quality in river ecosystems, and its accurate prediction plays a vital role in the protection...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 30790
SubjectTerms 639/705/1042
639/705/117
Accuracy
Algorithms
Aquatic ecosystems
Artificial intelligence
Combinatorial models
Datasets
Deep learning
Dissolved oxygen
Dissolved oxygen prediction
Feature selection
Genetic algorithms
Humanities and Social Sciences
Long short-term memory
Machine learning
multidisciplinary
Neural networks
Optimization algorithms
Oxygen
Prediction models
Research methodology
Science
Science (multidisciplinary)
Sparrow optimization algorithm
Temporal convolutional networks
Time series
Trends
Water quality
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQBRIXxJtAQUbiBlYdP2L72FZUHGBBYpF6s2zHoZHapNrdVvTfd2xnly4PceEW2ZYymYdnJmN_g9AbD06_A8GSBrwFEXXnCTg9R3hDfWDUeyl8bjahZjN9fGy-3Gj1lc6EFXjgwri9hEdX05anepzwjQENNJQrpwQNTrc58aHK3EimCqo3M6I20y0ZyvXeEjxVuk3GJIGURQnSbHmiDNj_pyjz98OSv1RMsyM6uo_uTREk3i-UP0C34vAQ3Sk9Ja8eofgZNoGz6XYlHjs8P5yRg_7j1_knDAEqTgX48fQytnj8cQXag88XqVaTVyeXBuMD7vOvBniG_SaBNOJiENidfh8X_erk7DH6dvR-fviBTL0USBBGrBIOpG8gPIhBS-0485zL2rPAutDKjjutOiq1cgyy5TbWsNZLpxJ8njdCcs-foJ1hHOIzhBvFQPCNamNKrrlwkHSxIBmNvGsD0xV6u-arPS-QGTaXurm2RQoWpGCzFGxToYPE-s3KBHedB0AJ7KQE9l9KUKHdteDsZINLC6EifLWA91Xo9WYarCeVRNwQx4u8JmGO6UT10yLnDSWCaqBWmQrpLQ3YInV7ZuhPMkI3hAMqXcCs0Lu1svyk6--8eP4_ePEC3WVJyynsgPUu2lktLuJLdDtcrvrl4lU2k2tgRhF7
  priority: 102
  providerName: Directory of Open Access Journals
Title Optimization of TCN-BiLSTM for dissolved oxygen prediction based on improved sparrow search algorithm
URI https://link.springer.com/article/10.1038/s41598-025-15674-6
https://www.ncbi.nlm.nih.gov/pubmed/40841579
https://www.proquest.com/docview/3241764598
https://www.proquest.com/docview/3246300828
https://pubmed.ncbi.nlm.nih.gov/PMC12371037
https://doaj.org/article/475910d387064b698329037a740ca8d1
Volume 15
WOSCitedRecordID wos001587719800046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xFSRexjcERmUk3sCaYzux84TotAkkWiooUnmK4nxslbaka7uJ_ffcOWmn8vXCixXFfrjkPn1n_w7gtUOnXyFjeYzeguuwchydXsZVLFwuhXORdr7ZhBmN7HSajLuE27I7Vrm2id5QF01OOfIDdPyhIeQT-25-walrFFVXuxYaO9DDyCakI11DOd7kWKiKpcOkuysjlD1Yor-iO2Uy4rhxMZrHW_7Iw_b_Kdb8_cjkL3VT746O7_3vh9yHvS4QZe9byXkAt8r6IdxpW1NeP4LyM9qS8-6SJmsqNjkc8cHs09fJkGGcy6iO35xdlQVrflyjELL5gko-fjV5Rnxfs5nPWOAzmi3CemStXrHs7AQpWp2eP4Zvx0eTww-8a8nAc53oFcFJuhijjDK3kc2UdEpFoZO5rPIiqlRmTSUiazKJm-6iDHGtizJDKHwu0ZFy6gns1k1dPgMWG4nyE5uipD260hnu3WQeSVGqqsilDeDNmjHpvEXeSH3FXNm0ZWOKbEw9G9M4gAHxbrOSULP9i2ZxknZKmBK2YSgKRbVd7eIErVkilMmMFnlmizCA_TXL0k6Vl-kNvwJ4tZlGJaTKSlaXzaVfQ9Bllqh-2grKhhItLFJrkgDslghtkbo9U89OPdA3RhWG7nEG8HYtbTd0_f1fPP_3Z7yAu5IUQKCJDPdhd7W4LF_C7fxqNVsu-rBjpsaPtg-9wdFo_KXvExV9r1s0Ghx744_D8fefszQovA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL78dCASPBCaImthM7B4RooWrV7VKJRerNxInTrtQmy-62sH-K38iMk2y1vG49cFsl1mrsfDNje2a-AXhh0emX-GGDBL1FIKPSBuj0skAkoc15aG0srW82oQYDfXCQ7q_Aj64WhtIqO5voDXVR53RHvo6OP1LEfKLfjr8G1DWKoqtdC40GFrtu_g2PbNM3O-_x-77kfOvDcHM7aLsKBLlM5YwYEW2CjtLlOtaZ4FaIOLI852VexKXItCrDWKuM47mxcBGOtXGmiEjOpjIWVuD_XoLLkpjFKFWQ7y_udChqJqO0rc0JhV6fon-kGjYeB3hQUjJIlvyfbxPwp73t7ymav8Rpvfvbuvm_LdwtuNFutNm7RjNuw4qr7sDVpvXm_C64j2grT9oiVFaXbLg5CDZG_U_DPYb7eEZ5CvXxmStY_X2OSsbGEwpp-dHk-fF5xUb-RgZ_o1kmLkvWzJNlx4e4ArOjk3vw-ULmeB9Wq7pyD4EliqN-JKpwdAchZIZnU57HPHSiLHKue_CqA4IZN8wixmcECG0a2BiEjfGwMUkPNggri5HECu4f1JND0xoZQ9yNUVgIil1Lm6RordNQqEzJMM90EfVgrYOIaU3V1JzjowfPF6_RyFDkKKtcferHEDWbJqkfNMBcSCJDjdKqtAd6CbJLoi6_qUZHnsgcd02K6lR78LpD97lcf1-LR_-exjO4tj3c65v-zmD3MVznpHwhuoNoDVZnk1P3BK7kZ7PRdPLUay-DLxeN-p8eqHyt
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHSBeuLMFBhgJniBqYjux84AQ26iotpVKFGk8mTiXrdKWlLYb9K_x6zgnl07l9rYH3qLEio7t71zscwN4blHp57ixbojawpV-bl1UerErQs8m3LM2kLZqNqEGA314GA3X4EebC0Nhla1MrAR1WiZ0R95Fxe8rqnyiu3kTFjHc7b2ZfHWpgxR5Wtt2GjVE9rLFNzy-zV73d3GvX3Deezfaee82HQbcREZyTtURbYhKM0t0oGPBrRCBb3nC8yQNchFrlXuBVjHHM2Sa-TjWBrGionI2koGwAv97BdbRJJe8A-vD_sHw8_KGh3xo0o-aTB1P6O4MtSVltPHAxWOTkm64og2rpgF_snR_D9j8xWtbKcPerf95GW_DzcYEZ29rnrkDa1lxF67VTTkX9yD7gFL0tElPZWXORjsDd3u8_3F0wNDCZxTBUJ6cZykrvy-Q_dhkSs6uajTZBPi-YOPqrgafUWBTlUtWz5PFJ0e4AvPj0_vw6VLm-AA6RVlkm8BCxZFzQpVmdDshZIynVp4E3MtEniZcO_CyBYWZ1DVHTBUrILSpIWQQQqaCkAkd2CbcLEdSvfDqRTk9Mo34MVTV0fdSQV5tacMI5XjkCRUr6SWxTn0Htlq4mEaIzcwFVhx4tvyM4od8SnGRlWfVGCraponqjRqkS0qkp5FaFTmgV-C7Qurql2J8XJU4R3tKUQarA69apF_Q9fe1ePjvaTyF6wh2s98f7D2CG5z40EM94W9BZz49yx7D1eR8Pp5NnzSszODLZcP-J8hohvY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+TCN-BiLSTM+for+dissolved+oxygen+prediction+based+on+improved+sparrow+search+algorithm&rft.jtitle=Scientific+reports&rft.au=Shi%2C+Pei&rft.au=Tang%2C+Mingjie&rft.au=Wang%2C+Quan&rft.au=Ma%2C+Xiaofei&rft.date=2025-08-21&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=30790&rft_id=info:doi/10.1038%2Fs41598-025-15674-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon