Deep Learning Approaches for Detecting Freezing of Gait in Parkinson’s Disease Patients through On-Body Acceleration Sensors

Freezing of gait (FOG) is one of the most incapacitating motor symptoms in Parkinson’s disease (PD). The occurrence of FOG reduces the patients’ quality of live and leads to falls. FOG assessment has usually been made through questionnaires, however, this method can be subjective and could not provi...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 20; no. 7; p. 1895
Main Authors: Sigcha, Luis, Costa, Nélson, Pavón, Ignacio, Costa, Susana, Arezes, Pedro, López, Juan Manuel, De Arcas, Guillermo
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 29.03.2020
MDPI
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Freezing of gait (FOG) is one of the most incapacitating motor symptoms in Parkinson’s disease (PD). The occurrence of FOG reduces the patients’ quality of live and leads to falls. FOG assessment has usually been made through questionnaires, however, this method can be subjective and could not provide an accurate representation of the severity of this symptom. The use of sensor-based systems can provide accurate and objective information to track the symptoms’ evolution to optimize PD management and treatments. Several authors have proposed specific methods based on wearables and the analysis of inertial signals to detect FOG in laboratory conditions, however, its performance is usually lower when being used at patients’ homes. This study presents a new approach based on a recurrent neural network (RNN) and a single waist-worn triaxial accelerometer to enhance the FOG detection performance to be used in real home-environments. Also, several machine and deep learning approaches for FOG detection are evaluated using a leave-one-subject-out (LOSO) cross-validation. Results show that modeling spectral information of adjacent windows through an RNN can bring a significant improvement in the performance of FOG detection without increasing the length of the analysis window (required to using it as a cue-system).
AbstractList Freezing of gait (FOG) is one of the most incapacitating motor symptoms in Parkinson’s disease (PD). The occurrence of FOG reduces the patients’ quality of live and leads to falls. FOG assessment has usually been made through questionnaires, however, this method can be subjective and could not provide an accurate representation of the severity of this symptom. The use of sensor-based systems can provide accurate and objective information to track the symptoms’ evolution to optimize PD management and treatments. Several authors have proposed specific methods based on wearables and the analysis of inertial signals to detect FOG in laboratory conditions, however, its performance is usually lower when being used at patients’ homes. This study presents a new approach based on a recurrent neural network (RNN) and a single waist-worn triaxial accelerometer to enhance the FOG detection performance to be used in real home-environments. Also, several machine and deep learning approaches for FOG detection are evaluated using a leave-one-subject-out (LOSO) cross-validation. Results show that modeling spectral information of adjacent windows through an RNN can bring a significant improvement in the performance of FOG detection without increasing the length of the analysis window (required to using it as a cue-system).
Freezing of gait (FOG) is one of the most incapacitating motor symptoms in Parkinson's disease (PD). The occurrence of FOG reduces the patients' quality of live and leads to falls. FOG assessment has usually been made through questionnaires, however, this method can be subjective and could not provide an accurate representation of the severity of this symptom. The use of sensor-based systems can provide accurate and objective information to track the symptoms' evolution to optimize PD management and treatments. Several authors have proposed specific methods based on wearables and the analysis of inertial signals to detect FOG in laboratory conditions, however, its performance is usually lower when being used at patients' homes. This study presents a new approach based on a recurrent neural network (RNN) and a single waist-worn triaxial accelerometer to enhance the FOG detection performance to be used in real home-environments. Also, several machine and deep learning approaches for FOG detection are evaluated using a leave-one-subject-out (LOSO) cross-validation. Results show that modeling spectral information of adjacent windows through an RNN can bring a significant improvement in the performance of FOG detection without increasing the length of the analysis window (required to using it as a cue-system).Freezing of gait (FOG) is one of the most incapacitating motor symptoms in Parkinson's disease (PD). The occurrence of FOG reduces the patients' quality of live and leads to falls. FOG assessment has usually been made through questionnaires, however, this method can be subjective and could not provide an accurate representation of the severity of this symptom. The use of sensor-based systems can provide accurate and objective information to track the symptoms' evolution to optimize PD management and treatments. Several authors have proposed specific methods based on wearables and the analysis of inertial signals to detect FOG in laboratory conditions, however, its performance is usually lower when being used at patients' homes. This study presents a new approach based on a recurrent neural network (RNN) and a single waist-worn triaxial accelerometer to enhance the FOG detection performance to be used in real home-environments. Also, several machine and deep learning approaches for FOG detection are evaluated using a leave-one-subject-out (LOSO) cross-validation. Results show that modeling spectral information of adjacent windows through an RNN can bring a significant improvement in the performance of FOG detection without increasing the length of the analysis window (required to using it as a cue-system).
Author Arezes, Pedro
López, Juan Manuel
Costa, Nélson
Pavón, Ignacio
Costa, Susana
Sigcha, Luis
De Arcas, Guillermo
AuthorAffiliation 2 ALGORITMI Research Center, School of Engineering, University of Minho, 4800-058 Guimaraes, Portugal; ncosta@dps.uminho.pt (N.C.); susana.costa@dps.uminho.pt (S.C.); parezes@dps.uminho.pt (P.A.)
1 Grupo de Investigación en Instrumentación y Acústica Aplicada (I2A2), ETSI Industriales, Universidad Politécnica de Madrid, Campus Sur UPM, Ctra. Valencia, Km 7., 28031 Madrid, Spain; luisfrancisco.sigcha@upm.es (L.S.); juanmanuel.lopez@upm.es (J.M.L.); g.dearcas@upm.es (G.D.A.)
AuthorAffiliation_xml – name: 2 ALGORITMI Research Center, School of Engineering, University of Minho, 4800-058 Guimaraes, Portugal; ncosta@dps.uminho.pt (N.C.); susana.costa@dps.uminho.pt (S.C.); parezes@dps.uminho.pt (P.A.)
– name: 1 Grupo de Investigación en Instrumentación y Acústica Aplicada (I2A2), ETSI Industriales, Universidad Politécnica de Madrid, Campus Sur UPM, Ctra. Valencia, Km 7., 28031 Madrid, Spain; luisfrancisco.sigcha@upm.es (L.S.); juanmanuel.lopez@upm.es (J.M.L.); g.dearcas@upm.es (G.D.A.)
Author_xml – sequence: 1
  givenname: Luis
  orcidid: 0000-0002-9968-5024
  surname: Sigcha
  fullname: Sigcha, Luis
– sequence: 2
  givenname: Nélson
  orcidid: 0000-0002-9348-8038
  surname: Costa
  fullname: Costa, Nélson
– sequence: 3
  givenname: Ignacio
  orcidid: 0000-0003-0970-0452
  surname: Pavón
  fullname: Pavón, Ignacio
– sequence: 4
  givenname: Susana
  orcidid: 0000-0001-7440-8787
  surname: Costa
  fullname: Costa, Susana
– sequence: 5
  givenname: Pedro
  orcidid: 0000-0001-9421-9123
  surname: Arezes
  fullname: Arezes, Pedro
– sequence: 6
  givenname: Juan Manuel
  orcidid: 0000-0001-7847-8707
  surname: López
  fullname: López, Juan Manuel
– sequence: 7
  givenname: Guillermo
  orcidid: 0000-0003-1699-7389
  surname: De Arcas
  fullname: De Arcas, Guillermo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32235373$$D View this record in MEDLINE/PubMed
BookMark eNptks1uEzEQx1eoFf2AAy-ALHGBw1Lbs96PC1JoaKkUqUjA2fJ6ZxOHjR1sL1I5IF6D1-NJcJI2aitOM5r5zV_zdZIdWGcxy14w-hagoWeBU1qxuhFPsmNW8CKvOacH9_yj7CSEJaUcAOqn2RFwDgIqOM5-TRHXZIbKW2PnZLJee6f0AgPpnSdTjKjjJnHhEX9uHNeTS2UiMZZ8Uv6bscHZv7__BDI1AVXAFI0GbQwkLrwb5wtybfP3rrshE61xQJ_SzpLPmAp9eJYd9moI-PzWnmZfLz58Of-Yz64vr84ns1wXTRFzViomyl5RxpgWXQUNIDatFk3PixYa1WtQNW9BAe36lrMKtCiU0nVXAk_R0-xqp9s5tZRrb1bK30injNwGnJ9L5aPRA8oOBCLnBW2oKETTtqJUVd8VRSnqTkOXtN7ttNZju8JOp2G9Gh6IPsxYs5Bz90OmEzEueBJ4fSvg3fcRQ5QrE9JuBmXRjUFyqEUFtAaW0FeP0KUbvU2r2lKiplSIRL2839G-lbszJ-DNDtDeheCx3yOMys0Lyf0LJfbsEatN3B4tDWOG_1T8Ax3gyRQ
CitedBy_id crossref_primary_10_3390_s23094426
crossref_primary_10_1016_j_bspc_2025_108473
crossref_primary_10_3389_fphys_2025_1581699
crossref_primary_10_1038_s41598_024_75445_7
crossref_primary_10_1016_j_bspc_2023_105765
crossref_primary_10_3389_fnagi_2021_727654
crossref_primary_10_3390_s21020614
crossref_primary_10_1155_2022_9276579
crossref_primary_10_1186_s12911_021_01699_0
crossref_primary_10_2196_71560
crossref_primary_10_1016_j_compscitech_2023_110118
crossref_primary_10_1109_ACCESS_2021_3122298
crossref_primary_10_3390_s21196541
crossref_primary_10_1016_j_engappai_2022_105482
crossref_primary_10_1016_j_eswa_2023_120541
crossref_primary_10_3389_fnagi_2022_916971
crossref_primary_10_3390_s22186831
crossref_primary_10_3390_s24154983
crossref_primary_10_1109_JSEN_2023_3319353
crossref_primary_10_3390_s24123959
crossref_primary_10_3390_s20164474
crossref_primary_10_1088_1361_6579_ad133b
crossref_primary_10_1186_s12984_022_00992_x
crossref_primary_10_1016_j_bspc_2022_104116
crossref_primary_10_7717_peerj_cs_1663
crossref_primary_10_3389_fnagi_2023_1119956
crossref_primary_10_1002_cpe_7537
crossref_primary_10_1007_s11042_025_20861_8
crossref_primary_10_3390_s20174675
crossref_primary_10_3390_s21082661
crossref_primary_10_1038_s41746_022_00568_y
crossref_primary_10_1016_j_eswa_2024_124522
crossref_primary_10_1109_JSEN_2022_3142750
crossref_primary_10_1109_ACCESS_2021_3062484
crossref_primary_10_3390_computers14090388
crossref_primary_10_1002_brb3_70206
crossref_primary_10_1109_TNSRE_2023_3277749
crossref_primary_10_1016_j_ipm_2022_102909
crossref_primary_10_1016_j_procs_2024_06_160
crossref_primary_10_1109_JSEN_2024_3472069
crossref_primary_10_33187_jmsm_1705745
crossref_primary_10_3390_s21196446
crossref_primary_10_1007_s10072_023_07017_y
crossref_primary_10_1186_s12883_022_02732_z
crossref_primary_10_1016_j_compeleceng_2025_110530
crossref_primary_10_3389_fmed_2024_1418684
crossref_primary_10_1186_s12984_022_01025_3
crossref_primary_10_3390_s21155212
crossref_primary_10_2196_60521
crossref_primary_10_3389_fneur_2023_1306129
crossref_primary_10_3389_fnagi_2022_921081
crossref_primary_10_1177_1877718X241301065
crossref_primary_10_2196_37683
crossref_primary_10_1038_s41467_024_49027_0
crossref_primary_10_3390_s22041476
crossref_primary_10_3390_electronics11233879
crossref_primary_10_3390_healthcare10071210
crossref_primary_10_1016_j_bspc_2025_108368
crossref_primary_10_1109_JSEN_2025_3557407
crossref_primary_10_1016_j_artmed_2022_102459
crossref_primary_10_1109_ACCESS_2024_3487001
crossref_primary_10_1109_TBME_2022_3140258
crossref_primary_10_3390_computers13110293
crossref_primary_10_1007_s11042_024_18906_5
crossref_primary_10_3389_fneur_2021_720516
crossref_primary_10_1109_JBHI_2021_3103071
crossref_primary_10_1186_s12984_020_00774_3
crossref_primary_10_3233_JPD_202471
crossref_primary_10_1109_ACCESS_2025_3585099
Cites_doi 10.1109/TITB.2009.2036165
10.1191/0269215505cr906oa
10.1002/mds.21934
10.1016/j.arr.2014.01.004
10.1002/9780470033005
10.1002/mds.25628
10.1109/ACCESS.2017.2779939
10.1016/j.cmpb.2012.10.016
10.1046/j.1468-1331.2003.00611.x
10.1002/mds.26723
10.1016/j.bspc.2007.09.001
10.1016/j.patcog.2016.03.028
10.1016/j.patrec.2017.05.009
10.3390/s18020679
10.1155/2014/606427
10.1016/j.eswa.2018.03.056
10.1016/j.nrl.2017.03.006
10.1002/mds.22561
10.1016/j.knosys.2017.10.017
10.1002/mds.21659
10.3233/JPD-130282
10.4108/icst.pervasivehealth.2012.248680
10.1371/journal.pone.0009675
10.1162/neco.1997.9.8.1735
10.1002/mds.26673
10.1002/mds.26693
10.1016/j.gaitpost.2009.07.108
10.3390/s18103533
10.1212/WNL.17.5.427
10.1023/A:1010933404324
10.1016/j.neuron.2016.03.038
10.1016/j.clineuro.2014.06.026
10.3390/s19061277
10.1016/S1474-4422(11)70143-0
10.1016/j.patrec.2018.02.010
10.1109/TIM.2018.2826198
10.1016/j.jneumeth.2007.08.023
10.1002/mds.21745
10.1006/jcss.1997.1504
10.1111/jnc.13691
10.3390/electronics8030292
10.1016/S1016-3190(10)60044-4
10.1002/mds.1206
10.1109/JSEN.2017.2786587
10.1038/nature14539
10.3390/s20041193
10.1007/s10916-018-0948-z
10.1101/cshperspect.a008862
10.1016/j.sigpro.2015.09.029
10.1007/s007020170096
10.4018/IJTD.2015040102
10.1007/BF00994018
10.1016/j.biopsych.2015.12.023
10.1007/s10654-011-9581-6
10.3109/09638289809166074
10.4108/ICST.BODYNETS2009.5852
10.3390/electronics8020119
10.3389/fneur.2017.00677
10.1212/WNL.0b013e3181e7b688
10.1371/journal.pone.0171764
10.1007/s11517-015-1395-3
10.1186/1743-0003-10-19
10.1016/S1353-8020(99)00062-0
10.3390/s16010115
10.3390/s18092892
10.1109/TPAMI.2013.50
10.1109/SURV.2012.110112.00192
10.1016/j.parkreldis.2015.09.051
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s20071895
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Health & Medical Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef
MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_d35ee2240905459bb56a7fd44658dc3d
PMC7181252
32235373
10_3390_s20071895
Genre Journal Article
GrantInformation_xml – fundername: Centro Internacional sobre el envejecimiento, CENIE
  grantid: 0348_CIE_6_E
– fundername: Secretaría de Educación Superior, Ciencia, Tecnología e Innovación
  grantid: Becas internacionales de posgrado 2019
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c494t-16a156fa0111c5d7393ee9bc59f24b39afc3a82b3a30dfb2173c54aac8d6323a3
IEDL.DBID BENPR
ISICitedReferencesCount 83
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000537110500091&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Tue Oct 14 19:08:40 EDT 2025
Tue Nov 04 01:56:29 EST 2025
Sun Nov 09 09:58:09 EST 2025
Tue Oct 07 06:54:04 EDT 2025
Wed Feb 19 02:29:57 EST 2025
Sat Nov 29 07:13:45 EST 2025
Tue Nov 18 22:02:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords IMU
consecutive windows
LSTM
time distributed
accelerometer
denoising autoencoder
convolutional neural networks
spectral representation
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-16a156fa0111c5d7393ee9bc59f24b39afc3a82b3a30dfb2173c54aac8d6323a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9968-5024
0000-0002-9348-8038
0000-0003-0970-0452
0000-0001-7440-8787
0000-0001-9421-9123
0000-0003-1699-7389
0000-0001-7847-8707
OpenAccessLink https://www.proquest.com/docview/2385580055?pq-origsite=%requestingapplication%
PMID 32235373
PQID 2385580055
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_d35ee2240905459bb56a7fd44658dc3d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7181252
proquest_miscellaneous_2385730831
proquest_journals_2385580055
pubmed_primary_32235373
crossref_primary_10_3390_s20071895
crossref_citationtrail_10_3390_s20071895
PublicationCentury 2000
PublicationDate 2020-03-29
PublicationDateYYYYMMDD 2020-03-29
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-29
  day: 29
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Page (ref_27) 2015; 6
Giladi (ref_9) 2001; 108
Giladi (ref_22) 2000; 6
Nieuwboer (ref_24) 2009; 30
Nweke (ref_31) 2018; 105
Lim (ref_41) 2005; 19
Ahlrichs (ref_15) 2016; 54
ref_56
Plotnik (ref_68) 2010; 14
Wang (ref_84) 2018; 67
Okuma (ref_10) 2008; 23
ref_53
Elshehabi (ref_39) 2016; 31
Giladi (ref_11) 2001; 87
Tripoliti (ref_62) 2013; 110
ref_16
Hassan (ref_30) 2018; 42
ref_59
Freund (ref_58) 1997; 55
ref_61
Zhou (ref_73) 2008; 3
ref_60
Schaafsma (ref_13) 2003; 10
Cortes (ref_57) 1995; 20
Okuma (ref_20) 2014; 4
Wang (ref_33) 2019; 119
Latt (ref_17) 2009; 24
ref_67
ref_66
Anwary (ref_86) 2018; 18
Kerr (ref_18) 2010; 75
Karim (ref_50) 2018; 6
Reeve (ref_8) 2014; 14
ref_26
Lecun (ref_29) 2015; 521
Goetz (ref_2) 2011; 1
Nieuwboer (ref_25) 1998; 20
Kubota (ref_35) 2016; 31
Bengio (ref_46) 2013; 35
Cabestany (ref_71) 1992; 16
ref_70
Erfani (ref_87) 2016; 58
Montero (ref_52) 2016; 120
Sveinbjornsdottir (ref_6) 2016; 139
Maetzler (ref_40) 2013; 28
ref_34
ref_78
ref_77
ref_32
Hoehn (ref_72) 1967; 17
ref_76
ref_75
ref_74
Lara (ref_28) 2013; 15
Matias (ref_36) 2017; 8
Breiman (ref_54) 2001; 45
Alcaine (ref_64) 2018; 105
ref_83
Moore (ref_19) 2007; 22
ref_82
ref_81
Maetzler (ref_38) 2016; 31
ref_80
Rocha (ref_42) 2014; 124
Michel (ref_4) 2016; 90
Nutt (ref_21) 2011; 10
Marquand (ref_69) 2016; 80
ref_47
Zach (ref_63) 2015; 21
ref_45
Vincent (ref_55) 2010; 11
ref_44
ref_43
Chen (ref_1) 2010; 22
ref_85
Han (ref_88) 2018; 18
Hochreiter (ref_51) 1997; 9
Glorot (ref_79) 2010; 9
Camps (ref_65) 2018; 139
ref_49
ref_48
ref_5
Giladi (ref_23) 2009; 24
(ref_37) 2019; 34
ref_7
Fahn (ref_12) 1995; 67
Moore (ref_14) 2008; 167
Wirdefeldt (ref_3) 2011; 26
References_xml – volume: 14
  start-page: 436
  year: 2010
  ident: ref_68
  article-title: Wearable Assistant for Parkinson’s Disease Patients With the Freezing of Gait Symptom
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2009.2036165
– volume: 19
  start-page: 695
  year: 2005
  ident: ref_41
  article-title: Effects of external rhythmical cueing on gait in patients with Parkinson’s disease: A systematic review
  publication-title: Clin. Rehabil.
  doi: 10.1191/0269215505cr906oa
– ident: ref_78
– volume: 23
  start-page: 426
  year: 2008
  ident: ref_10
  article-title: The clinical spectrum of freezing of gait in Parkinson’s disease
  publication-title: Mov. Disord.
  doi: 10.1002/mds.21934
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref_55
  article-title: Stacked denoising autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion
  publication-title: J. Mach. Learn. Res.
– ident: ref_49
– ident: ref_5
– ident: ref_32
– ident: ref_80
– volume: 14
  start-page: 19
  year: 2014
  ident: ref_8
  article-title: Ageing and Parkinson’s disease: Why is advancing age the biggest risk factor?
  publication-title: Ageing Res. Rev.
  doi: 10.1016/j.arr.2014.01.004
– ident: ref_70
  doi: 10.1002/9780470033005
– ident: ref_26
– volume: 28
  start-page: 1628
  year: 2013
  ident: ref_40
  article-title: Quantitative wearable sensors for objective assessment of Parkinson’s disease
  publication-title: Mov. Disord.
  doi: 10.1002/mds.25628
– volume: 6
  start-page: 1662
  year: 2018
  ident: ref_50
  article-title: LSTM Fully Convolutional Networks for Time Series Classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2779939
– volume: 110
  start-page: 12
  year: 2013
  ident: ref_62
  article-title: Automatic detection of freezing of gait events in patients with Parkinson’s disease
  publication-title: Comput Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2012.10.016
– volume: 10
  start-page: 391
  year: 2003
  ident: ref_13
  article-title: Characterization of freezing of gait subtypes and the response of each to levodopa in Parkinson’s disease
  publication-title: Eur. J. Neurol.
  doi: 10.1046/j.1468-1331.2003.00611.x
– volume: 31
  start-page: 1283
  year: 2016
  ident: ref_39
  article-title: New methods for the assessment of Parkinson’s disease (2005 to 2015): A systematic review
  publication-title: Mov. Disord.
  doi: 10.1002/mds.26723
– volume: 3
  start-page: 1
  year: 2008
  ident: ref_73
  article-title: Human motion tracking for rehabilitation-A survey
  publication-title: Biomed. Signal. Process. Control.
  doi: 10.1016/j.bspc.2007.09.001
– volume: 58
  start-page: 121
  year: 2016
  ident: ref_87
  article-title: High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2016.03.028
– volume: 105
  start-page: 135
  year: 2018
  ident: ref_64
  article-title: Determining the optimal features in freezing of gait detection through a single waist accelerometer in home environments
  publication-title: Pattern Recog. Lett.
  doi: 10.1016/j.patrec.2017.05.009
– ident: ref_16
– volume: 87
  start-page: 191
  year: 2001
  ident: ref_11
  article-title: Freezing of gait. Clinical overview
  publication-title: Adv. Neurol.
– ident: ref_47
  doi: 10.3390/s18020679
– ident: ref_83
  doi: 10.1155/2014/606427
– volume: 105
  start-page: 233
  year: 2018
  ident: ref_31
  article-title: Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: State of the art and research challenges
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.03.056
– volume: 34
  start-page: 38
  year: 2019
  ident: ref_37
  article-title: Aplicaciones móviles en la enfermedad de Parkinson: Una revisión sistemática
  publication-title: Neurología
  doi: 10.1016/j.nrl.2017.03.006
– volume: 24
  start-page: 1280
  year: 2009
  ident: ref_17
  article-title: Clinical and physiological assessments for elucidating falls risk in Parkinson’s disease
  publication-title: Mov. Disord.
  doi: 10.1002/mds.22561
– volume: 139
  start-page: 119
  year: 2018
  ident: ref_65
  article-title: Deep learning for freezing of gait detection in Parkinson’s disease patients in their homes using a waist-worn inertial measurement unit
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2017.10.017
– volume: 22
  start-page: 2192
  year: 2007
  ident: ref_19
  article-title: Freezing of gait affects quality of life of peoples with Parkinson’s disease beyond its relationships with mobility and gait
  publication-title: Mov. Disord.
  doi: 10.1002/mds.21659
– ident: ref_77
– volume: 4
  start-page: 255
  year: 2014
  ident: ref_20
  article-title: Freezing of gait and falls in Parkinson’s disease
  publication-title: J. Parkinsons Dis.
  doi: 10.3233/JPD-130282
– ident: ref_44
  doi: 10.4108/icst.pervasivehealth.2012.248680
– ident: ref_43
  doi: 10.1371/journal.pone.0009675
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_51
  article-title: Long Short-Term Memory
  publication-title: Neural. Comput
  doi: 10.1162/neco.1997.9.8.1735
– volume: 31
  start-page: 1263
  year: 2016
  ident: ref_38
  article-title: A clinical view on the development of technology-based tools in managing Parkinson’s disease
  publication-title: Mov. Disord.
  doi: 10.1002/mds.26673
– volume: 67
  start-page: 53
  year: 1995
  ident: ref_12
  article-title: The freezing phenomenon in parkinsonism
  publication-title: Adv. Neurol.
– volume: 31
  start-page: 1314
  year: 2016
  ident: ref_35
  article-title: Machine learning for large-scale wearable sensor data in Parkinson’s disease: Concepts, promises, pitfalls, and futures
  publication-title: Mov. Disord.
  doi: 10.1002/mds.26693
– volume: 30
  start-page: 459
  year: 2009
  ident: ref_24
  article-title: Reliability of the new freezing of gait questionnaire: Agreement between patients with Parkinson’s disease and their careers
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2009.07.108
– ident: ref_56
– ident: ref_66
  doi: 10.3390/s18103533
– volume: 17
  start-page: 427
  year: 1967
  ident: ref_72
  article-title: Parkinsonism: Onset, Progression and Mortality
  publication-title: Neurology
  doi: 10.1212/WNL.17.5.427
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_54
  article-title: Random Forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 90
  start-page: 675
  year: 2016
  ident: ref_4
  article-title: Understanding Dopaminergic Cell Death Pathways in Parkinson Disease
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.03.038
– volume: 124
  start-page: 127
  year: 2014
  ident: ref_42
  article-title: Effects of external cues on gait parameters of Parkinson’s disease patients: A systematic review
  publication-title: Clin. Neurol. Neurosurg.
  doi: 10.1016/j.clineuro.2014.06.026
– ident: ref_48
– ident: ref_74
  doi: 10.3390/s19061277
– volume: 10
  start-page: 734
  year: 2011
  ident: ref_21
  article-title: Freezing of gait: Moving forward on a mysterious clinical phenomenon
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(11)70143-0
– volume: 119
  start-page: 3
  year: 2019
  ident: ref_33
  article-title: Deep learning for sensor-based activity recognition: A survey
  publication-title: Pattern Recog. Lett.
  doi: 10.1016/j.patrec.2018.02.010
– volume: 67
  start-page: 2692
  year: 2018
  ident: ref_84
  article-title: Inertial Sensor-Based Analysis of Equestrian Sports Between Beginner and Professional Riders Under Different Horse Gaits
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2018.2826198
– volume: 167
  start-page: 340
  year: 2008
  ident: ref_14
  article-title: Ambulatory monitoring of freezing of gait in Parkinson’s disease
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2007.08.023
– volume: 24
  start-page: 655
  year: 2009
  ident: ref_23
  article-title: Validation of the freezing of gait questionnaire in patients with Parkinson’s disease
  publication-title: Mov. Disord.
  doi: 10.1002/mds.21745
– ident: ref_7
– ident: ref_53
– volume: 55
  start-page: 119
  year: 1997
  ident: ref_58
  article-title: A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
  publication-title: J. Comput Syst. Sci.
  doi: 10.1006/jcss.1997.1504
– volume: 139
  start-page: 318
  year: 2016
  ident: ref_6
  article-title: The clinical symptoms of Parkinson’s disease
  publication-title: J. Neurochem.
  doi: 10.1111/jnc.13691
– ident: ref_76
– ident: ref_45
  doi: 10.3390/electronics8030292
– volume: 9
  start-page: 249
  year: 2010
  ident: ref_79
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: J. Mach. Learn. Res.
– volume: 22
  start-page: 73
  year: 2010
  ident: ref_1
  article-title: The Epidemiology of Parkinson’s Disease
  publication-title: Tzu. Chi Med. J.
  doi: 10.1016/S1016-3190(10)60044-4
– ident: ref_82
  doi: 10.1002/mds.1206
– volume: 18
  start-page: 2555
  year: 2018
  ident: ref_86
  article-title: Optimal Foot Location for Placing Wearable IMU Sensors and Automatic Feature Extraction for Gait Analysis
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2017.2786587
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_29
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref_85
  doi: 10.3390/s20041193
– volume: 42
  start-page: 1
  year: 2018
  ident: ref_30
  article-title: Human Activity Recognition from Body Sensor Data using Deep Learning
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-018-0948-z
– volume: 1
  start-page: a008862
  year: 2011
  ident: ref_2
  article-title: The history of Parkinson’s disease: Early clinical descriptions and neurological therapies
  publication-title: Cold Spring Harb. Perspect Med.
  doi: 10.1101/cshperspect.a008862
– volume: 120
  start-page: 359
  year: 2016
  ident: ref_52
  article-title: Feature extraction from smartphone inertial signals for human activity segmentation
  publication-title: Signal. Process.
  doi: 10.1016/j.sigpro.2015.09.029
– volume: 108
  start-page: 53
  year: 2001
  ident: ref_9
  article-title: Freezing of gait in patients with advanced Parkinson’s disease
  publication-title: J. Neural. Transm.
  doi: 10.1007/s007020170096
– volume: 6
  start-page: 12
  year: 2015
  ident: ref_27
  article-title: A Forecast of the Adoption of Wearable Technology
  publication-title: Int. J. Technol. Diffus.
  doi: 10.4018/IJTD.2015040102
– volume: 20
  start-page: 273
  year: 1995
  ident: ref_57
  article-title: Support-vector networks
  publication-title: Mach. Learning
  doi: 10.1007/BF00994018
– volume: 80
  start-page: 552
  year: 2016
  ident: ref_69
  article-title: Understanding Heterogeneity in Clinical Cohorts Using Normative Models: Beyond Case-Control Studies
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2015.12.023
– ident: ref_75
– volume: 26
  start-page: 1
  year: 2011
  ident: ref_3
  article-title: Epidemiology and etiology of Parkinson’s disease: A review of the evidence
  publication-title: Eur. J. Epidemiol.
  doi: 10.1007/s10654-011-9581-6
– ident: ref_81
– volume: 20
  start-page: 142
  year: 1998
  ident: ref_25
  article-title: A frequency and correlation analysis of motor deficits in Parkinson patients
  publication-title: Disabil. Rehabil.
  doi: 10.3109/09638289809166074
– ident: ref_60
  doi: 10.4108/ICST.BODYNETS2009.5852
– ident: ref_67
  doi: 10.3390/electronics8020119
– volume: 16
  start-page: 181
  year: 1992
  ident: ref_71
  article-title: Assessing Motor Fluctuations in Parkinson’s Disease Patients Based on a Single Inertial Sensor; Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: A clinico-pathological study of 100 cases
  publication-title: J. Neurol. Neurosurg Psychiatry
– volume: 8
  start-page: 677
  year: 2017
  ident: ref_36
  article-title: A Perspective on Wearable Sensor Measurements and Data Science for Parkinson’s Disease
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2017.00677
– volume: 75
  start-page: 116
  year: 2010
  ident: ref_18
  article-title: Predictors of future falls in Parkinson disease
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181e7b688
– ident: ref_59
  doi: 10.1371/journal.pone.0171764
– volume: 54
  start-page: 223
  year: 2016
  ident: ref_15
  article-title: Detecting freezing of gait with a tri-axial accelerometer in Parkinson’s disease patients
  publication-title: Med. Biol. Eng. Comput
  doi: 10.1007/s11517-015-1395-3
– ident: ref_61
  doi: 10.1186/1743-0003-10-19
– volume: 6
  start-page: 165
  year: 2000
  ident: ref_22
  article-title: Construction of freezing of gait questionnaire for patients with Parkinsonism
  publication-title: Parkinsonism Relat. Disord
  doi: 10.1016/S1353-8020(99)00062-0
– ident: ref_34
  doi: 10.3390/s16010115
– volume: 18
  start-page: 2892
  year: 2018
  ident: ref_88
  article-title: Feature Representation and Data Augmentation for Human Activity Classification Based on Wearable IMU Sensor Data Using a Deep LSTM Neural Network
  publication-title: Sensors
  doi: 10.3390/s18092892
– volume: 35
  start-page: 1798
  year: 2013
  ident: ref_46
  article-title: Representation Learning: A Review and New Perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.50
– volume: 15
  start-page: 1192
  year: 2013
  ident: ref_28
  article-title: A Survey on Human Activity Recognition using Wearable Sensors
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/SURV.2012.110112.00192
– volume: 21
  start-page: 1362
  year: 2015
  ident: ref_63
  article-title: Identifying freezing of gait in Parkinson’s disease during freezing provoking tasks using waist-mounted accelerometry
  publication-title: Parkinsonism Relat Disord
  doi: 10.1016/j.parkreldis.2015.09.051
SSID ssj0023338
Score 2.582773
Snippet Freezing of gait (FOG) is one of the most incapacitating motor symptoms in Parkinson’s disease (PD). The occurrence of FOG reduces the patients’ quality of...
Freezing of gait (FOG) is one of the most incapacitating motor symptoms in Parkinson's disease (PD). The occurrence of FOG reduces the patients' quality of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1895
SubjectTerms accelerometer
Accelerometry - methods
Activities of daily living
Aged
Aged, 80 and over
Algorithms
Artificial intelligence
Biosensing Techniques
Cognition & reasoning
consecutive windows
convolutional neural networks
Deep Learning
denoising autoencoder
Female
Fog
Gait
Gait - physiology
Humans
IMU
LSTM
Male
Monitoring, Physiologic
Natural language processing
Neural networks
Parkinson Disease - diagnosis
Parkinson Disease - physiopathology
Parkinson's disease
Patients
Performance evaluation
Quality of life
Sensors
Signal Processing, Computer-Assisted
Support vector machines
Wearable Electronic Devices
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07j9QwELbQiQIKxJvAgQyioIlu40cSl3ssCwU6kADpusiPCax0Sk6bPSQoEH-Dv8cvYSb2RrvoJBq6yJ7C8Yzt7_PjG8aeK3Sz1QXk3rcuV1aY3BpncyF9VUljS4BRMv9tdXJSn56a9zupvuhOWJQHjh13FKQGoHXHILjQxjld2qoNpPNVBy8Dzb6IerZkKlEticwr6ghJJPVHA-3IFTUlkdhZfUaR_suQ5d8XJHdWnOVNdiNBRT6PTbzFrkB3m13fERC8w34sAM550kj9zOdJIBwGjliUL4BOCKhiuQb4Th99y1_b1YavOk7vncenX79__hr4Ih7UYOmoszrwlMCHv-vy4z5843PvcYWK8cI_IPnt18Nd9mn56uPLN3nKqJB7ZdQmL0qLfK21lGDe60BqeADGeW1aoRy6pvXS1sJJK2ehdUhXpNfKWl-HUgosvccOur6DB4yrmYNQikIFYZRXtavAGd0GhHNCI8rK2IttTzc-yY1T1ouzBmkHOaWZnJKxZ5PpedTYuMzomNw1GZAs9liAwdKkYGn-FSwZO9w6u0ljdWgQtGhdkxhZxp5O1TjK6OjEdtBfRBucC2tZZOx-jI2pJTglSi0rmbFqL2r2mrpf062-jEreFeErLR7-j397xK4J2guYUW6-Q3awWV_AY3bVf92shvWTcXj8AVCnF-k
  priority: 102
  providerName: Directory of Open Access Journals
Title Deep Learning Approaches for Detecting Freezing of Gait in Parkinson’s Disease Patients through On-Body Acceleration Sensors
URI https://www.ncbi.nlm.nih.gov/pubmed/32235373
https://www.proquest.com/docview/2385580055
https://www.proquest.com/docview/2385730831
https://pubmed.ncbi.nlm.nih.gov/PMC7181252
https://doaj.org/article/d35ee2240905459bb56a7fd44658dc3d
Volume 20
WOSCitedRecordID wos000537110500091&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LjtMwFL1iOixgwXuYwFAZxIJNNE1sN_EKtbQFJKZUPKSyivzKUAklnaaDBIsRv8Hv8SX4Jm5o0YgNmyi69sLSte_TPgfgKXNqljyyoda5CpmMRSiFkmFMdZJQIfvW1pD5b5LpNJ3PxcwX3Cp_rXJjE2tDbUqNNfJj51o4TxEy6vnyLETWKOyuegqNPdhHpDLWgf3heDp716Zc1GVgDZ4Qdcn9cYWVuShFMoktL1SD9V8WYf59UXLL80xu_u-ab8ENH3OSQbNJbsMVW9yB61tIhHfhYmTtkniw1VMy8EjjtiIuqCUji60GHJisrP2OP2VOXsrFmiwKgg-n6zdkv378rMio6fg4aQ3YWhHPBETeFuGwNN_IQGvn6pqNR967LLpcVffg42T84cWr0FMzhJoJtg6jvnSJXy6RqV5zg7B61gqluchjppyOc01lGisqac_kyuU9VHMmpU5Nn8ZOegCdoizsIRDWU9b044iZWDDNUpVYJXhuXFwYcxeuBfBso6pMe9xypM_4krn8BbWatVoN4Ek7ddmAdVw2aYj6bicgvnYtKFenmT-umaHcWox2hAtpuVCK92WSG0SXS42mJoCjjcYzf-ir7I-6A3jcDrvjij0YWdjyvJnjjGpKowDuN5urXYmzrZTThAaQ7Gy7naXujhSLzzUkeIKBGo8f_HtZD-FajOWCHtL3HUFnvTq3j-Cq_rpeVKsu7CXzpP6mXX-OunWJwn1PLsZONnt9Mvv0G68WLTE
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qKRKw4P0wFBgQSGysJvOIPQuEUkJo1TREopXKyszLJRKyQ5yCygLxG_wEH8WXMNd2TIIqdl2ws2bG1mh85j7mcQ7AE-5_sxIdFxqT6pArKkMltQopM1HEpOo6V1LmD6PRKD48lOM1-Lm4C4PHKhc2sTTUNje4Rr7pXYsQMVJGvZh-ClE1CndXFxIaFSx23ckXn7IVz3f6_v8-pXTwav_ldlirCoSGSz4PO13lc5ZUoci6ERYZ4ZyT2giZUq5991LDVEw1U6xtU-1DdmYEV8rEtsuoL_XfPQfr3IM9bsH6eGdv_K5J8ZjP-Cr-IsZke7PAlcBOjOIVS16vFAc4LaL9-2DmkqcbXPnfxugqXK5jatKrJsE1WHPZdbi0xLR4A771nZuSmkz2iPRqJnVXEB-0k77DrRSsGMyc-4oPeUpeq8mcTDKCF8PLO3K_vv8oSL_a0fKlJSFtQWqlI_ImC7dye0J6xnhXXk0s8tb5F2fFTTg4kwG4Ba0sz9wdILytne3SDrdUcsNjHTktRWp93EuFD0cDeLaARmJqXnaUB_mY-PwMUZQ0KArgcdN0WpGRnNZoC_HVNED-8LIgnx0ltTlKLBPOYTQnfcgupNaiq6LUIntebA2zAWwsEJbURq1I_sArgEdNtTdHuMekMpcfV22804hZJ4DbFZibnnjfwQSLWADRCsxXurpak00-lJTnEQaigt79d7cewoXt_b1hMtwZ7d6DixSXRtooVbgBrfns2N2H8-bzfFLMHtTzlsD7s54GvwG6uIUr
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFB2VFiFY8H4YCgwIJDZW4nnEngVCKSEQtYRIgFRWZl4ukZAd4hRUFojf4Ff4HL6Ee23HJKhi1wW7aGYcjexz7z13HucS8kDAZ9Yy8qG1mQmFZirUyuiQcRvHXOme95Vk_l48Hif7-2qyQX4u78LgscqlT6wctSssrpF3ILRImaBkVCdrjkVMBsMns08hVpDCndZlOY0aIrv-6Aukb-Xj0QC-9UPGhs_ePH0RNhUGQiuUWIRRT0P-kmksuG6lQ3U475WxUmVMGJhqZrlOmOGad11mgL5zK4XWNnE9zqAV_vcU2QJKLsDGtiajl5N3bbrHIfurtYw4V91OiauCUYKFLFYiYFUo4Dh2-_chzZWoN7zwP7-vi-R8w7VpvzaOS2TD55fJuRUFxivk28D7GW1EZg9ov1FY9yUFMk8HHrdYsGM49_4r_igy-lxPF3SaU7wwXt2d-_X9R0kH9U4XtFZCtSVtKiDRV3m4U7gj2rcWQnxtcPS1hwfn5VXy9kRewDWymRe5v0Go6BrveiwSjilhRWJib5TMHPBhJoGmBuTREiapbfTasWzIxxTyNkRU2iIqIPfbobNapOS4QTuItXYA6opXDcX8IG3cVOq49B5ZngIqL5UxsqfjzKGqXuIsdwHZXqItbZxdmf6BWkDutd3gpnDvSee-OKzHQDBJeBSQ6zWw25lATOGSxzwg8Rrk16a63pNPP1RS6DESVMlu_ntad8kZwH66Nxrv3iJnGa6YdLGC4TbZXMwP_W1y2n5eTMv5ncaEKXl_0lbwG31Wjes
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Approaches+for+Detecting+Freezing+of+Gait+in+Parkinson%E2%80%99s+Disease+Patients+through+On-Body+Acceleration+Sensors&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Sigcha%2C+Luis&rft.au=Costa%2C+N%C3%A9lson&rft.au=Pav%C3%B3n%2C+Ignacio&rft.au=Costa%2C+Susana&rft.date=2020-03-29&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=20&rft.issue=7&rft_id=info:doi/10.3390%2Fs20071895&rft_id=info%3Apmid%2F32235373&rft.externalDocID=PMC7181252
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon