Properties of the Binary Black Hole Merger GW150914

On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a su...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Physical review letters Ročník 116; číslo 24; s. 241102
Hlavní autori: Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M. R., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Camp, J. B.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Goddard Space Flight Center APS Physics 17.06.2016
American Physical Society
Predmet:
ISSN:0031-9007, 1079-7114, 1079-7114
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 36(+5/-4) solar mass and 29(+4/-4) solar mass; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be less than 0.7 (at 90% probability). The luminosity distance to the source is 410(+160/-180) Mpc, corresponding to a redshift 0.09(+0.03/−0.04) assuming standard cosmology. The source location is constrained to an annulus section of 610 sq deg, primarily in the southern hemisphere. The binary merges into a black hole of mass 62(+4/−4) solar mass and spin 0.67(+0.05/−0.07). This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime.
AbstractList On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 3 6 − 4 + 5 M ⊙ and 2 9 − 4 + 4 M ⊙ ; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be < 0.7 (at 90% probability). The luminosity distance to the source is 41 0 − 180 + 160     Mpc , corresponding to a redshift 0.0 9 − 0.04 + 0.03 assuming standard cosmology. The source location is constrained to an annulus section of 610     deg 2 , primarily in the southern hemisphere. The binary merges into a black hole of mass 6 2 − 4 + 4 M ⊙ and spin 0.6 7 − 0.07 + 0.05 . This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime.
On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 36-4+5M and 29-4+4M; for each parameter we report the median value and the range of the 90 credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be <0.7 (at 90 probability). The luminosity distance to the source is 410-180+160 Mpc, corresponding to a redshift 0.09-0.04+0.03 assuming standard cosmology. The source location is constrained to an annulus section of 610 deg2, primarily in the southern hemisphere. The binary merges into a black hole of mass 62-4+4M and spin 0.67-0.07+0.05. This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime.
On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 36_{-4}^{+5}M_{⊙} and 29_{-4}^{+4}M_{⊙}; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be <0.7 (at 90% probability). The luminosity distance to the source is 410_{-180}^{+160}  Mpc, corresponding to a redshift 0.09_{-0.04}^{+0.03} assuming standard cosmology. The source location is constrained to an annulus section of 610  deg^{2}, primarily in the southern hemisphere. The binary merges into a black hole of mass 62_{-4}^{+4}M_{⊙} and spin 0.67_{-0.07}^{+0.05}. This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime.
On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 36(+5/-4) solar mass and 29(+4/-4) solar mass; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be less than 0.7 (at 90% probability). The luminosity distance to the source is 410(+160/-180) Mpc, corresponding to a redshift 0.09(+0.03/−0.04) assuming standard cosmology. The source location is constrained to an annulus section of 610 sq deg, primarily in the southern hemisphere. The binary merges into a black hole of mass 62(+4/−4) solar mass and spin 0.67(+0.05/−0.07). This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime.
On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 36_{-4}^{+5}M_{⊙} and 29_{-4}^{+4}M_{⊙}; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be <0.7 (at 90% probability). The luminosity distance to the source is 410_{-180}^{+160}  Mpc, corresponding to a redshift 0.09_{-0.04}^{+0.03} assuming standard cosmology. The source location is constrained to an annulus section of 610  deg^{2}, primarily in the southern hemisphere. The binary merges into a black hole of mass 62_{-4}^{+4}M_{⊙} and spin 0.67_{-0.07}^{+0.05}. This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime.On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 36_{-4}^{+5}M_{⊙} and 29_{-4}^{+4}M_{⊙}; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be <0.7 (at 90% probability). The luminosity distance to the source is 410_{-180}^{+160}  Mpc, corresponding to a redshift 0.09_{-0.04}^{+0.03} assuming standard cosmology. The source location is constrained to an annulus section of 610  deg^{2}, primarily in the southern hemisphere. The binary merges into a black hole of mass 62_{-4}^{+4}M_{⊙} and spin 0.67_{-0.07}^{+0.05}. This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime.
(ProQuest: ... denotes formulae and/or non-USASCII text omitted) On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses ... and ...; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be <0.7 (at 90% probability). The luminosity distance to the source is ... Mpc, corresponding to a redshift ... assuming standard cosmology. The source location is constrained to an annulus section of 610deg2, primarily in the southern hemisphere. The binary merges into a black hole of mass ... and spin ... This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime.
On September 14, 2015, the Laser Interferometer Gravitational-wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterise the properties of the source and its parameters. The data around the time of the event were analysed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of $36^{+5}_{-4} M_\odot$ and $29^{+4}_{-4} M_\odot$ (for each parameter we report the median value and the range of the 90% credible interval). The dimensionless spin magnitude of the more massive black hole is bound to be $0.7$ (at 90% probability). The luminosity distance to the source is $410^{+160}_{-180}$ Mpc, corresponding to a redshift $0.09^{+0.03}_{-0.04}$ assuming standard cosmology. The source location is constrained to an annulus section of $590$ deg$^2$, primarily in the southern hemisphere. The binary merges into a black hole of $62^{+4}_{-4} M_\odot$ and spin $0.67^{+0.05}_{-0.07}$. This black hole is significantly more massive than any other known in the stellar-mass regime.
ArticleNumber 241102
Audience PUBLIC
Author Acernese, F.
Abernathy, M. R.
Addesso, P.
Abbott, R.
Adams, C.
Camp, J. B.
Abbott, B. P.
Abbott, T. D.
Adams, T.
Ackley, K.
Author_xml – sequence: 1
  givenname: B. P.
  surname: Abbott
  fullname: Abbott, B. P.
  organization: California Inst. of Tech
– sequence: 2
  givenname: R.
  surname: Abbott
  fullname: Abbott, R.
  organization: California Inst. of Tech
– sequence: 3
  givenname: T. D.
  surname: Abbott
  fullname: Abbott, T. D.
  organization: Louisiana State Univ
– sequence: 4
  givenname: M. R.
  surname: Abernathy
  fullname: Abernathy, M. R.
  organization: California Inst. of Tech
– sequence: 5
  givenname: F.
  surname: Acernese
  fullname: Acernese, F.
  organization: Salerno Univ
– sequence: 6
  givenname: K.
  surname: Ackley
  fullname: Ackley, K.
  organization: Florida Univ
– sequence: 7
  givenname: C.
  surname: Adams
  fullname: Adams, C.
  organization: LIGO Livingston Observatory
– sequence: 8
  givenname: T.
  surname: Adams
  fullname: Adams, T.
  organization: Grenoble-1 Univ
– sequence: 9
  givenname: P.
  surname: Addesso
  fullname: Addesso, P.
  organization: Salerno Univ
– sequence: 10
  givenname: J. B.
  surname: Camp
  fullname: Camp, J. B.
  organization: NASA Goddard Space Flight Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27367378$$D View this record in MEDLINE/PubMed
https://in2p3.hal.science/in2p3-01274010$$DView record in HAL
BookMark eNqFkl1rFDEUhoNU7Lb6D6TMpSBTT74T8KYttiusWETxMmRmzuxGZydrMrvQf2_q1CLe9Crh8Dwh5z3nhByNcURCziicUwr83e3mLn_BwwqnqRTUOROlzJ6RBQVta02pOCILAE5rC6CPyUnOPwCAMmVekGOmudJcmwXhtynuME0BcxX7atpgdRlGn-6qy8G3P6tlHLD6hGmNqbr5TiVYKl6S570fMr56OE_Jt-sPX6-W9erzzceri1XdCsunGhvgFo2FTkmvWs6NbHrRgO-gt14Zbo3mXacs9UabzqBotVCyUdSLhsqOnxI-vzsEXKOLqQnuwFz0Yb7vh7XzrWvQsdKWY5JqkMV6O1sbP7hdCtvSzB9nebFyYWQ77koMWgCFAy30m5nepfhrj3ly25BbHAY_YtxnRw2TUlpREnsaBSp46YoV9OwB3Tdb7B6_8Tf3AqgZaFPMOWH_iFBw9wN2_wy4FJSbB1zE9_-JbZj8FOI4JR-Gp_XXsz767F1xsmNQYiubIqXhvwHmjrKZ
CitedBy_id crossref_primary_10_1051_0004_6361_202348161
crossref_primary_10_3390_galaxies9030054
crossref_primary_10_3847_2041_8205_827_2_L34
crossref_primary_10_1016_j_dark_2021_100916
crossref_primary_10_1088_1361_6382_ab2f11
crossref_primary_10_1093_mnras_stw1772
crossref_primary_10_1093_mnras_stw1893
crossref_primary_10_1103_PhysRevX_8_039903
crossref_primary_10_3847_2041_8213_ac00a6
crossref_primary_10_1007_s10714_018_2372_6
crossref_primary_10_1007_s11222_019_09907_8
crossref_primary_10_1109_ACCESS_2018_2867494
crossref_primary_10_1088_1475_7516_2017_04_036
crossref_primary_10_1016_j_dark_2020_100648
crossref_primary_10_1088_1361_6382_abb5c1
crossref_primary_10_3847_1538_4357_ab77bf
crossref_primary_10_1093_mnras_stw2993
crossref_primary_10_1088_0264_9381_33_16_165001
crossref_primary_10_3390_e21101017
crossref_primary_10_1088_1475_7516_2016_10_001
crossref_primary_10_3390_galaxies9040096
crossref_primary_10_3390_universe7060192
crossref_primary_10_1140_epja_i2019_12780_8
crossref_primary_10_1093_mnras_sty086
crossref_primary_10_1002_wics_1532
crossref_primary_10_3847_1538_4357_ad499b
crossref_primary_10_1103_PhysRevD_110_122002
crossref_primary_10_1119_1_4985727
crossref_primary_10_1007_s41114_024_00054_9
crossref_primary_10_1088_1361_6382_ab3cff
crossref_primary_10_1103_23cf_j34y
crossref_primary_10_1002_andp_201800348
crossref_primary_10_1088_1475_7516_2025_07_078
crossref_primary_10_1007_s41114_020_00026_9
crossref_primary_10_1111_j_1740_9713_2016_00896_x
crossref_primary_10_3389_fphy_2023_1113909
crossref_primary_10_3847_1538_4357_ab31aa
crossref_primary_10_3390_universe5050099
crossref_primary_10_1103_PhysRevD_103_063016
crossref_primary_10_3847_1538_4357_acc4bb
crossref_primary_10_3847_1538_4357_aab34c
crossref_primary_10_1103_PhysRevD_103_063010
crossref_primary_10_1088_1475_7516_2023_02_010
crossref_primary_10_1038_s41550_017_0112
crossref_primary_10_1093_mnras_staa3096
crossref_primary_10_1088_1361_6382_ad72c8
crossref_primary_10_1088_1475_7516_2016_11_036
crossref_primary_10_1134_S1063772919020082
crossref_primary_10_1103_PhysRevD_105_104019
crossref_primary_10_1088_1361_6382_ab185e
crossref_primary_10_1051_0004_6361_202451297
crossref_primary_10_4236_jhepgc_2018_41005
crossref_primary_10_1093_mnras_sty2568
crossref_primary_10_3847_1538_4357_abe40e
crossref_primary_10_1073_pnas_1612908114
crossref_primary_10_3847_1538_4357_ad4549
crossref_primary_10_1088_1361_6382_ad242e
crossref_primary_10_1103_PhysRevD_111_084064
crossref_primary_10_1088_1361_6382_ad387c
crossref_primary_10_1103_PhysRevD_107_064045
crossref_primary_10_1088_1361_6382_ad2317
crossref_primary_10_1093_mnras_stac120
crossref_primary_10_1007_s10714_024_03282_0
crossref_primary_10_1103_PhysRevX_9_031028
crossref_primary_10_1088_1361_6382_abbc8b
crossref_primary_10_1007_s12648_024_03532_6
crossref_primary_10_1088_0256_307X_33_8_080402
crossref_primary_10_1103_PhysRevD_108_104020
crossref_primary_10_1088_1361_6382_aa5294
crossref_primary_10_1140_epjc_s10052_024_13495_x
crossref_primary_10_1103_PhysRevLett_126_041103
crossref_primary_10_1088_1361_6382_abc36e
crossref_primary_10_1016_j_newast_2017_07_004
crossref_primary_10_1088_1674_1137_ac624a
crossref_primary_10_1103_PhysRevD_108_104025
crossref_primary_10_1088_1742_6596_888_1_012001
crossref_primary_10_1140_epjc_s10052_022_10049_x
crossref_primary_10_3938_jkps_70_735
crossref_primary_10_1088_1361_6382_aa941e
crossref_primary_10_1088_1572_9494_ad4c55
crossref_primary_10_1007_s11431_023_2597_y
crossref_primary_10_1007_s10714_016_2136_0
crossref_primary_10_1016_j_nuclphysb_2025_116840
crossref_primary_10_1088_1361_6382_aaa13d
crossref_primary_10_3847_2041_8213_abf5e4
crossref_primary_10_1088_1674_1137_ad5a70
crossref_primary_10_1016_j_physletb_2022_137410
crossref_primary_10_1088_1361_6382_adfffa
crossref_primary_10_1103_PhysRevResearch_1_033015
crossref_primary_10_1140_epjc_s10052_024_13419_9
crossref_primary_10_1088_1742_6596_1208_1_012012
crossref_primary_10_1088_1361_6633_ab12bc
crossref_primary_10_1093_mnras_stx1764
crossref_primary_10_3847_2041_8213_ab479e
crossref_primary_10_1088_2632_2153_adfc27
crossref_primary_10_1103_PhysRevD_104_024059
crossref_primary_10_1063_1_4967303
crossref_primary_10_1093_mnras_stx2737
crossref_primary_10_1088_1674_1137_ad9f44
crossref_primary_10_1088_1674_1056_ac6ee0
crossref_primary_10_1038_s41586_022_05212_z
crossref_primary_10_3847_1538_4357_aa5da9
crossref_primary_10_1103_ckdt_wtsl
crossref_primary_10_3390_galaxies9020040
crossref_primary_10_1088_1674_1137_ad9894
crossref_primary_10_1007_s10686_021_09785_x
crossref_primary_10_1093_astrogeo_atab077
crossref_primary_10_1134_S1063772918120028
crossref_primary_10_3847_1538_4357_ab5dcb
crossref_primary_10_3847_2041_8213_ac6426
crossref_primary_10_1088_1361_6382_ab5c9a
crossref_primary_10_1088_1475_7516_2017_06_037
crossref_primary_10_3847_2041_8213_ab745a
crossref_primary_10_1088_1475_7516_2019_10_013
crossref_primary_10_1103_PhysRevLett_129_111102
crossref_primary_10_3847_1538_4357_ad65ce
crossref_primary_10_3847_1538_4357_aab665
crossref_primary_10_1007_s41115_021_00012_0
crossref_primary_10_1088_1361_6382_ad1780
crossref_primary_10_1140_epjc_s10052_025_14407_3
crossref_primary_10_1140_epjc_s10052_025_14299_3
crossref_primary_10_1088_1361_6382_aa8f29
crossref_primary_10_1088_1475_7516_2025_03_006
crossref_primary_10_1088_1674_1137_ad34bf
crossref_primary_10_1063_5_0039624
crossref_primary_10_1088_1475_7516_2019_02_019
crossref_primary_10_1103_PhysRevD_111_104012
crossref_primary_10_3847_1538_4357_aadae5
crossref_primary_10_1016_j_jsv_2017_12_007
crossref_primary_10_3847_2041_8213_aa970b
crossref_primary_10_3847_1538_4357_ac8b02
crossref_primary_10_3847_1538_4357_aaad0e
crossref_primary_10_1017_S1743921318008177
crossref_primary_10_1007_s12217_022_09998_5
crossref_primary_10_1016_j_asr_2018_03_010
crossref_primary_10_1088_1361_6382_ab6a1f
crossref_primary_10_1088_1361_6382_aa972e
crossref_primary_10_1088_1361_6382_ad4dfe
crossref_primary_10_1088_1361_6382_ab34e2
crossref_primary_10_1103_PhysRevD_105_124010
crossref_primary_10_1126_science_aat3363
crossref_primary_10_1140_epjc_s10052_025_14529_8
crossref_primary_10_1103_PhysRevLett_126_161102
crossref_primary_10_1088_1475_7516_2022_06_030
crossref_primary_10_3847_1538_4365_ab06fc
crossref_primary_10_1088_1361_6382_acb630
crossref_primary_10_1088_1674_1137_adb2fd
crossref_primary_10_3847_2041_8213_aba493
crossref_primary_10_1093_mnras_staa1077
crossref_primary_10_1103_PhysRevD_110_124038
crossref_primary_10_1093_ptep_pty078
crossref_primary_10_1088_1361_6382_aafce6
crossref_primary_10_1103_PhysRevD_111_063034
crossref_primary_10_1088_0264_9381_33_17_177001
crossref_primary_10_1088_1674_4527_18_6_65
crossref_primary_10_3847_2041_8213_aa9f0c
crossref_primary_10_1088_1475_7516_2025_04_037
crossref_primary_10_3390_galaxies6020048
crossref_primary_10_1103_PhysRevD_104_124060
crossref_primary_10_1093_mnras_sty908
crossref_primary_10_1088_1361_6382_aa6d44
crossref_primary_10_1088_1475_7516_2024_03_053
crossref_primary_10_1088_1361_6382_aab658
crossref_primary_10_1051_0004_6361_201936152
crossref_primary_10_1103_PhysRevX_6_041015
crossref_primary_10_1103_PhysRevX_6_041014
crossref_primary_10_1140_epjc_s10052_017_5055_7
crossref_primary_10_1007_s11433_024_2600_3
crossref_primary_10_1051_0004_6361_202554817
crossref_primary_10_1140_epjc_s10052_018_6170_9
crossref_primary_10_3847_2041_8213_ac082e
crossref_primary_10_1088_0264_9381_33_24_244002
crossref_primary_10_3390_universe7120497
crossref_primary_10_1093_mnras_staa1174
crossref_primary_10_1364_JOSAB_35_000156
crossref_primary_10_1093_mnras_staa1176
crossref_primary_10_1088_1361_6382_aa5e58
crossref_primary_10_1142_S0217732324501232
crossref_primary_10_1088_0264_9381_33_17_175001
crossref_primary_10_3847_1538_4365_ad9deb
crossref_primary_10_3847_1538_4357_ada28c
crossref_primary_10_1016_j_physrep_2017_03_002
crossref_primary_10_1088_1361_6382_aa7649
crossref_primary_10_1088_1475_7516_2018_09_039
crossref_primary_10_3847_1538_4357_ac088d
crossref_primary_10_1016_j_asr_2018_04_013
crossref_primary_10_1007_s41114_018_0012_9
crossref_primary_10_1103_PhysRevX_13_011048
crossref_primary_10_1088_1361_6382_aba221
crossref_primary_10_3847_1538_3881_ace0c1
crossref_primary_10_1103_PhysRevD_110_104037
crossref_primary_10_1088_1361_6382_aa9ad5
crossref_primary_10_1093_mnras_stw2085
crossref_primary_10_1088_1674_1056_ad225d
crossref_primary_10_1088_1674_1137_ad666c
crossref_primary_10_1103_ywkw_13rk
crossref_primary_10_3847_2041_8205_833_1_L1
crossref_primary_10_1103_PhysRevLett_126_171103
crossref_primary_10_3847_2041_8213_add681
crossref_primary_10_1119_10_0003534
crossref_primary_10_1007_s11433_017_9094_8
crossref_primary_10_1103_PhysRevX_9_011001
crossref_primary_10_1103_PhysRevD_103_024043
crossref_primary_10_1007_s10509_021_03980_0
crossref_primary_10_3390_sym15030702
crossref_primary_10_1103_g83n_rrlj
crossref_primary_10_1103_PhysRevD_104_044051
crossref_primary_10_3847_2041_8213_ab960f
crossref_primary_10_1088_1475_7516_2020_10_045
crossref_primary_10_1088_1402_4896_ace00c
crossref_primary_10_3847_1538_4357_aa8408
crossref_primary_10_3390_sym16091140
crossref_primary_10_3847_1538_4357_836_2_220
crossref_primary_10_3847_2041_8213_abe949
crossref_primary_10_1007_JHEP04_2024_015
crossref_primary_10_1007_s10714_018_2455_4
crossref_primary_10_1051_0004_6361_201936204
crossref_primary_10_1088_1475_7516_2021_09_029
crossref_primary_10_3847_2041_8205_826_1_L13
crossref_primary_10_1088_1361_6382_ab5f7c
crossref_primary_10_1051_0004_6361_202450531
crossref_primary_10_1088_1475_7516_2024_07_017
crossref_primary_10_1007_s11214_018_0466_9
crossref_primary_10_1103_s3xh_dt13
crossref_primary_10_1140_epjc_s10052_017_5353_0
crossref_primary_10_1088_1475_7516_2018_02_013
crossref_primary_10_1088_1361_6382_aa91b1
crossref_primary_10_1103_PhysRevD_103_124061
crossref_primary_10_3847_1538_4357_ab80c0
crossref_primary_10_1103_3rmv_b2cq
crossref_primary_10_3389_fspas_2020_609460
crossref_primary_10_3847_2041_8213_aaaa64
crossref_primary_10_1103_kw5g_d732
crossref_primary_10_1140_epjp_s13360_022_03208_2
crossref_primary_10_1088_1361_6382_aa552e
crossref_primary_10_1088_1475_7516_2019_04_032
crossref_primary_10_3847_1538_4357_aba518
crossref_primary_10_1002_asna_20240145
crossref_primary_10_1134_S0202289323040060
crossref_primary_10_1093_mnras_staa443
crossref_primary_10_1093_mnras_stac3029
crossref_primary_10_1088_1361_6382_aa82d9
crossref_primary_10_1142_S0217732325500580
crossref_primary_10_1088_1361_6382_ab49b6
crossref_primary_10_1038_s41550_018_0416_1
crossref_primary_10_3897_rio_6_e54106
crossref_primary_10_3847_1538_4365_aba2f3
crossref_primary_10_1142_S0218271825440080
crossref_primary_10_1007_s11433_018_9321_7
crossref_primary_10_3847_2041_8213_aa9478
crossref_primary_10_1140_epjc_s10052_023_11660_2
crossref_primary_10_1007_s11433_016_0268_1
crossref_primary_10_3390_universe9040190
crossref_primary_10_3389_fdata_2022_787421
crossref_primary_10_1088_1361_6382_aa6854
crossref_primary_10_1088_1475_7516_2022_11_006
crossref_primary_10_1103_PhysRevD_104_044003
crossref_primary_10_1119_1_5020984
crossref_primary_10_1017_S1743921318007469
crossref_primary_10_1088_1361_6382_ac7e16
crossref_primary_10_1103_PhysRevX_13_041048
crossref_primary_10_1007_s10714_019_2510_9
crossref_primary_10_3847_2041_8213_aa7045
crossref_primary_10_1088_1361_6633_aadb16
crossref_primary_10_1088_1361_6382_ab685e
crossref_primary_10_3390_universe7030053
crossref_primary_10_3847_1538_3881_ab05e0
crossref_primary_10_1103_PhysRevD_106_043504
crossref_primary_10_1103_PhysRevD_103_083001
crossref_primary_10_1140_epjc_s10052_025_14032_0
crossref_primary_10_1007_s41114_017_0004_1
crossref_primary_10_1093_mnras_stab2236
crossref_primary_10_1016_j_physletb_2020_135538
crossref_primary_10_1103_PhysRevD_104_124039
crossref_primary_10_1140_epjc_s10052_023_11496_w
crossref_primary_10_1103_PhysRevD_106_063522
crossref_primary_10_3847_1538_4357_ac23c6
crossref_primary_10_1002_andp_201600209
crossref_primary_10_1088_1361_6382_aa7929
crossref_primary_10_1093_ptep_ptab007
crossref_primary_10_1016_j_dark_2024_101495
crossref_primary_10_1140_epjc_s10052_020_7881_2
crossref_primary_10_1088_1674_1137_ad137f
crossref_primary_10_1103_PhysRevD_103_044013
crossref_primary_10_1088_1361_6382_ab3d48
crossref_primary_10_1088_1361_6382_adf685
crossref_primary_10_3847_2041_8213_aa965d
crossref_primary_10_3390_sym15020505
crossref_primary_10_1088_1361_6382_ab3583
crossref_primary_10_1140_epjp_i2019_12932_3
crossref_primary_10_1103_PhysRevD_107_024046
crossref_primary_10_1038_ncomms14906
crossref_primary_10_1088_1475_7516_2021_08_045
crossref_primary_10_1093_mnras_stx348
crossref_primary_10_3390_universe9030135
crossref_primary_10_3847_2041_8213_aa8224
crossref_primary_10_1103_PhysRevX_6_031018
crossref_primary_10_3847_1538_4365_ac157b
crossref_primary_10_3847_1538_4357_ab16e7
crossref_primary_10_1088_2632_2153_ad1200
crossref_primary_10_1140_epjc_s10052_019_6836_y
crossref_primary_10_1007_s10714_023_03082_y
crossref_primary_10_1140_epjp_s13360_020_00911_w
crossref_primary_10_1088_1361_6382_aa51fa
crossref_primary_10_1051_0004_6361_201833025
crossref_primary_10_1088_1361_6382_adfe50
crossref_primary_10_3847_1538_4357_ab9809
crossref_primary_10_3390_galaxies12060080
crossref_primary_10_1093_mnras_stad2838
crossref_primary_10_1088_1361_6382_ab368c
crossref_primary_10_3389_fspas_2020_573060
crossref_primary_10_3389_fphy_2025_1561873
crossref_primary_10_1103_PhysRevResearch_2_023151
crossref_primary_10_3847_1538_4357_ab0b3e
crossref_primary_10_3847_1538_4357_aae378
crossref_primary_10_1088_1361_6382_aa96c5
crossref_primary_10_3847_2041_8205_832_2_L21
crossref_primary_10_1007_s10714_017_2312_x
crossref_primary_10_1016_j_asr_2021_07_040
crossref_primary_10_1103_PhysRevD_108_064018
crossref_primary_10_3367_UFNe_2016_11_038176
crossref_primary_10_3938_jkps_69_884
crossref_primary_10_1103_PhysRevD_103_044006
crossref_primary_10_3938_jkps_72_1
crossref_primary_10_1088_1475_7516_2022_01_004
crossref_primary_10_3847_1538_4365_adcf96
crossref_primary_10_1038_s41550_019_0863_3
crossref_primary_10_1103_PhysRevD_105_084021
crossref_primary_10_1103_PhysRevLett_134_161401
crossref_primary_10_1088_1475_7516_2025_01_091
crossref_primary_10_1038_s41550_024_02338_0
crossref_primary_10_1088_0264_9381_33_20_204001
crossref_primary_10_3390_sym11020220
crossref_primary_10_1016_j_shpsb_2020_01_001
crossref_primary_10_1088_1475_7516_2018_03_007
crossref_primary_10_1140_epjc_s10052_021_09959_z
crossref_primary_10_1088_1674_1137_ad50ba
crossref_primary_10_1103_PhysRevD_108_104005
crossref_primary_10_1088_1475_7516_2017_02_039
crossref_primary_10_1140_epjc_s10052_020_8009_4
crossref_primary_10_3847_2041_8205_832_1_L2
crossref_primary_10_1103_h7ld_vv9p
crossref_primary_10_1007_s11433_024_2594_5
crossref_primary_10_1007_s00601_023_01799_9
crossref_primary_10_1093_mnras_staa038
crossref_primary_10_1088_1361_6382_aa5cea
crossref_primary_10_1093_mnras_stw2450
crossref_primary_10_1103_PhysRevD_111_024019
crossref_primary_10_1140_epjc_s10052_025_14510_5
crossref_primary_10_1038_s41598_021_98821_z
crossref_primary_10_1093_mnras_stz675
crossref_primary_10_1093_mnras_staa2850
crossref_primary_10_1103_PhysRevD_111_083013
crossref_primary_10_1103_PhysRevD_107_043010
crossref_primary_10_1103_PhysRevD_107_104056
crossref_primary_10_1103_PhysRevD_111_L061305
crossref_primary_10_3847_1538_4357_ad3a66
crossref_primary_10_1140_epjc_s10052_025_14303_w
crossref_primary_10_1088_1475_7516_2024_04_001
crossref_primary_10_3390_sym16030343
crossref_primary_10_3847_2041_8213_ab75f5
crossref_primary_10_1016_j_physletb_2018_08_009
crossref_primary_10_3847_2041_8213_ad3e82
crossref_primary_10_3847_1538_4357_aa95b9
crossref_primary_10_1088_1361_6382_aaa4e2
crossref_primary_10_1093_mnras_stac3402
crossref_primary_10_3390_universe10120438
crossref_primary_10_1093_mnras_stz3161
crossref_primary_10_1007_s10509_024_04276_9
crossref_primary_10_1088_1674_1137_acc570
crossref_primary_10_1093_mnras_stad1676
crossref_primary_10_1103_PhysRevX_13_041039
crossref_primary_10_3390_universe8010012
crossref_primary_10_1093_mnras_stw2669
crossref_primary_10_3847_0067_0049_227_2_14
crossref_primary_10_1140_epjc_s10052_024_12679_9
crossref_primary_10_1038_s41550_017_0311_1
crossref_primary_10_3847_1538_4357_aa63ef
crossref_primary_10_3390_universe8120626
crossref_primary_10_3847_1538_4357_aae7c9
crossref_primary_10_1051_0004_6361_202245650
crossref_primary_10_3847_2041_8205_829_2_L28
crossref_primary_10_1038_nature23453
crossref_primary_10_3847_1538_4357_abfc45
crossref_primary_10_1016_j_cjph_2025_05_011
crossref_primary_10_1088_1361_6382_abe9f3
crossref_primary_10_3847_1538_4357_aae8df
crossref_primary_10_1088_1475_7516_2022_10_060
crossref_primary_10_1093_mnras_stab666
crossref_primary_10_1038_s41567_019_0611_8
crossref_primary_10_1088_1361_6382_aad389
crossref_primary_10_1093_mnras_stab2623
crossref_primary_10_1103_PhysRevD_103_124023
crossref_primary_10_1146_annurev_astro_052920_100646
crossref_primary_10_1088_1674_1137_ace522
crossref_primary_10_1103_PhysRevD_104_084046
crossref_primary_10_1007_s41114_022_00037_8
crossref_primary_10_1088_1361_6382_aa8b52
crossref_primary_10_1093_mnras_stad633
crossref_primary_10_1093_mnras_stw2883
crossref_primary_10_1016_j_physrep_2019_01_002
crossref_primary_10_1093_ptep_ptw126
crossref_primary_10_3847_1538_4357_ad9901
crossref_primary_10_1016_j_nuclphysb_2025_117077
crossref_primary_10_1088_1475_7516_2024_05_027
crossref_primary_10_1088_1475_7516_2024_12_021
crossref_primary_10_1088_1361_6382_aaa3a8
crossref_primary_10_1088_1475_7516_2024_07_071
crossref_primary_10_1093_mnras_staf1170
crossref_primary_10_3847_1538_3881_ace25f
crossref_primary_10_3847_2041_8213_ab3f33
crossref_primary_10_1103_PhysRevX_11_021053
crossref_primary_10_1088_1361_6382_aaf76d
crossref_primary_10_3847_2041_8213_ab50c0
crossref_primary_10_1093_mnras_stw1684
crossref_primary_10_1103_PhysRevD_103_042004
crossref_primary_10_1038_s41550_025_02632_5
crossref_primary_10_1093_mnras_staa598
crossref_primary_10_1088_1475_7516_2023_03_005
crossref_primary_10_1088_1572_9494_ad89b2
crossref_primary_10_1073_pnas_1611117113
crossref_primary_10_1088_1361_6382_ab0587
crossref_primary_10_1093_mnras_stad1107
crossref_primary_10_1140_epjc_s10052_021_09488_9
crossref_primary_10_3389_fspas_2018_00044
crossref_primary_10_1093_mnras_stx2577
Cites_doi 10.1088/0264-9381/13/4/002
10.1126/science.1233232
10.1103/PhysRevD.93.044006
10.1103/PhysRevD.49.2658
10.1103/PhysRevD.85.104045
10.1093/mnrasl/slv082
10.1103/PhysRevD.87.024035
10.1088/2041-8205/789/1/L5
10.1103/PhysRevLett.98.231101
10.1103/PhysRevLett.34.905
10.1002/j.1538-7305.1948.tb01338.x
10.1103/PhysRevD.87.104028
10.1103/PhysRevD.84.084037
10.1086/158109
10.1038/323310a0
10.1088/0004-637X/779/2/151
10.1103/PhysRevD.80.124026
10.1086/309400
10.1088/0264-9381/31/2/025012
10.1103/PhysRevD.89.084006
10.12942/lrr-2014-2
10.1103/PhysRevLett.106.241101
10.1103/PhysRevD.89.042004
10.1088/0004-637X/725/1/496
10.1103/PhysRev.131.435
10.1017/CBO9780511790904
10.1103/PhysRevD.78.044021
10.1103/PhysRevLett.32.324
10.1088/0264-9381/29/12/124001
10.1103/PhysRevD.70.124020
10.1103/PhysRevD.86.104063
10.1103/PhysRevD.89.061502
10.1103/PhysRevLett.26.331
10.1103/PhysRevD.77.024014
10.1103/PhysRevD.77.104017
10.1103/PhysRevD.92.064016
10.12942/lrr-2002-3
10.1103/PhysRevD.78.044046
10.5479/sil.52126.39088015628399
10.1103/PhysRevD.81.062003
10.3847/2041-8205/818/2/L22
10.1088/1367-2630/11/12/123006
10.1017/CBO9781139193344
10.1086/431341
10.12942/lrr-2012-6
10.1088/0264-9381/32/13/135012
10.1088/0264-9381/31/20/205006
10.1002/j.1538-7305.1948.tb00917.x
10.1103/PhysRevLett.113.151101
10.1088/0264-9381/28/11/114009
10.1103/PhysRevD.17.379
10.1088/0264-9381/25/18/184011
10.1103/PhysRevD.79.081503
10.1103/PhysRevD.74.041501
10.1103/PhysRevD.87.044038
10.1103/PhysRevD.59.084006
10.1103/PhysRevLett.95.121101
10.1103/PhysRevD.93.064041
10.1103/PhysRev.164.1776
10.1007/s11214-013-0030-6
10.1103/PhysRevLett.111.241104
10.1103/PhysRevLett.115.141102
10.1103/PhysRevLett.107.231102
10.1086/588096
10.1103/PhysRevD.93.044031
10.1103/PhysRev.136.B1224
10.1103/PhysRevD.91.042003
10.1103/PhysRevD.49.6274
10.1088/0264-9381/32/10/105009
10.1103/PhysRevD.78.024009
10.1103/PhysRevD.90.104004
10.1088/0004-637X/804/2/114
10.1088/0004-637X/795/2/105
10.1086/523755
10.1088/0264-9381/32/7/074001
10.1088/0264-9381/23/15/009
10.1088/0264-9381/31/19/195010
10.1086/595279
10.1103/PhysRevD.88.062001
10.1103/PhysRevLett.112.251101
10.1103/PhysRevD.77.024027
10.1103/PhysRevLett.116.061102
10.1103/PhysRevD.52.821
10.1103/PhysRevLett.115.031102
10.1103/PhysRevD.54.2438
10.1086/310296
10.1142/S0218271814300225
10.1086/516712
10.1103/PhysRevD.82.064016
10.1103/PhysRevD.91.024043
10.1103/PhysRevLett.96.111102
10.1103/PhysRevD.81.084024
10.1103/PhysRevD.88.064007
10.1103/PhysRevD.93.044046
10.1098/rstl.1763.0053
10.1214/06-BA127
10.1007/BF00759095
10.1103/PhysRevD.93.084042
10.1103/PhysRevD.90.024018
10.1103/PhysRevD.52.848
10.1103/PhysRevD.47.2198
10.1103/PhysRevLett.96.111101
10.1088/0264-9381/30/19/199401
10.1088/0264-9381/24/19/S31
10.1088/0264-9381/29/12/124002
10.1017/CBO9780511790423
10.1103/PhysRevD.64.124013
10.1088/0264-9381/20/20/201
10.1007/lrr-2016-1
10.1103/PhysRevD.85.064034
10.1103/PhysRevD.93.044007
10.1103/PhysRevLett.98.231102
10.1103/PhysRevD.62.064015
10.1086/152255
10.1086/152444
10.1103/PhysRev.128.2471
10.1103/PhysRevD.40.3194
10.1111/j.1745-3933.2010.00811.x
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
CorporateAuthor LIGO Scientific Collaboration and Virgo Collaboration
CorporateAuthor_xml – name: LIGO Scientific Collaboration and Virgo Collaboration
DBID CYE
CYI
AAYXX
CITATION
NPM
7X8
7U5
8FD
H8D
L7M
1XC
VOOES
JLOSS
Q33
DOI 10.1103/PhysRevLett.116.241102
DatabaseName NASA Scientific and Technical Information
NASA Technical Reports Server
CrossRef
PubMed
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Université de Liège - Open Repository and Bibliography (ORBI) (Open Access titles only)
Université de Liège - Open Repository and Bibliography (ORBI)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef

PubMed

MEDLINE - Academic
Aerospace Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
ExternalDocumentID oai_orbi_ulg_ac_be_2268_251705
oai:HAL:in2p3-01274010v1
27367378
10_1103_PhysRevLett_116_241102
20170003558
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
2-P
29O
3MX
5VS
85S
ABSSX
ABUFD
ACBEA
ACGFO
ACNCT
AECSF
AENEX
AEQTI
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CS3
CYE
CYI
D0L
DU5
EBS
EJD
ER.
F5P
MVM
N9A
NPBMV
P2P
ROL
S7W
SJN
TN5
UBE
WH7
XSW
YNT
ZPR
~02
186
3O-
41~
6TJ
8NH
8WZ
9M8
A6W
AAYJJ
AAYXX
ACKIV
ADXHL
AETEA
CITATION
H~9
NEJ
NHB
OHT
OK1
P0-
RNS
T9H
UBC
VOH
XOL
YYP
ZCG
ZY4
NPM
UCJ
VQA
7X8
7U5
8FD
H8D
L7M
1XC
VOOES
XJT
JLOSS
Q33
ID FETCH-LOGICAL-c493t-eb039e890d65a6c3385bf4b0ad0f9a6839873dd691a878d8e4c7465b61a4b15d3
IEDL.DBID 3MX
ISICitedReferencesCount 695
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000377812700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-9007
1079-7114
IngestDate Sat Nov 29 01:26:14 EST 2025
Tue Oct 14 20:50:48 EDT 2025
Fri Jul 11 11:02:06 EDT 2025
Fri Jul 11 08:41:57 EDT 2025
Thu Jan 02 23:09:03 EST 2025
Tue Nov 18 20:56:52 EST 2025
Sat Nov 29 01:46:19 EST 2025
Fri Nov 21 15:48:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License http://creativecommons.org/licenses/by/3.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c493t-eb039e890d65a6c3385bf4b0ad0f9a6839873dd691a878d8e4c7465b61a4b15d3
Notes ISSN: 0031-9007
Report Number: GSFC-E-DAA-TN41674
GSFC-E-DAA-TN41674
E-ISSN: 1079-7114
GSFC
Report Number: GSFC-E-DAA-TN41647
Goddard Space Flight Center
GSFC-E-DAA-TN41647
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
scopus-id:2-s2.0-84975451312
ORCID 0000-0001-6589-8673
0000-0002-1890-1128
0000-0001-6487-5197
0000-0002-0631-1198
0000-0003-4344-7227
0000-0003-2507-3866
0000-0002-3658-7240
0000-0002-4618-1674
0000-0001-9870-6850
0000-0001-9157-4349
0000-0002-1019-6911
0000-0003-0589-9687
0000-0002-4390-9746
0000-0002-4430-3703
OpenAccessLink https://orbi.uliege.be/handle/2268/251705
PMID 27367378
PQID 1801433982
PQPubID 23479
ParticipantIDs liege_orbi_v2_oai_orbi_ulg_ac_be_2268_251705
hal_primary_oai_HAL_in2p3_01274010v1
proquest_miscellaneous_1825559427
proquest_miscellaneous_1801433982
pubmed_primary_27367378
crossref_primary_10_1103_PhysRevLett_116_241102
crossref_citationtrail_10_1103_PhysRevLett_116_241102
nasa_ntrs_20170003558
PublicationCentury 2000
PublicationDate 2016-Jun-17
PublicationDateYYYYMMDD 2016-06-17
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-Jun-17
  day: 17
PublicationDecade 2010
PublicationPlace Goddard Space Flight Center
PublicationPlace_xml – name: Goddard Space Flight Center
– name: United States
PublicationTitle Physical review letters
PublicationTitleAlternate Phys Rev Lett
PublicationYear 2016
Publisher APS Physics
American Physical Society
Publisher_xml – name: APS Physics
– name: American Physical Society
References PhysRevLett.116.241102Cc114R1
PhysRevLett.116.241102Cc118R1
H. Jeffreys (PhysRevLett.116.241102Cc89R1) 1961
PhysRevLett.116.241102Cc87R1
PhysRevLett.116.241102Cc22R1
PhysRevLett.116.241102Cc64R1
PhysRevLett.116.241102Cc83R1
PhysRevLett.116.241102Cc60R1
PhysRevLett.116.241102Cc2R1
PhysRevLett.116.241102Cc38R1
PhysRevLett.116.241102Cc19R1
PhysRevLett.116.241102Cc34R1
PhysRevLett.116.241102Cc15R1
PhysRevLett.116.241102Cc57R1
I. Newton (PhysRevLett.116.241102Cc10R1) 1687
PhysRevLett.116.241102Cc110R1
PhysRevLett.116.241102Cc90R2
PhysRevLett.116.241102Cc122R1
PhysRevLett.116.241102Cc90R1
PhysRevLett.116.241102Cc126R1
PhysRevLett.116.241102Cc107R1
PhysRevLett.116.241102Cc52R2
A. Einstein (PhysRevLett.116.241102Cc7R1) 1916; 1
PhysRevLett.116.241102Cc52R1
PhysRevLett.116.241102Cc98R1
PhysRevLett.116.241102Cc33R1
PhysRevLett.116.241102Cc75R1
PhysRevLett.116.241102Cc94R1
PhysRevLett.116.241102Cc71R1
PhysRevLett.116.241102Cc45R1
PhysRevLett.116.241102Cc68R1
PhysRevLett.116.241102Cc103R1
PhysRevLett.116.241102Cc111R1
PhysRevLett.116.241102Cc134R1
PhysRevLett.116.241102Cc115R1
PhysRevLett.116.241102Cc119R1
PhysRevLett.116.241102Cc21R1
PhysRevLett.116.241102Cc44R1
PhysRevLett.116.241102Cc63R1
PhysRevLett.116.241102Cc86R1
PhysRevLett.116.241102Cc40R1
PhysRevLett.116.241102Cc82R1
PhysRevLett.116.241102Cc1R1
PhysRevLett.116.241102Cc18R1
PhysRevLett.116.241102Cc5R1
PhysRevLett.116.241102Cc14R1
PhysRevLett.116.241102Cc37R1
PhysRevLett.116.241102Cc56R1
PhysRevLett.116.241102Cc79R1
PhysRevLett.116.241102Cc130R1
PhysRevLett.116.241102Cc123R1
PhysRevLett.116.241102Cc127R1
PhysRevLett.116.241102Cc108R1
PhysRevLett.116.241102Cc55R1
PhysRevLett.116.241102Cc74R1
PhysRevLett.116.241102Cc97R1
PhysRevLett.116.241102Cc32R1
PhysRevLett.116.241102Cc51R1
PhysRevLett.116.241102Cc70R1
PhysRevLett.116.241102Cc93R1
PhysRevLett.116.241102Cc29R1
PhysRevLett.116.241102Cc25R1
PhysRevLett.116.241102Cc67R1
PhysRevLett.116.241102Cc104R1
S. Chandrasekhar (PhysRevLett.116.241102Cc16R1) 1992
PhysRevLett.116.241102Cc100R1
PhysRevLett.116.241102Cc135R1
PhysRevLett.116.241102Cc116R1
PhysRevLett.116.241102Cc20R1
PhysRevLett.116.241102Cc66R1
PhysRevLett.116.241102Cc43R1
PhysRevLett.116.241102Cc85R1
PhysRevLett.116.241102Cc62R1
PhysRevLett.116.241102Cc81R1
PhysRevLett.116.241102Cc17R1
PhysRevLett.116.241102Cc4R1
PhysRevLett.116.241102Cc13R1
PhysRevLett.116.241102Cc59R1
PhysRevLett.116.241102Cc78R1
PhysRevLett.116.241102Cc36R1
PhysRevLett.116.241102Cc131R1
PhysRevLett.116.241102Cc124R1
PhysRevLett.116.241102Cc128R1
PhysRevLett.116.241102Cc31R1
PhysRevLett.116.241102Cc54R1
M. P. Hobson (PhysRevLett.116.241102Cc106R1) 2006
PhysRevLett.116.241102Cc77R1
PhysRevLett.116.241102Cc109R1
T. W. Baumgarte (PhysRevLett.116.241102Cc50R1) 2010
PhysRevLett.116.241102Cc73R1
PhysRevLett.116.241102Cc92R1
PhysRevLett.116.241102Cc28R1
PhysRevLett.116.241102Cc24R1
K. S. Thorne (PhysRevLett.116.241102Cc26R1) 1987
PhysRevLett.116.241102Cc101R1
PhysRevLett.116.241102Cc120R1
PhysRevLett.116.241102Cc80R1
PhysRevLett.116.241102Cc117R1
PhysRevLett.116.241102Cc42R1
PhysRevLett.116.241102Cc65R1
PhysRevLett.116.241102Cc88R1
PhysRevLett.116.241102Cc61R1
PhysRevLett.116.241102Cc39R1
PhysRevLett.116.241102Cc12R1
PhysRevLett.116.241102Cc35R1
PhysRevLett.116.241102Cc58R1
PhysRevLett.116.241102Cc132R1
PhysRevLett.116.241102Cc91R1
PhysRevLett.116.241102Cc125R1
PhysRevLett.116.241102Cc76R1
PhysRevLett.116.241102Cc99R1
PhysRevLett.116.241102Cc30R1
PhysRevLett.116.241102Cc11R1
PhysRevLett.116.241102Cc53R1
PhysRevLett.116.241102Cc72R1
PhysRevLett.116.241102Cc95R1
PhysRevLett.116.241102Cc27R1
PhysRevLett.116.241102Cc27R2
PhysRevLett.116.241102Cc23R1
PhysRevLett.116.241102Cc69R1
E. T. Jaynes (PhysRevLett.116.241102Cc41R1) 2003
A. Einstein (PhysRevLett.116.241102Cc8R1) 1918; 1
PhysRevLett.116.241102Cc121R1
References_xml – ident: PhysRevLett.116.241102Cc28R1
  doi: 10.1088/0264-9381/13/4/002
– ident: PhysRevLett.116.241102Cc91R1
  doi: 10.1126/science.1233232
– ident: PhysRevLett.116.241102Cc57R1
  doi: 10.1103/PhysRevD.93.044006
– ident: PhysRevLett.116.241102Cc20R1
  doi: 10.1103/PhysRevD.49.2658
– ident: PhysRevLett.116.241102Cc23R1
  doi: 10.1103/PhysRevD.85.104045
– ident: PhysRevLett.116.241102Cc127R1
  doi: 10.1093/mnrasl/slv082
– ident: PhysRevLett.116.241102Cc29R1
  doi: 10.1103/PhysRevD.87.024035
– ident: PhysRevLett.116.241102Cc109R1
  doi: 10.1088/2041-8205/789/1/L5
– ident: PhysRevLett.116.241102Cc119R1
  doi: 10.1103/PhysRevLett.98.231101
– ident: PhysRevLett.116.241102Cc15R1
  doi: 10.1103/PhysRevLett.34.905
– ident: PhysRevLett.116.241102Cc90R1
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– ident: PhysRevLett.116.241102Cc115R1
  doi: 10.1103/PhysRevD.87.104028
– ident: PhysRevLett.116.241102Cc64R1
  doi: 10.1103/PhysRevD.84.084037
– ident: PhysRevLett.116.241102Cc12R1
  doi: 10.1086/158109
– ident: PhysRevLett.116.241102Cc98R1
  doi: 10.1038/323310a0
– ident: PhysRevLett.116.241102Cc107R1
  doi: 10.1088/0004-637X/779/2/151
– ident: PhysRevLett.116.241102Cc104R1
  doi: 10.1103/PhysRevD.80.124026
– ident: PhysRevLett.116.241102Cc114R1
  doi: 10.1086/309400
– ident: PhysRevLett.116.241102Cc51R1
  doi: 10.1088/0264-9381/31/2/025012
– ident: PhysRevLett.116.241102Cc55R1
  doi: 10.1103/PhysRevD.89.084006
– ident: PhysRevLett.116.241102Cc27R1
  doi: 10.12942/lrr-2014-2
– ident: PhysRevLett.116.241102Cc66R1
  doi: 10.1103/PhysRevLett.106.241101
– ident: PhysRevLett.116.241102Cc39R1
  doi: 10.1103/PhysRevD.89.042004
– ident: PhysRevLett.116.241102Cc99R1
  doi: 10.1088/0004-637X/725/1/496
– ident: PhysRevLett.116.241102Cc18R1
  doi: 10.1103/PhysRev.131.435
– volume-title: General Relativity: An Introduction for Physicists
  year: 2006
  ident: PhysRevLett.116.241102Cc106R1
  doi: 10.1017/CBO9780511790904
– ident: PhysRevLett.116.241102Cc65R1
  doi: 10.1103/PhysRevD.78.044021
– ident: PhysRevLett.116.241102Cc92R1
  doi: 10.1103/PhysRevLett.32.324
– ident: PhysRevLett.116.241102Cc52R1
  doi: 10.1088/0264-9381/29/12/124001
– ident: PhysRevLett.116.241102Cc85R1
  doi: 10.1103/PhysRevD.70.124020
– ident: PhysRevLett.116.241102Cc82R1
  doi: 10.1103/PhysRevD.86.104063
– ident: PhysRevLett.116.241102Cc54R1
  doi: 10.1103/PhysRevD.89.061502
– ident: PhysRevLett.116.241102Cc14R1
  doi: 10.1103/PhysRevLett.26.331
– ident: PhysRevLett.116.241102Cc80R1
  doi: 10.1103/PhysRevD.77.024014
– ident: PhysRevLett.116.241102Cc79R1
  doi: 10.1103/PhysRevD.77.104017
– ident: PhysRevLett.116.241102Cc69R1
  doi: 10.1103/PhysRevD.92.064016
– ident: PhysRevLett.116.241102Cc27R2
  doi: 10.12942/lrr-2002-3
– ident: PhysRevLett.116.241102Cc103R1
  doi: 10.1103/PhysRevD.78.044046
– volume-title: Philosophiae Naturalis Principia Mathematica
  year: 1687
  ident: PhysRevLett.116.241102Cc10R1
  doi: 10.5479/sil.52126.39088015628399
– ident: PhysRevLett.116.241102Cc5R1
  doi: 10.1103/PhysRevD.81.062003
– ident: PhysRevLett.116.241102Cc97R1
  doi: 10.3847/2041-8205/818/2/L22
– ident: PhysRevLett.116.241102Cc38R1
  doi: 10.1088/1367-2630/11/12/123006
– volume-title: Numerical Relativity
  year: 2010
  ident: PhysRevLett.116.241102Cc50R1
  doi: 10.1017/CBO9781139193344
– ident: PhysRevLett.116.241102Cc37R1
  doi: 10.1086/431341
– volume-title: Oxford Classic Texts in the Physical Sciences
  year: 1992
  ident: PhysRevLett.116.241102Cc16R1
– volume-title: Three Hundred Years of Gravitation
  year: 1987
  ident: PhysRevLett.116.241102Cc26R1
– ident: PhysRevLett.116.241102Cc95R1
  doi: 10.12942/lrr-2012-6
– ident: PhysRevLett.116.241102Cc122R1
  doi: 10.1088/0264-9381/32/13/135012
– ident: PhysRevLett.116.241102Cc88R1
  doi: 10.1088/0264-9381/31/20/205006
– ident: PhysRevLett.116.241102Cc90R2
  doi: 10.1002/j.1538-7305.1948.tb00917.x
– ident: PhysRevLett.116.241102Cc83R1
  doi: 10.1103/PhysRevLett.113.151101
– ident: PhysRevLett.116.241102Cc128R1
  doi: 10.1088/0264-9381/28/11/114009
– ident: PhysRevLett.116.241102Cc25R1
  doi: 10.1103/PhysRevD.17.379
– ident: PhysRevLett.116.241102Cc44R1
  doi: 10.1088/0264-9381/25/18/184011
– ident: PhysRevLett.116.241102Cc74R1
  doi: 10.1103/PhysRevD.79.081503
– ident: PhysRevLett.116.241102Cc60R1
  doi: 10.1103/PhysRevD.74.041501
– ident: PhysRevLett.116.241102Cc131R1
  doi: 10.1103/PhysRevD.87.044038
– ident: PhysRevLett.116.241102Cc71R1
  doi: 10.1103/PhysRevD.59.084006
– volume: 1
  start-page: 154
  issn: 1550-7998
  year: 1918
  ident: PhysRevLett.116.241102Cc8R1
  publication-title: Sitzungsber. K. Preuss. Akad. Wiss
– ident: PhysRevLett.116.241102Cc32R1
  doi: 10.1103/PhysRevLett.95.121101
– ident: PhysRevLett.116.241102Cc78R1
  doi: 10.1103/PhysRevD.93.064041
– ident: PhysRevLett.116.241102Cc13R1
  doi: 10.1103/PhysRev.164.1776
– ident: PhysRevLett.116.241102Cc123R1
  doi: 10.1007/s11214-013-0030-6
– ident: PhysRevLett.116.241102Cc76R1
  doi: 10.1103/PhysRevLett.111.241104
– ident: PhysRevLett.116.241102Cc86R1
  doi: 10.1103/PhysRevLett.115.141102
– ident: PhysRevLett.116.241102Cc118R1
  doi: 10.1103/PhysRevLett.107.231102
– ident: PhysRevLett.116.241102Cc125R1
  doi: 10.1086/588096
– ident: PhysRevLett.116.241102Cc134R1
  doi: 10.1103/PhysRevD.93.044031
– ident: PhysRevLett.116.241102Cc17R1
  doi: 10.1103/PhysRev.136.B1224
– ident: PhysRevLett.116.241102Cc42R1
  doi: 10.1103/PhysRevD.91.042003
– ident: PhysRevLett.116.241102Cc30R1
  doi: 10.1103/PhysRevD.49.6274
– ident: PhysRevLett.116.241102Cc132R1
  doi: 10.1088/0264-9381/32/10/105009
– ident: PhysRevLett.116.241102Cc73R1
  doi: 10.1103/PhysRevD.78.024009
– ident: PhysRevLett.116.241102Cc101R1
  doi: 10.1103/PhysRevD.90.104004
– ident: PhysRevLett.116.241102Cc111R1
  doi: 10.1088/0004-637X/804/2/114
– ident: PhysRevLett.116.241102Cc110R1
  doi: 10.1088/0004-637X/795/2/105
– ident: PhysRevLett.116.241102Cc124R1
  doi: 10.1086/523755
– ident: PhysRevLett.116.241102Cc2R1
  doi: 10.1088/0264-9381/32/7/074001
– ident: PhysRevLett.116.241102Cc43R1
  doi: 10.1088/0264-9381/23/15/009
– ident: PhysRevLett.116.241102Cc77R1
  doi: 10.1088/0264-9381/31/19/195010
– ident: PhysRevLett.116.241102Cc22R1
  doi: 10.1086/595279
– ident: PhysRevLett.116.241102Cc4R1
  doi: 10.1103/PhysRevD.88.062001
– ident: PhysRevLett.116.241102Cc24R1
  doi: 10.1103/PhysRevLett.112.251101
– ident: PhysRevLett.116.241102Cc130R1
  doi: 10.1103/PhysRevD.77.024027
– ident: PhysRevLett.116.241102Cc1R1
  doi: 10.1103/PhysRevLett.116.061102
– ident: PhysRevLett.116.241102Cc31R1
  doi: 10.1103/PhysRevD.52.821
– ident: PhysRevLett.116.241102Cc135R1
  doi: 10.1103/PhysRevLett.115.031102
– ident: PhysRevLett.116.241102Cc68R1
  doi: 10.1103/PhysRevD.54.2438
– ident: PhysRevLett.116.241102Cc93R1
  doi: 10.1086/310296
– ident: PhysRevLett.116.241102Cc56R1
  doi: 10.1142/S0218271814300225
– ident: PhysRevLett.116.241102Cc121R1
  doi: 10.1086/516712
– ident: PhysRevLett.116.241102Cc67R1
  doi: 10.1103/PhysRevD.82.064016
– volume-title: Theory of Probability
  year: 1961
  ident: PhysRevLett.116.241102Cc89R1
– ident: PhysRevLett.116.241102Cc70R1
  doi: 10.1103/PhysRevD.91.024043
– ident: PhysRevLett.116.241102Cc34R1
  doi: 10.1103/PhysRevLett.96.111102
– ident: PhysRevLett.116.241102Cc75R1
  doi: 10.1103/PhysRevD.81.084024
– ident: PhysRevLett.116.241102Cc61R1
  doi: 10.1103/PhysRevD.88.064007
– ident: PhysRevLett.116.241102Cc59R1
  doi: 10.1103/PhysRevD.93.044046
– ident: PhysRevLett.116.241102Cc40R1
  doi: 10.1098/rstl.1763.0053
– ident: PhysRevLett.116.241102Cc45R1
  doi: 10.1214/06-BA127
– ident: PhysRevLett.116.241102Cc36R1
  doi: 10.1007/BF00759095
– ident: PhysRevLett.116.241102Cc62R1
  doi: 10.1103/PhysRevD.93.084042
– ident: PhysRevLett.116.241102Cc100R1
  doi: 10.1103/PhysRevD.90.024018
– ident: PhysRevLett.116.241102Cc21R1
  doi: 10.1103/PhysRevD.52.848
– ident: PhysRevLett.116.241102Cc19R1
  doi: 10.1103/PhysRevD.47.2198
– ident: PhysRevLett.116.241102Cc33R1
  doi: 10.1103/PhysRevLett.96.111101
– ident: PhysRevLett.116.241102Cc52R2
  doi: 10.1088/0264-9381/30/19/199401
– ident: PhysRevLett.116.241102Cc81R1
  doi: 10.1088/0264-9381/24/19/S31
– ident: PhysRevLett.116.241102Cc53R1
  doi: 10.1088/0264-9381/29/12/124002
– volume-title: Probability Theory: The Logic of Science
  year: 2003
  ident: PhysRevLett.116.241102Cc41R1
  doi: 10.1017/CBO9780511790423
– ident: PhysRevLett.116.241102Cc63R1
  doi: 10.1103/PhysRevD.64.124013
– ident: PhysRevLett.116.241102Cc94R1
  doi: 10.1088/0264-9381/20/20/201
– ident: PhysRevLett.116.241102Cc108R1
  doi: 10.1007/lrr-2016-1
– ident: PhysRevLett.116.241102Cc87R1
  doi: 10.1103/PhysRevD.85.064034
– ident: PhysRevLett.116.241102Cc58R1
  doi: 10.1103/PhysRevD.93.044007
– ident: PhysRevLett.116.241102Cc120R1
  doi: 10.1103/PhysRevLett.98.231102
– ident: PhysRevLett.116.241102Cc72R1
  doi: 10.1103/PhysRevD.62.064015
– ident: PhysRevLett.116.241102Cc117R1
  doi: 10.1086/152255
– ident: PhysRevLett.116.241102Cc11R1
  doi: 10.1086/152444
– ident: PhysRevLett.116.241102Cc116R1
  doi: 10.1103/PhysRev.128.2471
– ident: PhysRevLett.116.241102Cc35R1
  doi: 10.1103/PhysRevD.40.3194
– ident: PhysRevLett.116.241102Cc126R1
  doi: 10.1111/j.1745-3933.2010.00811.x
– volume: 1
  start-page: 688
  issn: 1550-7998
  year: 1916
  ident: PhysRevLett.116.241102Cc7R1
  publication-title: Sitzungsber. K. Preuss. Akad. Wiss.
SSID ssj0001268
Score 2.688961
Snippet On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted) On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected...
On September 14, 2015, the Laser Interferometer Gravitational-wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterise the...
SourceID liege
hal
proquest
pubmed
crossref
nasa
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 241102
SubjectTerms Astrophysics
Cosmology
Engineering, computing & technology
General Relativity and Quantum Cosmology
Gravitational waves
High Energy Astrophysical Phenomena
Ingénierie mécanique
Ingénierie, informatique & technologie
Interferometers
Lasers
Mathematical models
Mechanical engineering
Physics
Texts
Waveforms
Title Properties of the Binary Black Hole Merger GW150914
URI https://ntrs.nasa.gov/citations/20170003558
https://www.ncbi.nlm.nih.gov/pubmed/27367378
https://www.proquest.com/docview/1801433982
https://www.proquest.com/docview/1825559427
https://in2p3.hal.science/in2p3-01274010
https://orbi.uliege.be/handle/2268/251705
Volume 116
WOSCitedRecordID wos000377812700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABR
  databaseName: American Physical Society Journals
  customDbUrl:
  eissn: 1079-7114
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001268
  issn: 1079-7114
  databaseCode: 3MX
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://journals.aps.org/
  providerName: American Physical Society
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbKS-LCs0B4KUg9EmrH72NBlD20VYV47M2yYwdWWiVVsru_nxlnuwKJgnqJosiORjO2Z8Yz8w0hB74O1ivNKt5GWYnIaeUtZ1UINqU6Rl7nHkvfTvTZmZnP7fkeoX-P4DPKDzET8nPaYHULfFDvQOWwCT3SCGxZwE_nu6OX1Wo6ejnmHVC9LQm--jd_aKMbPzEX8tYSo9VwQnd-9FfbnVn_HN-_PuUPyL2trVkeTYvjIdlL3SNyJ-d8NuNjws_xIn5ARNWyb0uwBMv3uTq3zLd65axfpvIUqzOH8tN3hjpf7JOvxx-_fJhV2x4KVSMsX1UpUG6TsTQq6VUDDqkMrQjUR9qCkMA8MprHqCzzRptokmi0UDIo5kVgMvInwIi-S89IqbEduUgsJm5FkI2Nkjc-0IBWjxFtQeQlL12zBRjHPhdLlx0Nyt1vDIEPyk0MKcjhbt7FBLHx3xkHIKrdYETInh2duEVXX3CHsXRwGumGFeRtlqXrh7BwmzoPzO_r5Q_nGxeSA-vTOIRto7Ig-yhyB0SPrkZcIQyzSlOQN5drwMHew4CK71K_Hh1D6B0OLKz_NQacNmlFrQvydFpAO8LBdMQ2Qeb5tTnwgtwFChXmrDH9ktxcDev0itxuNqvFOLzOmwKeem5-AZDaA0Q
linkProvider American Physical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Properties+of+the+Binary+Black+Hole+Merger+GW150914&rft.jtitle=Physical+review+letters&rft.au=Abbott%2C+B.%E2%80%89P.&rft.au=Abbott%2C+R.&rft.au=Abbott%2C+T.%E2%80%89D.&rft.au=Abernathy%2C+M.%E2%80%89R.&rft.date=2016-06-17&rft.issn=0031-9007&rft.eissn=1079-7114&rft.volume=116&rft.issue=24&rft_id=info:doi/10.1103%2FPhysRevLett.116.241102&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_PhysRevLett_116_241102
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon