Properties of the Binary Black Hole Merger GW150914
On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a su...
Uložené v:
| Vydané v: | Physical review letters Ročník 116; číslo 24; s. 241102 |
|---|---|
| Hlavní autori: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Goddard Space Flight Center
APS Physics
17.06.2016
American Physical Society |
| Predmet: | |
| ISSN: | 0031-9007, 1079-7114, 1079-7114 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 36(+5/-4) solar mass and 29(+4/-4) solar mass; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be less than 0.7 (at 90% probability). The luminosity distance to the source is 410(+160/-180) Mpc, corresponding to a redshift 0.09(+0.03/−0.04) assuming standard cosmology. The source location is constrained to an annulus section of 610 sq deg, primarily in the southern hemisphere. The binary merges into a black hole of mass 62(+4/−4) solar mass and spin 0.67(+0.05/−0.07). This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime. |
|---|---|
| AbstractList | On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses
3
6
−
4
+
5
M
⊙
and
2
9
−
4
+
4
M
⊙
; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be
<
0.7
(at 90% probability). The luminosity distance to the source is
41
0
−
180
+
160
Mpc
, corresponding to a redshift
0.0
9
−
0.04
+
0.03
assuming standard cosmology. The source location is constrained to an annulus section of
610
deg
2
, primarily in the southern hemisphere. The binary merges into a black hole of mass
6
2
−
4
+
4
M
⊙
and spin
0.6
7
−
0.07
+
0.05
. This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime. On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 36-4+5M and 29-4+4M; for each parameter we report the median value and the range of the 90 credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be <0.7 (at 90 probability). The luminosity distance to the source is 410-180+160 Mpc, corresponding to a redshift 0.09-0.04+0.03 assuming standard cosmology. The source location is constrained to an annulus section of 610 deg2, primarily in the southern hemisphere. The binary merges into a black hole of mass 62-4+4M and spin 0.67-0.07+0.05. This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime. On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 36_{-4}^{+5}M_{⊙} and 29_{-4}^{+4}M_{⊙}; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be <0.7 (at 90% probability). The luminosity distance to the source is 410_{-180}^{+160} Mpc, corresponding to a redshift 0.09_{-0.04}^{+0.03} assuming standard cosmology. The source location is constrained to an annulus section of 610 deg^{2}, primarily in the southern hemisphere. The binary merges into a black hole of mass 62_{-4}^{+4}M_{⊙} and spin 0.67_{-0.07}^{+0.05}. This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime. On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 36(+5/-4) solar mass and 29(+4/-4) solar mass; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be less than 0.7 (at 90% probability). The luminosity distance to the source is 410(+160/-180) Mpc, corresponding to a redshift 0.09(+0.03/−0.04) assuming standard cosmology. The source location is constrained to an annulus section of 610 sq deg, primarily in the southern hemisphere. The binary merges into a black hole of mass 62(+4/−4) solar mass and spin 0.67(+0.05/−0.07). This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime. On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 36_{-4}^{+5}M_{⊙} and 29_{-4}^{+4}M_{⊙}; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be <0.7 (at 90% probability). The luminosity distance to the source is 410_{-180}^{+160} Mpc, corresponding to a redshift 0.09_{-0.04}^{+0.03} assuming standard cosmology. The source location is constrained to an annulus section of 610 deg^{2}, primarily in the southern hemisphere. The binary merges into a black hole of mass 62_{-4}^{+4}M_{⊙} and spin 0.67_{-0.07}^{+0.05}. This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime.On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 36_{-4}^{+5}M_{⊙} and 29_{-4}^{+4}M_{⊙}; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be <0.7 (at 90% probability). The luminosity distance to the source is 410_{-180}^{+160} Mpc, corresponding to a redshift 0.09_{-0.04}^{+0.03} assuming standard cosmology. The source location is constrained to an annulus section of 610 deg^{2}, primarily in the southern hemisphere. The binary merges into a black hole of mass 62_{-4}^{+4}M_{⊙} and spin 0.67_{-0.07}^{+0.05}. This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime. (ProQuest: ... denotes formulae and/or non-USASCII text omitted) On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses ... and ...; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be <0.7 (at 90% probability). The luminosity distance to the source is ... Mpc, corresponding to a redshift ... assuming standard cosmology. The source location is constrained to an annulus section of 610deg2, primarily in the southern hemisphere. The binary merges into a black hole of mass ... and spin ... This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime. On September 14, 2015, the Laser Interferometer Gravitational-wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterise the properties of the source and its parameters. The data around the time of the event were analysed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of $36^{+5}_{-4} M_\odot$ and $29^{+4}_{-4} M_\odot$ (for each parameter we report the median value and the range of the 90% credible interval). The dimensionless spin magnitude of the more massive black hole is bound to be $0.7$ (at 90% probability). The luminosity distance to the source is $410^{+160}_{-180}$ Mpc, corresponding to a redshift $0.09^{+0.03}_{-0.04}$ assuming standard cosmology. The source location is constrained to an annulus section of $590$ deg$^2$, primarily in the southern hemisphere. The binary merges into a black hole of $62^{+4}_{-4} M_\odot$ and spin $0.67^{+0.05}_{-0.07}$. This black hole is significantly more massive than any other known in the stellar-mass regime. |
| ArticleNumber | 241102 |
| Audience | PUBLIC |
| Author | Acernese, F. Abernathy, M. R. Addesso, P. Abbott, R. Adams, C. Camp, J. B. Abbott, B. P. Abbott, T. D. Adams, T. Ackley, K. |
| Author_xml | – sequence: 1 givenname: B. P. surname: Abbott fullname: Abbott, B. P. organization: California Inst. of Tech – sequence: 2 givenname: R. surname: Abbott fullname: Abbott, R. organization: California Inst. of Tech – sequence: 3 givenname: T. D. surname: Abbott fullname: Abbott, T. D. organization: Louisiana State Univ – sequence: 4 givenname: M. R. surname: Abernathy fullname: Abernathy, M. R. organization: California Inst. of Tech – sequence: 5 givenname: F. surname: Acernese fullname: Acernese, F. organization: Salerno Univ – sequence: 6 givenname: K. surname: Ackley fullname: Ackley, K. organization: Florida Univ – sequence: 7 givenname: C. surname: Adams fullname: Adams, C. organization: LIGO Livingston Observatory – sequence: 8 givenname: T. surname: Adams fullname: Adams, T. organization: Grenoble-1 Univ – sequence: 9 givenname: P. surname: Addesso fullname: Addesso, P. organization: Salerno Univ – sequence: 10 givenname: J. B. surname: Camp fullname: Camp, J. B. organization: NASA Goddard Space Flight Center |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27367378$$D View this record in MEDLINE/PubMed https://in2p3.hal.science/in2p3-01274010$$DView record in HAL |
| BookMark | eNqFkl1rFDEUhoNU7Lb6D6TMpSBTT74T8KYttiusWETxMmRmzuxGZydrMrvQf2_q1CLe9Crh8Dwh5z3nhByNcURCziicUwr83e3mLn_BwwqnqRTUOROlzJ6RBQVta02pOCILAE5rC6CPyUnOPwCAMmVekGOmudJcmwXhtynuME0BcxX7atpgdRlGn-6qy8G3P6tlHLD6hGmNqbr5TiVYKl6S570fMr56OE_Jt-sPX6-W9erzzceri1XdCsunGhvgFo2FTkmvWs6NbHrRgO-gt14Zbo3mXacs9UabzqBotVCyUdSLhsqOnxI-vzsEXKOLqQnuwFz0Yb7vh7XzrWvQsdKWY5JqkMV6O1sbP7hdCtvSzB9nebFyYWQ77koMWgCFAy30m5nepfhrj3ly25BbHAY_YtxnRw2TUlpREnsaBSp46YoV9OwB3Tdb7B6_8Tf3AqgZaFPMOWH_iFBw9wN2_wy4FJSbB1zE9_-JbZj8FOI4JR-Gp_XXsz767F1xsmNQYiubIqXhvwHmjrKZ |
| CitedBy_id | crossref_primary_10_1051_0004_6361_202348161 crossref_primary_10_3390_galaxies9030054 crossref_primary_10_3847_2041_8205_827_2_L34 crossref_primary_10_1016_j_dark_2021_100916 crossref_primary_10_1088_1361_6382_ab2f11 crossref_primary_10_1093_mnras_stw1772 crossref_primary_10_1093_mnras_stw1893 crossref_primary_10_1103_PhysRevX_8_039903 crossref_primary_10_3847_2041_8213_ac00a6 crossref_primary_10_1007_s10714_018_2372_6 crossref_primary_10_1007_s11222_019_09907_8 crossref_primary_10_1109_ACCESS_2018_2867494 crossref_primary_10_1088_1475_7516_2017_04_036 crossref_primary_10_1016_j_dark_2020_100648 crossref_primary_10_1088_1361_6382_abb5c1 crossref_primary_10_3847_1538_4357_ab77bf crossref_primary_10_1093_mnras_stw2993 crossref_primary_10_1088_0264_9381_33_16_165001 crossref_primary_10_3390_e21101017 crossref_primary_10_1088_1475_7516_2016_10_001 crossref_primary_10_3390_galaxies9040096 crossref_primary_10_3390_universe7060192 crossref_primary_10_1140_epja_i2019_12780_8 crossref_primary_10_1093_mnras_sty086 crossref_primary_10_1002_wics_1532 crossref_primary_10_3847_1538_4357_ad499b crossref_primary_10_1103_PhysRevD_110_122002 crossref_primary_10_1119_1_4985727 crossref_primary_10_1007_s41114_024_00054_9 crossref_primary_10_1088_1361_6382_ab3cff crossref_primary_10_1103_23cf_j34y crossref_primary_10_1002_andp_201800348 crossref_primary_10_1088_1475_7516_2025_07_078 crossref_primary_10_1007_s41114_020_00026_9 crossref_primary_10_1111_j_1740_9713_2016_00896_x crossref_primary_10_3389_fphy_2023_1113909 crossref_primary_10_3847_1538_4357_ab31aa crossref_primary_10_3390_universe5050099 crossref_primary_10_1103_PhysRevD_103_063016 crossref_primary_10_3847_1538_4357_acc4bb crossref_primary_10_3847_1538_4357_aab34c crossref_primary_10_1103_PhysRevD_103_063010 crossref_primary_10_1088_1475_7516_2023_02_010 crossref_primary_10_1038_s41550_017_0112 crossref_primary_10_1093_mnras_staa3096 crossref_primary_10_1088_1361_6382_ad72c8 crossref_primary_10_1088_1475_7516_2016_11_036 crossref_primary_10_1134_S1063772919020082 crossref_primary_10_1103_PhysRevD_105_104019 crossref_primary_10_1088_1361_6382_ab185e crossref_primary_10_1051_0004_6361_202451297 crossref_primary_10_4236_jhepgc_2018_41005 crossref_primary_10_1093_mnras_sty2568 crossref_primary_10_3847_1538_4357_abe40e crossref_primary_10_1073_pnas_1612908114 crossref_primary_10_3847_1538_4357_ad4549 crossref_primary_10_1088_1361_6382_ad242e crossref_primary_10_1103_PhysRevD_111_084064 crossref_primary_10_1088_1361_6382_ad387c crossref_primary_10_1103_PhysRevD_107_064045 crossref_primary_10_1088_1361_6382_ad2317 crossref_primary_10_1093_mnras_stac120 crossref_primary_10_1007_s10714_024_03282_0 crossref_primary_10_1103_PhysRevX_9_031028 crossref_primary_10_1088_1361_6382_abbc8b crossref_primary_10_1007_s12648_024_03532_6 crossref_primary_10_1088_0256_307X_33_8_080402 crossref_primary_10_1103_PhysRevD_108_104020 crossref_primary_10_1088_1361_6382_aa5294 crossref_primary_10_1140_epjc_s10052_024_13495_x crossref_primary_10_1103_PhysRevLett_126_041103 crossref_primary_10_1088_1361_6382_abc36e crossref_primary_10_1016_j_newast_2017_07_004 crossref_primary_10_1088_1674_1137_ac624a crossref_primary_10_1103_PhysRevD_108_104025 crossref_primary_10_1088_1742_6596_888_1_012001 crossref_primary_10_1140_epjc_s10052_022_10049_x crossref_primary_10_3938_jkps_70_735 crossref_primary_10_1088_1361_6382_aa941e crossref_primary_10_1088_1572_9494_ad4c55 crossref_primary_10_1007_s11431_023_2597_y crossref_primary_10_1007_s10714_016_2136_0 crossref_primary_10_1016_j_nuclphysb_2025_116840 crossref_primary_10_1088_1361_6382_aaa13d crossref_primary_10_3847_2041_8213_abf5e4 crossref_primary_10_1088_1674_1137_ad5a70 crossref_primary_10_1016_j_physletb_2022_137410 crossref_primary_10_1088_1361_6382_adfffa crossref_primary_10_1103_PhysRevResearch_1_033015 crossref_primary_10_1140_epjc_s10052_024_13419_9 crossref_primary_10_1088_1742_6596_1208_1_012012 crossref_primary_10_1088_1361_6633_ab12bc crossref_primary_10_1093_mnras_stx1764 crossref_primary_10_3847_2041_8213_ab479e crossref_primary_10_1088_2632_2153_adfc27 crossref_primary_10_1103_PhysRevD_104_024059 crossref_primary_10_1063_1_4967303 crossref_primary_10_1093_mnras_stx2737 crossref_primary_10_1088_1674_1137_ad9f44 crossref_primary_10_1088_1674_1056_ac6ee0 crossref_primary_10_1038_s41586_022_05212_z crossref_primary_10_3847_1538_4357_aa5da9 crossref_primary_10_1103_ckdt_wtsl crossref_primary_10_3390_galaxies9020040 crossref_primary_10_1088_1674_1137_ad9894 crossref_primary_10_1007_s10686_021_09785_x crossref_primary_10_1093_astrogeo_atab077 crossref_primary_10_1134_S1063772918120028 crossref_primary_10_3847_1538_4357_ab5dcb crossref_primary_10_3847_2041_8213_ac6426 crossref_primary_10_1088_1361_6382_ab5c9a crossref_primary_10_1088_1475_7516_2017_06_037 crossref_primary_10_3847_2041_8213_ab745a crossref_primary_10_1088_1475_7516_2019_10_013 crossref_primary_10_1103_PhysRevLett_129_111102 crossref_primary_10_3847_1538_4357_ad65ce crossref_primary_10_3847_1538_4357_aab665 crossref_primary_10_1007_s41115_021_00012_0 crossref_primary_10_1088_1361_6382_ad1780 crossref_primary_10_1140_epjc_s10052_025_14407_3 crossref_primary_10_1140_epjc_s10052_025_14299_3 crossref_primary_10_1088_1361_6382_aa8f29 crossref_primary_10_1088_1475_7516_2025_03_006 crossref_primary_10_1088_1674_1137_ad34bf crossref_primary_10_1063_5_0039624 crossref_primary_10_1088_1475_7516_2019_02_019 crossref_primary_10_1103_PhysRevD_111_104012 crossref_primary_10_3847_1538_4357_aadae5 crossref_primary_10_1016_j_jsv_2017_12_007 crossref_primary_10_3847_2041_8213_aa970b crossref_primary_10_3847_1538_4357_ac8b02 crossref_primary_10_3847_1538_4357_aaad0e crossref_primary_10_1017_S1743921318008177 crossref_primary_10_1007_s12217_022_09998_5 crossref_primary_10_1016_j_asr_2018_03_010 crossref_primary_10_1088_1361_6382_ab6a1f crossref_primary_10_1088_1361_6382_aa972e crossref_primary_10_1088_1361_6382_ad4dfe crossref_primary_10_1088_1361_6382_ab34e2 crossref_primary_10_1103_PhysRevD_105_124010 crossref_primary_10_1126_science_aat3363 crossref_primary_10_1140_epjc_s10052_025_14529_8 crossref_primary_10_1103_PhysRevLett_126_161102 crossref_primary_10_1088_1475_7516_2022_06_030 crossref_primary_10_3847_1538_4365_ab06fc crossref_primary_10_1088_1361_6382_acb630 crossref_primary_10_1088_1674_1137_adb2fd crossref_primary_10_3847_2041_8213_aba493 crossref_primary_10_1093_mnras_staa1077 crossref_primary_10_1103_PhysRevD_110_124038 crossref_primary_10_1093_ptep_pty078 crossref_primary_10_1088_1361_6382_aafce6 crossref_primary_10_1103_PhysRevD_111_063034 crossref_primary_10_1088_0264_9381_33_17_177001 crossref_primary_10_1088_1674_4527_18_6_65 crossref_primary_10_3847_2041_8213_aa9f0c crossref_primary_10_1088_1475_7516_2025_04_037 crossref_primary_10_3390_galaxies6020048 crossref_primary_10_1103_PhysRevD_104_124060 crossref_primary_10_1093_mnras_sty908 crossref_primary_10_1088_1361_6382_aa6d44 crossref_primary_10_1088_1475_7516_2024_03_053 crossref_primary_10_1088_1361_6382_aab658 crossref_primary_10_1051_0004_6361_201936152 crossref_primary_10_1103_PhysRevX_6_041015 crossref_primary_10_1103_PhysRevX_6_041014 crossref_primary_10_1140_epjc_s10052_017_5055_7 crossref_primary_10_1007_s11433_024_2600_3 crossref_primary_10_1051_0004_6361_202554817 crossref_primary_10_1140_epjc_s10052_018_6170_9 crossref_primary_10_3847_2041_8213_ac082e crossref_primary_10_1088_0264_9381_33_24_244002 crossref_primary_10_3390_universe7120497 crossref_primary_10_1093_mnras_staa1174 crossref_primary_10_1364_JOSAB_35_000156 crossref_primary_10_1093_mnras_staa1176 crossref_primary_10_1088_1361_6382_aa5e58 crossref_primary_10_1142_S0217732324501232 crossref_primary_10_1088_0264_9381_33_17_175001 crossref_primary_10_3847_1538_4365_ad9deb crossref_primary_10_3847_1538_4357_ada28c crossref_primary_10_1016_j_physrep_2017_03_002 crossref_primary_10_1088_1361_6382_aa7649 crossref_primary_10_1088_1475_7516_2018_09_039 crossref_primary_10_3847_1538_4357_ac088d crossref_primary_10_1016_j_asr_2018_04_013 crossref_primary_10_1007_s41114_018_0012_9 crossref_primary_10_1103_PhysRevX_13_011048 crossref_primary_10_1088_1361_6382_aba221 crossref_primary_10_3847_1538_3881_ace0c1 crossref_primary_10_1103_PhysRevD_110_104037 crossref_primary_10_1088_1361_6382_aa9ad5 crossref_primary_10_1093_mnras_stw2085 crossref_primary_10_1088_1674_1056_ad225d crossref_primary_10_1088_1674_1137_ad666c crossref_primary_10_1103_ywkw_13rk crossref_primary_10_3847_2041_8205_833_1_L1 crossref_primary_10_1103_PhysRevLett_126_171103 crossref_primary_10_3847_2041_8213_add681 crossref_primary_10_1119_10_0003534 crossref_primary_10_1007_s11433_017_9094_8 crossref_primary_10_1103_PhysRevX_9_011001 crossref_primary_10_1103_PhysRevD_103_024043 crossref_primary_10_1007_s10509_021_03980_0 crossref_primary_10_3390_sym15030702 crossref_primary_10_1103_g83n_rrlj crossref_primary_10_1103_PhysRevD_104_044051 crossref_primary_10_3847_2041_8213_ab960f crossref_primary_10_1088_1475_7516_2020_10_045 crossref_primary_10_1088_1402_4896_ace00c crossref_primary_10_3847_1538_4357_aa8408 crossref_primary_10_3390_sym16091140 crossref_primary_10_3847_1538_4357_836_2_220 crossref_primary_10_3847_2041_8213_abe949 crossref_primary_10_1007_JHEP04_2024_015 crossref_primary_10_1007_s10714_018_2455_4 crossref_primary_10_1051_0004_6361_201936204 crossref_primary_10_1088_1475_7516_2021_09_029 crossref_primary_10_3847_2041_8205_826_1_L13 crossref_primary_10_1088_1361_6382_ab5f7c crossref_primary_10_1051_0004_6361_202450531 crossref_primary_10_1088_1475_7516_2024_07_017 crossref_primary_10_1007_s11214_018_0466_9 crossref_primary_10_1103_s3xh_dt13 crossref_primary_10_1140_epjc_s10052_017_5353_0 crossref_primary_10_1088_1475_7516_2018_02_013 crossref_primary_10_1088_1361_6382_aa91b1 crossref_primary_10_1103_PhysRevD_103_124061 crossref_primary_10_3847_1538_4357_ab80c0 crossref_primary_10_1103_3rmv_b2cq crossref_primary_10_3389_fspas_2020_609460 crossref_primary_10_3847_2041_8213_aaaa64 crossref_primary_10_1103_kw5g_d732 crossref_primary_10_1140_epjp_s13360_022_03208_2 crossref_primary_10_1088_1361_6382_aa552e crossref_primary_10_1088_1475_7516_2019_04_032 crossref_primary_10_3847_1538_4357_aba518 crossref_primary_10_1002_asna_20240145 crossref_primary_10_1134_S0202289323040060 crossref_primary_10_1093_mnras_staa443 crossref_primary_10_1093_mnras_stac3029 crossref_primary_10_1088_1361_6382_aa82d9 crossref_primary_10_1142_S0217732325500580 crossref_primary_10_1088_1361_6382_ab49b6 crossref_primary_10_1038_s41550_018_0416_1 crossref_primary_10_3897_rio_6_e54106 crossref_primary_10_3847_1538_4365_aba2f3 crossref_primary_10_1142_S0218271825440080 crossref_primary_10_1007_s11433_018_9321_7 crossref_primary_10_3847_2041_8213_aa9478 crossref_primary_10_1140_epjc_s10052_023_11660_2 crossref_primary_10_1007_s11433_016_0268_1 crossref_primary_10_3390_universe9040190 crossref_primary_10_3389_fdata_2022_787421 crossref_primary_10_1088_1361_6382_aa6854 crossref_primary_10_1088_1475_7516_2022_11_006 crossref_primary_10_1103_PhysRevD_104_044003 crossref_primary_10_1119_1_5020984 crossref_primary_10_1017_S1743921318007469 crossref_primary_10_1088_1361_6382_ac7e16 crossref_primary_10_1103_PhysRevX_13_041048 crossref_primary_10_1007_s10714_019_2510_9 crossref_primary_10_3847_2041_8213_aa7045 crossref_primary_10_1088_1361_6633_aadb16 crossref_primary_10_1088_1361_6382_ab685e crossref_primary_10_3390_universe7030053 crossref_primary_10_3847_1538_3881_ab05e0 crossref_primary_10_1103_PhysRevD_106_043504 crossref_primary_10_1103_PhysRevD_103_083001 crossref_primary_10_1140_epjc_s10052_025_14032_0 crossref_primary_10_1007_s41114_017_0004_1 crossref_primary_10_1093_mnras_stab2236 crossref_primary_10_1016_j_physletb_2020_135538 crossref_primary_10_1103_PhysRevD_104_124039 crossref_primary_10_1140_epjc_s10052_023_11496_w crossref_primary_10_1103_PhysRevD_106_063522 crossref_primary_10_3847_1538_4357_ac23c6 crossref_primary_10_1002_andp_201600209 crossref_primary_10_1088_1361_6382_aa7929 crossref_primary_10_1093_ptep_ptab007 crossref_primary_10_1016_j_dark_2024_101495 crossref_primary_10_1140_epjc_s10052_020_7881_2 crossref_primary_10_1088_1674_1137_ad137f crossref_primary_10_1103_PhysRevD_103_044013 crossref_primary_10_1088_1361_6382_ab3d48 crossref_primary_10_1088_1361_6382_adf685 crossref_primary_10_3847_2041_8213_aa965d crossref_primary_10_3390_sym15020505 crossref_primary_10_1088_1361_6382_ab3583 crossref_primary_10_1140_epjp_i2019_12932_3 crossref_primary_10_1103_PhysRevD_107_024046 crossref_primary_10_1038_ncomms14906 crossref_primary_10_1088_1475_7516_2021_08_045 crossref_primary_10_1093_mnras_stx348 crossref_primary_10_3390_universe9030135 crossref_primary_10_3847_2041_8213_aa8224 crossref_primary_10_1103_PhysRevX_6_031018 crossref_primary_10_3847_1538_4365_ac157b crossref_primary_10_3847_1538_4357_ab16e7 crossref_primary_10_1088_2632_2153_ad1200 crossref_primary_10_1140_epjc_s10052_019_6836_y crossref_primary_10_1007_s10714_023_03082_y crossref_primary_10_1140_epjp_s13360_020_00911_w crossref_primary_10_1088_1361_6382_aa51fa crossref_primary_10_1051_0004_6361_201833025 crossref_primary_10_1088_1361_6382_adfe50 crossref_primary_10_3847_1538_4357_ab9809 crossref_primary_10_3390_galaxies12060080 crossref_primary_10_1093_mnras_stad2838 crossref_primary_10_1088_1361_6382_ab368c crossref_primary_10_3389_fspas_2020_573060 crossref_primary_10_3389_fphy_2025_1561873 crossref_primary_10_1103_PhysRevResearch_2_023151 crossref_primary_10_3847_1538_4357_ab0b3e crossref_primary_10_3847_1538_4357_aae378 crossref_primary_10_1088_1361_6382_aa96c5 crossref_primary_10_3847_2041_8205_832_2_L21 crossref_primary_10_1007_s10714_017_2312_x crossref_primary_10_1016_j_asr_2021_07_040 crossref_primary_10_1103_PhysRevD_108_064018 crossref_primary_10_3367_UFNe_2016_11_038176 crossref_primary_10_3938_jkps_69_884 crossref_primary_10_1103_PhysRevD_103_044006 crossref_primary_10_3938_jkps_72_1 crossref_primary_10_1088_1475_7516_2022_01_004 crossref_primary_10_3847_1538_4365_adcf96 crossref_primary_10_1038_s41550_019_0863_3 crossref_primary_10_1103_PhysRevD_105_084021 crossref_primary_10_1103_PhysRevLett_134_161401 crossref_primary_10_1088_1475_7516_2025_01_091 crossref_primary_10_1038_s41550_024_02338_0 crossref_primary_10_1088_0264_9381_33_20_204001 crossref_primary_10_3390_sym11020220 crossref_primary_10_1016_j_shpsb_2020_01_001 crossref_primary_10_1088_1475_7516_2018_03_007 crossref_primary_10_1140_epjc_s10052_021_09959_z crossref_primary_10_1088_1674_1137_ad50ba crossref_primary_10_1103_PhysRevD_108_104005 crossref_primary_10_1088_1475_7516_2017_02_039 crossref_primary_10_1140_epjc_s10052_020_8009_4 crossref_primary_10_3847_2041_8205_832_1_L2 crossref_primary_10_1103_h7ld_vv9p crossref_primary_10_1007_s11433_024_2594_5 crossref_primary_10_1007_s00601_023_01799_9 crossref_primary_10_1093_mnras_staa038 crossref_primary_10_1088_1361_6382_aa5cea crossref_primary_10_1093_mnras_stw2450 crossref_primary_10_1103_PhysRevD_111_024019 crossref_primary_10_1140_epjc_s10052_025_14510_5 crossref_primary_10_1038_s41598_021_98821_z crossref_primary_10_1093_mnras_stz675 crossref_primary_10_1093_mnras_staa2850 crossref_primary_10_1103_PhysRevD_111_083013 crossref_primary_10_1103_PhysRevD_107_043010 crossref_primary_10_1103_PhysRevD_107_104056 crossref_primary_10_1103_PhysRevD_111_L061305 crossref_primary_10_3847_1538_4357_ad3a66 crossref_primary_10_1140_epjc_s10052_025_14303_w crossref_primary_10_1088_1475_7516_2024_04_001 crossref_primary_10_3390_sym16030343 crossref_primary_10_3847_2041_8213_ab75f5 crossref_primary_10_1016_j_physletb_2018_08_009 crossref_primary_10_3847_2041_8213_ad3e82 crossref_primary_10_3847_1538_4357_aa95b9 crossref_primary_10_1088_1361_6382_aaa4e2 crossref_primary_10_1093_mnras_stac3402 crossref_primary_10_3390_universe10120438 crossref_primary_10_1093_mnras_stz3161 crossref_primary_10_1007_s10509_024_04276_9 crossref_primary_10_1088_1674_1137_acc570 crossref_primary_10_1093_mnras_stad1676 crossref_primary_10_1103_PhysRevX_13_041039 crossref_primary_10_3390_universe8010012 crossref_primary_10_1093_mnras_stw2669 crossref_primary_10_3847_0067_0049_227_2_14 crossref_primary_10_1140_epjc_s10052_024_12679_9 crossref_primary_10_1038_s41550_017_0311_1 crossref_primary_10_3847_1538_4357_aa63ef crossref_primary_10_3390_universe8120626 crossref_primary_10_3847_1538_4357_aae7c9 crossref_primary_10_1051_0004_6361_202245650 crossref_primary_10_3847_2041_8205_829_2_L28 crossref_primary_10_1038_nature23453 crossref_primary_10_3847_1538_4357_abfc45 crossref_primary_10_1016_j_cjph_2025_05_011 crossref_primary_10_1088_1361_6382_abe9f3 crossref_primary_10_3847_1538_4357_aae8df crossref_primary_10_1088_1475_7516_2022_10_060 crossref_primary_10_1093_mnras_stab666 crossref_primary_10_1038_s41567_019_0611_8 crossref_primary_10_1088_1361_6382_aad389 crossref_primary_10_1093_mnras_stab2623 crossref_primary_10_1103_PhysRevD_103_124023 crossref_primary_10_1146_annurev_astro_052920_100646 crossref_primary_10_1088_1674_1137_ace522 crossref_primary_10_1103_PhysRevD_104_084046 crossref_primary_10_1007_s41114_022_00037_8 crossref_primary_10_1088_1361_6382_aa8b52 crossref_primary_10_1093_mnras_stad633 crossref_primary_10_1093_mnras_stw2883 crossref_primary_10_1016_j_physrep_2019_01_002 crossref_primary_10_1093_ptep_ptw126 crossref_primary_10_3847_1538_4357_ad9901 crossref_primary_10_1016_j_nuclphysb_2025_117077 crossref_primary_10_1088_1475_7516_2024_05_027 crossref_primary_10_1088_1475_7516_2024_12_021 crossref_primary_10_1088_1361_6382_aaa3a8 crossref_primary_10_1088_1475_7516_2024_07_071 crossref_primary_10_1093_mnras_staf1170 crossref_primary_10_3847_1538_3881_ace25f crossref_primary_10_3847_2041_8213_ab3f33 crossref_primary_10_1103_PhysRevX_11_021053 crossref_primary_10_1088_1361_6382_aaf76d crossref_primary_10_3847_2041_8213_ab50c0 crossref_primary_10_1093_mnras_stw1684 crossref_primary_10_1103_PhysRevD_103_042004 crossref_primary_10_1038_s41550_025_02632_5 crossref_primary_10_1093_mnras_staa598 crossref_primary_10_1088_1475_7516_2023_03_005 crossref_primary_10_1088_1572_9494_ad89b2 crossref_primary_10_1073_pnas_1611117113 crossref_primary_10_1088_1361_6382_ab0587 crossref_primary_10_1093_mnras_stad1107 crossref_primary_10_1140_epjc_s10052_021_09488_9 crossref_primary_10_3389_fspas_2018_00044 crossref_primary_10_1093_mnras_stx2577 |
| Cites_doi | 10.1088/0264-9381/13/4/002 10.1126/science.1233232 10.1103/PhysRevD.93.044006 10.1103/PhysRevD.49.2658 10.1103/PhysRevD.85.104045 10.1093/mnrasl/slv082 10.1103/PhysRevD.87.024035 10.1088/2041-8205/789/1/L5 10.1103/PhysRevLett.98.231101 10.1103/PhysRevLett.34.905 10.1002/j.1538-7305.1948.tb01338.x 10.1103/PhysRevD.87.104028 10.1103/PhysRevD.84.084037 10.1086/158109 10.1038/323310a0 10.1088/0004-637X/779/2/151 10.1103/PhysRevD.80.124026 10.1086/309400 10.1088/0264-9381/31/2/025012 10.1103/PhysRevD.89.084006 10.12942/lrr-2014-2 10.1103/PhysRevLett.106.241101 10.1103/PhysRevD.89.042004 10.1088/0004-637X/725/1/496 10.1103/PhysRev.131.435 10.1017/CBO9780511790904 10.1103/PhysRevD.78.044021 10.1103/PhysRevLett.32.324 10.1088/0264-9381/29/12/124001 10.1103/PhysRevD.70.124020 10.1103/PhysRevD.86.104063 10.1103/PhysRevD.89.061502 10.1103/PhysRevLett.26.331 10.1103/PhysRevD.77.024014 10.1103/PhysRevD.77.104017 10.1103/PhysRevD.92.064016 10.12942/lrr-2002-3 10.1103/PhysRevD.78.044046 10.5479/sil.52126.39088015628399 10.1103/PhysRevD.81.062003 10.3847/2041-8205/818/2/L22 10.1088/1367-2630/11/12/123006 10.1017/CBO9781139193344 10.1086/431341 10.12942/lrr-2012-6 10.1088/0264-9381/32/13/135012 10.1088/0264-9381/31/20/205006 10.1002/j.1538-7305.1948.tb00917.x 10.1103/PhysRevLett.113.151101 10.1088/0264-9381/28/11/114009 10.1103/PhysRevD.17.379 10.1088/0264-9381/25/18/184011 10.1103/PhysRevD.79.081503 10.1103/PhysRevD.74.041501 10.1103/PhysRevD.87.044038 10.1103/PhysRevD.59.084006 10.1103/PhysRevLett.95.121101 10.1103/PhysRevD.93.064041 10.1103/PhysRev.164.1776 10.1007/s11214-013-0030-6 10.1103/PhysRevLett.111.241104 10.1103/PhysRevLett.115.141102 10.1103/PhysRevLett.107.231102 10.1086/588096 10.1103/PhysRevD.93.044031 10.1103/PhysRev.136.B1224 10.1103/PhysRevD.91.042003 10.1103/PhysRevD.49.6274 10.1088/0264-9381/32/10/105009 10.1103/PhysRevD.78.024009 10.1103/PhysRevD.90.104004 10.1088/0004-637X/804/2/114 10.1088/0004-637X/795/2/105 10.1086/523755 10.1088/0264-9381/32/7/074001 10.1088/0264-9381/23/15/009 10.1088/0264-9381/31/19/195010 10.1086/595279 10.1103/PhysRevD.88.062001 10.1103/PhysRevLett.112.251101 10.1103/PhysRevD.77.024027 10.1103/PhysRevLett.116.061102 10.1103/PhysRevD.52.821 10.1103/PhysRevLett.115.031102 10.1103/PhysRevD.54.2438 10.1086/310296 10.1142/S0218271814300225 10.1086/516712 10.1103/PhysRevD.82.064016 10.1103/PhysRevD.91.024043 10.1103/PhysRevLett.96.111102 10.1103/PhysRevD.81.084024 10.1103/PhysRevD.88.064007 10.1103/PhysRevD.93.044046 10.1098/rstl.1763.0053 10.1214/06-BA127 10.1007/BF00759095 10.1103/PhysRevD.93.084042 10.1103/PhysRevD.90.024018 10.1103/PhysRevD.52.848 10.1103/PhysRevD.47.2198 10.1103/PhysRevLett.96.111101 10.1088/0264-9381/30/19/199401 10.1088/0264-9381/24/19/S31 10.1088/0264-9381/29/12/124002 10.1017/CBO9780511790423 10.1103/PhysRevD.64.124013 10.1088/0264-9381/20/20/201 10.1007/lrr-2016-1 10.1103/PhysRevD.85.064034 10.1103/PhysRevD.93.044007 10.1103/PhysRevLett.98.231102 10.1103/PhysRevD.62.064015 10.1086/152255 10.1086/152444 10.1103/PhysRev.128.2471 10.1103/PhysRevD.40.3194 10.1111/j.1745-3933.2010.00811.x |
| ContentType | Journal Article |
| Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| CorporateAuthor | LIGO Scientific Collaboration and Virgo Collaboration |
| CorporateAuthor_xml | – name: LIGO Scientific Collaboration and Virgo Collaboration |
| DBID | CYE CYI AAYXX CITATION NPM 7X8 7U5 8FD H8D L7M 1XC VOOES JLOSS Q33 |
| DOI | 10.1103/PhysRevLett.116.241102 |
| DatabaseName | NASA Scientific and Technical Information NASA Technical Reports Server CrossRef PubMed MEDLINE - Academic Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Université de Liège - Open Repository and Bibliography (ORBI) (Open Access titles only) Université de Liège - Open Repository and Bibliography (ORBI) |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Aerospace Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1079-7114 |
| ExternalDocumentID | oai_orbi_ulg_ac_be_2268_251705 oai:HAL:in2p3-01274010v1 27367378 10_1103_PhysRevLett_116_241102 20170003558 |
| Genre | Journal Article |
| GroupedDBID | --- -DZ -~X 123 2-P 29O 3MX 5VS 85S ABSSX ABUFD ACBEA ACGFO ACNCT AECSF AENEX AEQTI AFFNX AFGMR AGDNE AJQPL ALMA_UNASSIGNED_HOLDINGS APKKM AUAIK CS3 CYE CYI D0L DU5 EBS EJD ER. F5P MVM N9A NPBMV P2P ROL S7W SJN TN5 UBE WH7 XSW YNT ZPR ~02 186 3O- 41~ 6TJ 8NH 8WZ 9M8 A6W AAYJJ AAYXX ACKIV ADXHL AETEA CITATION H~9 NEJ NHB OHT OK1 P0- RNS T9H UBC VOH XOL YYP ZCG ZY4 NPM UCJ VQA 7X8 7U5 8FD H8D L7M 1XC VOOES XJT JLOSS Q33 |
| ID | FETCH-LOGICAL-c493t-eb039e890d65a6c3385bf4b0ad0f9a6839873dd691a878d8e4c7465b61a4b15d3 |
| IEDL.DBID | 3MX |
| ISICitedReferencesCount | 695 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000377812700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0031-9007 1079-7114 |
| IngestDate | Sat Nov 29 01:26:14 EST 2025 Tue Oct 14 20:50:48 EDT 2025 Fri Jul 11 11:02:06 EDT 2025 Fri Jul 11 08:41:57 EDT 2025 Thu Jan 02 23:09:03 EST 2025 Tue Nov 18 20:56:52 EST 2025 Sat Nov 29 01:46:19 EST 2025 Fri Nov 21 15:48:49 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 24 |
| Language | English |
| License | http://creativecommons.org/licenses/by/3.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c493t-eb039e890d65a6c3385bf4b0ad0f9a6839873dd691a878d8e4c7465b61a4b15d3 |
| Notes | ISSN: 0031-9007 Report Number: GSFC-E-DAA-TN41674 GSFC-E-DAA-TN41674 E-ISSN: 1079-7114 GSFC Report Number: GSFC-E-DAA-TN41647 Goddard Space Flight Center GSFC-E-DAA-TN41647 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 scopus-id:2-s2.0-84975451312 |
| ORCID | 0000-0001-6589-8673 0000-0002-1890-1128 0000-0001-6487-5197 0000-0002-0631-1198 0000-0003-4344-7227 0000-0003-2507-3866 0000-0002-3658-7240 0000-0002-4618-1674 0000-0001-9870-6850 0000-0001-9157-4349 0000-0002-1019-6911 0000-0003-0589-9687 0000-0002-4390-9746 0000-0002-4430-3703 |
| OpenAccessLink | https://orbi.uliege.be/handle/2268/251705 |
| PMID | 27367378 |
| PQID | 1801433982 |
| PQPubID | 23479 |
| ParticipantIDs | liege_orbi_v2_oai_orbi_ulg_ac_be_2268_251705 hal_primary_oai_HAL_in2p3_01274010v1 proquest_miscellaneous_1825559427 proquest_miscellaneous_1801433982 pubmed_primary_27367378 crossref_primary_10_1103_PhysRevLett_116_241102 crossref_citationtrail_10_1103_PhysRevLett_116_241102 nasa_ntrs_20170003558 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-Jun-17 |
| PublicationDateYYYYMMDD | 2016-06-17 |
| PublicationDate_xml | – month: 06 year: 2016 text: 2016-Jun-17 day: 17 |
| PublicationDecade | 2010 |
| PublicationPlace | Goddard Space Flight Center |
| PublicationPlace_xml | – name: Goddard Space Flight Center – name: United States |
| PublicationTitle | Physical review letters |
| PublicationTitleAlternate | Phys Rev Lett |
| PublicationYear | 2016 |
| Publisher | APS Physics American Physical Society |
| Publisher_xml | – name: APS Physics – name: American Physical Society |
| References | PhysRevLett.116.241102Cc114R1 PhysRevLett.116.241102Cc118R1 H. Jeffreys (PhysRevLett.116.241102Cc89R1) 1961 PhysRevLett.116.241102Cc87R1 PhysRevLett.116.241102Cc22R1 PhysRevLett.116.241102Cc64R1 PhysRevLett.116.241102Cc83R1 PhysRevLett.116.241102Cc60R1 PhysRevLett.116.241102Cc2R1 PhysRevLett.116.241102Cc38R1 PhysRevLett.116.241102Cc19R1 PhysRevLett.116.241102Cc34R1 PhysRevLett.116.241102Cc15R1 PhysRevLett.116.241102Cc57R1 I. Newton (PhysRevLett.116.241102Cc10R1) 1687 PhysRevLett.116.241102Cc110R1 PhysRevLett.116.241102Cc90R2 PhysRevLett.116.241102Cc122R1 PhysRevLett.116.241102Cc90R1 PhysRevLett.116.241102Cc126R1 PhysRevLett.116.241102Cc107R1 PhysRevLett.116.241102Cc52R2 A. Einstein (PhysRevLett.116.241102Cc7R1) 1916; 1 PhysRevLett.116.241102Cc52R1 PhysRevLett.116.241102Cc98R1 PhysRevLett.116.241102Cc33R1 PhysRevLett.116.241102Cc75R1 PhysRevLett.116.241102Cc94R1 PhysRevLett.116.241102Cc71R1 PhysRevLett.116.241102Cc45R1 PhysRevLett.116.241102Cc68R1 PhysRevLett.116.241102Cc103R1 PhysRevLett.116.241102Cc111R1 PhysRevLett.116.241102Cc134R1 PhysRevLett.116.241102Cc115R1 PhysRevLett.116.241102Cc119R1 PhysRevLett.116.241102Cc21R1 PhysRevLett.116.241102Cc44R1 PhysRevLett.116.241102Cc63R1 PhysRevLett.116.241102Cc86R1 PhysRevLett.116.241102Cc40R1 PhysRevLett.116.241102Cc82R1 PhysRevLett.116.241102Cc1R1 PhysRevLett.116.241102Cc18R1 PhysRevLett.116.241102Cc5R1 PhysRevLett.116.241102Cc14R1 PhysRevLett.116.241102Cc37R1 PhysRevLett.116.241102Cc56R1 PhysRevLett.116.241102Cc79R1 PhysRevLett.116.241102Cc130R1 PhysRevLett.116.241102Cc123R1 PhysRevLett.116.241102Cc127R1 PhysRevLett.116.241102Cc108R1 PhysRevLett.116.241102Cc55R1 PhysRevLett.116.241102Cc74R1 PhysRevLett.116.241102Cc97R1 PhysRevLett.116.241102Cc32R1 PhysRevLett.116.241102Cc51R1 PhysRevLett.116.241102Cc70R1 PhysRevLett.116.241102Cc93R1 PhysRevLett.116.241102Cc29R1 PhysRevLett.116.241102Cc25R1 PhysRevLett.116.241102Cc67R1 PhysRevLett.116.241102Cc104R1 S. Chandrasekhar (PhysRevLett.116.241102Cc16R1) 1992 PhysRevLett.116.241102Cc100R1 PhysRevLett.116.241102Cc135R1 PhysRevLett.116.241102Cc116R1 PhysRevLett.116.241102Cc20R1 PhysRevLett.116.241102Cc66R1 PhysRevLett.116.241102Cc43R1 PhysRevLett.116.241102Cc85R1 PhysRevLett.116.241102Cc62R1 PhysRevLett.116.241102Cc81R1 PhysRevLett.116.241102Cc17R1 PhysRevLett.116.241102Cc4R1 PhysRevLett.116.241102Cc13R1 PhysRevLett.116.241102Cc59R1 PhysRevLett.116.241102Cc78R1 PhysRevLett.116.241102Cc36R1 PhysRevLett.116.241102Cc131R1 PhysRevLett.116.241102Cc124R1 PhysRevLett.116.241102Cc128R1 PhysRevLett.116.241102Cc31R1 PhysRevLett.116.241102Cc54R1 M. P. Hobson (PhysRevLett.116.241102Cc106R1) 2006 PhysRevLett.116.241102Cc77R1 PhysRevLett.116.241102Cc109R1 T. W. Baumgarte (PhysRevLett.116.241102Cc50R1) 2010 PhysRevLett.116.241102Cc73R1 PhysRevLett.116.241102Cc92R1 PhysRevLett.116.241102Cc28R1 PhysRevLett.116.241102Cc24R1 K. S. Thorne (PhysRevLett.116.241102Cc26R1) 1987 PhysRevLett.116.241102Cc101R1 PhysRevLett.116.241102Cc120R1 PhysRevLett.116.241102Cc80R1 PhysRevLett.116.241102Cc117R1 PhysRevLett.116.241102Cc42R1 PhysRevLett.116.241102Cc65R1 PhysRevLett.116.241102Cc88R1 PhysRevLett.116.241102Cc61R1 PhysRevLett.116.241102Cc39R1 PhysRevLett.116.241102Cc12R1 PhysRevLett.116.241102Cc35R1 PhysRevLett.116.241102Cc58R1 PhysRevLett.116.241102Cc132R1 PhysRevLett.116.241102Cc91R1 PhysRevLett.116.241102Cc125R1 PhysRevLett.116.241102Cc76R1 PhysRevLett.116.241102Cc99R1 PhysRevLett.116.241102Cc30R1 PhysRevLett.116.241102Cc11R1 PhysRevLett.116.241102Cc53R1 PhysRevLett.116.241102Cc72R1 PhysRevLett.116.241102Cc95R1 PhysRevLett.116.241102Cc27R1 PhysRevLett.116.241102Cc27R2 PhysRevLett.116.241102Cc23R1 PhysRevLett.116.241102Cc69R1 E. T. Jaynes (PhysRevLett.116.241102Cc41R1) 2003 A. Einstein (PhysRevLett.116.241102Cc8R1) 1918; 1 PhysRevLett.116.241102Cc121R1 |
| References_xml | – ident: PhysRevLett.116.241102Cc28R1 doi: 10.1088/0264-9381/13/4/002 – ident: PhysRevLett.116.241102Cc91R1 doi: 10.1126/science.1233232 – ident: PhysRevLett.116.241102Cc57R1 doi: 10.1103/PhysRevD.93.044006 – ident: PhysRevLett.116.241102Cc20R1 doi: 10.1103/PhysRevD.49.2658 – ident: PhysRevLett.116.241102Cc23R1 doi: 10.1103/PhysRevD.85.104045 – ident: PhysRevLett.116.241102Cc127R1 doi: 10.1093/mnrasl/slv082 – ident: PhysRevLett.116.241102Cc29R1 doi: 10.1103/PhysRevD.87.024035 – ident: PhysRevLett.116.241102Cc109R1 doi: 10.1088/2041-8205/789/1/L5 – ident: PhysRevLett.116.241102Cc119R1 doi: 10.1103/PhysRevLett.98.231101 – ident: PhysRevLett.116.241102Cc15R1 doi: 10.1103/PhysRevLett.34.905 – ident: PhysRevLett.116.241102Cc90R1 doi: 10.1002/j.1538-7305.1948.tb01338.x – ident: PhysRevLett.116.241102Cc115R1 doi: 10.1103/PhysRevD.87.104028 – ident: PhysRevLett.116.241102Cc64R1 doi: 10.1103/PhysRevD.84.084037 – ident: PhysRevLett.116.241102Cc12R1 doi: 10.1086/158109 – ident: PhysRevLett.116.241102Cc98R1 doi: 10.1038/323310a0 – ident: PhysRevLett.116.241102Cc107R1 doi: 10.1088/0004-637X/779/2/151 – ident: PhysRevLett.116.241102Cc104R1 doi: 10.1103/PhysRevD.80.124026 – ident: PhysRevLett.116.241102Cc114R1 doi: 10.1086/309400 – ident: PhysRevLett.116.241102Cc51R1 doi: 10.1088/0264-9381/31/2/025012 – ident: PhysRevLett.116.241102Cc55R1 doi: 10.1103/PhysRevD.89.084006 – ident: PhysRevLett.116.241102Cc27R1 doi: 10.12942/lrr-2014-2 – ident: PhysRevLett.116.241102Cc66R1 doi: 10.1103/PhysRevLett.106.241101 – ident: PhysRevLett.116.241102Cc39R1 doi: 10.1103/PhysRevD.89.042004 – ident: PhysRevLett.116.241102Cc99R1 doi: 10.1088/0004-637X/725/1/496 – ident: PhysRevLett.116.241102Cc18R1 doi: 10.1103/PhysRev.131.435 – volume-title: General Relativity: An Introduction for Physicists year: 2006 ident: PhysRevLett.116.241102Cc106R1 doi: 10.1017/CBO9780511790904 – ident: PhysRevLett.116.241102Cc65R1 doi: 10.1103/PhysRevD.78.044021 – ident: PhysRevLett.116.241102Cc92R1 doi: 10.1103/PhysRevLett.32.324 – ident: PhysRevLett.116.241102Cc52R1 doi: 10.1088/0264-9381/29/12/124001 – ident: PhysRevLett.116.241102Cc85R1 doi: 10.1103/PhysRevD.70.124020 – ident: PhysRevLett.116.241102Cc82R1 doi: 10.1103/PhysRevD.86.104063 – ident: PhysRevLett.116.241102Cc54R1 doi: 10.1103/PhysRevD.89.061502 – ident: PhysRevLett.116.241102Cc14R1 doi: 10.1103/PhysRevLett.26.331 – ident: PhysRevLett.116.241102Cc80R1 doi: 10.1103/PhysRevD.77.024014 – ident: PhysRevLett.116.241102Cc79R1 doi: 10.1103/PhysRevD.77.104017 – ident: PhysRevLett.116.241102Cc69R1 doi: 10.1103/PhysRevD.92.064016 – ident: PhysRevLett.116.241102Cc27R2 doi: 10.12942/lrr-2002-3 – ident: PhysRevLett.116.241102Cc103R1 doi: 10.1103/PhysRevD.78.044046 – volume-title: Philosophiae Naturalis Principia Mathematica year: 1687 ident: PhysRevLett.116.241102Cc10R1 doi: 10.5479/sil.52126.39088015628399 – ident: PhysRevLett.116.241102Cc5R1 doi: 10.1103/PhysRevD.81.062003 – ident: PhysRevLett.116.241102Cc97R1 doi: 10.3847/2041-8205/818/2/L22 – ident: PhysRevLett.116.241102Cc38R1 doi: 10.1088/1367-2630/11/12/123006 – volume-title: Numerical Relativity year: 2010 ident: PhysRevLett.116.241102Cc50R1 doi: 10.1017/CBO9781139193344 – ident: PhysRevLett.116.241102Cc37R1 doi: 10.1086/431341 – volume-title: Oxford Classic Texts in the Physical Sciences year: 1992 ident: PhysRevLett.116.241102Cc16R1 – volume-title: Three Hundred Years of Gravitation year: 1987 ident: PhysRevLett.116.241102Cc26R1 – ident: PhysRevLett.116.241102Cc95R1 doi: 10.12942/lrr-2012-6 – ident: PhysRevLett.116.241102Cc122R1 doi: 10.1088/0264-9381/32/13/135012 – ident: PhysRevLett.116.241102Cc88R1 doi: 10.1088/0264-9381/31/20/205006 – ident: PhysRevLett.116.241102Cc90R2 doi: 10.1002/j.1538-7305.1948.tb00917.x – ident: PhysRevLett.116.241102Cc83R1 doi: 10.1103/PhysRevLett.113.151101 – ident: PhysRevLett.116.241102Cc128R1 doi: 10.1088/0264-9381/28/11/114009 – ident: PhysRevLett.116.241102Cc25R1 doi: 10.1103/PhysRevD.17.379 – ident: PhysRevLett.116.241102Cc44R1 doi: 10.1088/0264-9381/25/18/184011 – ident: PhysRevLett.116.241102Cc74R1 doi: 10.1103/PhysRevD.79.081503 – ident: PhysRevLett.116.241102Cc60R1 doi: 10.1103/PhysRevD.74.041501 – ident: PhysRevLett.116.241102Cc131R1 doi: 10.1103/PhysRevD.87.044038 – ident: PhysRevLett.116.241102Cc71R1 doi: 10.1103/PhysRevD.59.084006 – volume: 1 start-page: 154 issn: 1550-7998 year: 1918 ident: PhysRevLett.116.241102Cc8R1 publication-title: Sitzungsber. K. Preuss. Akad. Wiss – ident: PhysRevLett.116.241102Cc32R1 doi: 10.1103/PhysRevLett.95.121101 – ident: PhysRevLett.116.241102Cc78R1 doi: 10.1103/PhysRevD.93.064041 – ident: PhysRevLett.116.241102Cc13R1 doi: 10.1103/PhysRev.164.1776 – ident: PhysRevLett.116.241102Cc123R1 doi: 10.1007/s11214-013-0030-6 – ident: PhysRevLett.116.241102Cc76R1 doi: 10.1103/PhysRevLett.111.241104 – ident: PhysRevLett.116.241102Cc86R1 doi: 10.1103/PhysRevLett.115.141102 – ident: PhysRevLett.116.241102Cc118R1 doi: 10.1103/PhysRevLett.107.231102 – ident: PhysRevLett.116.241102Cc125R1 doi: 10.1086/588096 – ident: PhysRevLett.116.241102Cc134R1 doi: 10.1103/PhysRevD.93.044031 – ident: PhysRevLett.116.241102Cc17R1 doi: 10.1103/PhysRev.136.B1224 – ident: PhysRevLett.116.241102Cc42R1 doi: 10.1103/PhysRevD.91.042003 – ident: PhysRevLett.116.241102Cc30R1 doi: 10.1103/PhysRevD.49.6274 – ident: PhysRevLett.116.241102Cc132R1 doi: 10.1088/0264-9381/32/10/105009 – ident: PhysRevLett.116.241102Cc73R1 doi: 10.1103/PhysRevD.78.024009 – ident: PhysRevLett.116.241102Cc101R1 doi: 10.1103/PhysRevD.90.104004 – ident: PhysRevLett.116.241102Cc111R1 doi: 10.1088/0004-637X/804/2/114 – ident: PhysRevLett.116.241102Cc110R1 doi: 10.1088/0004-637X/795/2/105 – ident: PhysRevLett.116.241102Cc124R1 doi: 10.1086/523755 – ident: PhysRevLett.116.241102Cc2R1 doi: 10.1088/0264-9381/32/7/074001 – ident: PhysRevLett.116.241102Cc43R1 doi: 10.1088/0264-9381/23/15/009 – ident: PhysRevLett.116.241102Cc77R1 doi: 10.1088/0264-9381/31/19/195010 – ident: PhysRevLett.116.241102Cc22R1 doi: 10.1086/595279 – ident: PhysRevLett.116.241102Cc4R1 doi: 10.1103/PhysRevD.88.062001 – ident: PhysRevLett.116.241102Cc24R1 doi: 10.1103/PhysRevLett.112.251101 – ident: PhysRevLett.116.241102Cc130R1 doi: 10.1103/PhysRevD.77.024027 – ident: PhysRevLett.116.241102Cc1R1 doi: 10.1103/PhysRevLett.116.061102 – ident: PhysRevLett.116.241102Cc31R1 doi: 10.1103/PhysRevD.52.821 – ident: PhysRevLett.116.241102Cc135R1 doi: 10.1103/PhysRevLett.115.031102 – ident: PhysRevLett.116.241102Cc68R1 doi: 10.1103/PhysRevD.54.2438 – ident: PhysRevLett.116.241102Cc93R1 doi: 10.1086/310296 – ident: PhysRevLett.116.241102Cc56R1 doi: 10.1142/S0218271814300225 – ident: PhysRevLett.116.241102Cc121R1 doi: 10.1086/516712 – ident: PhysRevLett.116.241102Cc67R1 doi: 10.1103/PhysRevD.82.064016 – volume-title: Theory of Probability year: 1961 ident: PhysRevLett.116.241102Cc89R1 – ident: PhysRevLett.116.241102Cc70R1 doi: 10.1103/PhysRevD.91.024043 – ident: PhysRevLett.116.241102Cc34R1 doi: 10.1103/PhysRevLett.96.111102 – ident: PhysRevLett.116.241102Cc75R1 doi: 10.1103/PhysRevD.81.084024 – ident: PhysRevLett.116.241102Cc61R1 doi: 10.1103/PhysRevD.88.064007 – ident: PhysRevLett.116.241102Cc59R1 doi: 10.1103/PhysRevD.93.044046 – ident: PhysRevLett.116.241102Cc40R1 doi: 10.1098/rstl.1763.0053 – ident: PhysRevLett.116.241102Cc45R1 doi: 10.1214/06-BA127 – ident: PhysRevLett.116.241102Cc36R1 doi: 10.1007/BF00759095 – ident: PhysRevLett.116.241102Cc62R1 doi: 10.1103/PhysRevD.93.084042 – ident: PhysRevLett.116.241102Cc100R1 doi: 10.1103/PhysRevD.90.024018 – ident: PhysRevLett.116.241102Cc21R1 doi: 10.1103/PhysRevD.52.848 – ident: PhysRevLett.116.241102Cc19R1 doi: 10.1103/PhysRevD.47.2198 – ident: PhysRevLett.116.241102Cc33R1 doi: 10.1103/PhysRevLett.96.111101 – ident: PhysRevLett.116.241102Cc52R2 doi: 10.1088/0264-9381/30/19/199401 – ident: PhysRevLett.116.241102Cc81R1 doi: 10.1088/0264-9381/24/19/S31 – ident: PhysRevLett.116.241102Cc53R1 doi: 10.1088/0264-9381/29/12/124002 – volume-title: Probability Theory: The Logic of Science year: 2003 ident: PhysRevLett.116.241102Cc41R1 doi: 10.1017/CBO9780511790423 – ident: PhysRevLett.116.241102Cc63R1 doi: 10.1103/PhysRevD.64.124013 – ident: PhysRevLett.116.241102Cc94R1 doi: 10.1088/0264-9381/20/20/201 – ident: PhysRevLett.116.241102Cc108R1 doi: 10.1007/lrr-2016-1 – ident: PhysRevLett.116.241102Cc87R1 doi: 10.1103/PhysRevD.85.064034 – ident: PhysRevLett.116.241102Cc58R1 doi: 10.1103/PhysRevD.93.044007 – ident: PhysRevLett.116.241102Cc120R1 doi: 10.1103/PhysRevLett.98.231102 – ident: PhysRevLett.116.241102Cc72R1 doi: 10.1103/PhysRevD.62.064015 – ident: PhysRevLett.116.241102Cc117R1 doi: 10.1086/152255 – ident: PhysRevLett.116.241102Cc11R1 doi: 10.1086/152444 – ident: PhysRevLett.116.241102Cc116R1 doi: 10.1103/PhysRev.128.2471 – ident: PhysRevLett.116.241102Cc35R1 doi: 10.1103/PhysRevD.40.3194 – ident: PhysRevLett.116.241102Cc126R1 doi: 10.1111/j.1745-3933.2010.00811.x – volume: 1 start-page: 688 issn: 1550-7998 year: 1916 ident: PhysRevLett.116.241102Cc7R1 publication-title: Sitzungsber. K. Preuss. Akad. Wiss. |
| SSID | ssj0001268 |
| Score | 2.688961 |
| Snippet | On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the... (ProQuest: ... denotes formulae and/or non-USASCII text omitted) On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected... On September 14, 2015, the Laser Interferometer Gravitational-wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterise the... |
| SourceID | liege hal proquest pubmed crossref nasa |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 241102 |
| SubjectTerms | Astrophysics Cosmology Engineering, computing & technology General Relativity and Quantum Cosmology Gravitational waves High Energy Astrophysical Phenomena Ingénierie mécanique Ingénierie, informatique & technologie Interferometers Lasers Mathematical models Mechanical engineering Physics Texts Waveforms |
| Title | Properties of the Binary Black Hole Merger GW150914 |
| URI | https://ntrs.nasa.gov/citations/20170003558 https://www.ncbi.nlm.nih.gov/pubmed/27367378 https://www.proquest.com/docview/1801433982 https://www.proquest.com/docview/1825559427 https://in2p3.hal.science/in2p3-01274010 https://orbi.uliege.be/handle/2268/251705 |
| Volume | 116 |
| WOSCitedRecordID | wos000377812700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABR databaseName: American Physical Society Journals customDbUrl: eissn: 1079-7114 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001268 issn: 1079-7114 databaseCode: 3MX dateStart: 20020101 isFulltext: true titleUrlDefault: https://journals.aps.org/ providerName: American Physical Society |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbKS-LCs0B4KUg9EmrH72NBlD20VYV47M2yYwdWWiVVsru_nxlnuwKJgnqJosiORjO2Z8Yz8w0hB74O1ivNKt5GWYnIaeUtZ1UINqU6Rl7nHkvfTvTZmZnP7fkeoX-P4DPKDzET8nPaYHULfFDvQOWwCT3SCGxZwE_nu6OX1Wo6ejnmHVC9LQm--jd_aKMbPzEX8tYSo9VwQnd-9FfbnVn_HN-_PuUPyL2trVkeTYvjIdlL3SNyJ-d8NuNjws_xIn5ARNWyb0uwBMv3uTq3zLd65axfpvIUqzOH8tN3hjpf7JOvxx-_fJhV2x4KVSMsX1UpUG6TsTQq6VUDDqkMrQjUR9qCkMA8MprHqCzzRptokmi0UDIo5kVgMvInwIi-S89IqbEduUgsJm5FkI2Nkjc-0IBWjxFtQeQlL12zBRjHPhdLlx0Nyt1vDIEPyk0MKcjhbt7FBLHx3xkHIKrdYETInh2duEVXX3CHsXRwGumGFeRtlqXrh7BwmzoPzO_r5Q_nGxeSA-vTOIRto7Ig-yhyB0SPrkZcIQyzSlOQN5drwMHew4CK71K_Hh1D6B0OLKz_NQacNmlFrQvydFpAO8LBdMQ2Qeb5tTnwgtwFChXmrDH9ktxcDev0itxuNqvFOLzOmwKeem5-AZDaA0Q |
| linkProvider | American Physical Society |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Properties+of+the+Binary+Black+Hole+Merger+GW150914&rft.jtitle=Physical+review+letters&rft.au=Abbott%2C+B.%E2%80%89P.&rft.au=Abbott%2C+R.&rft.au=Abbott%2C+T.%E2%80%89D.&rft.au=Abernathy%2C+M.%E2%80%89R.&rft.date=2016-06-17&rft.issn=0031-9007&rft.eissn=1079-7114&rft.volume=116&rft.issue=24&rft_id=info:doi/10.1103%2FPhysRevLett.116.241102&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_PhysRevLett_116_241102 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon |