Spatial pattern analysis of forest trees based on the vectorial mark
Analysis of spatial patterns to describe the spatial correlation between a tree location and marks (i.e., structural variables), can reveal stand history, population dynamics, competition and symbiosis. However, most studies of spatial patterns have concentrated on tree location and tree sizes rathe...
Uloženo v:
| Abstract | Analysis of spatial patterns to describe the spatial correlation between a tree location and marks (i.e., structural variables), can reveal stand history, population dynamics, competition and symbiosis. However, most studies of spatial patterns have concentrated on tree location and tree sizes rather than on crown asymmetry especially with direct analysis among marks characterizing facilitation and competition among of trees, and thus cannot reveal the cause of the distributions of tree locations and quantitative marks. To explore the spatial correlation among quantitative and vectorial marks and their implication on population dynamics, we extracted vertical and horizontal marks (tree height and crown projection area) characterizing tree size, and a vectorial mark (crown displacement vector characterizing the crown asymmetry) using an airborne laser scanning point cloud obtained from two forest stands in Oxfordshire, UK. Quantitatively and vectorially marked spatial patterns were developed, with corresponding null models established for a significance test. We analyzed eight types of univariate and bivariate spatial patterns, after first proposing four types. The accuracy of the pattern analysis based on an algorithm-segmented point cloud was compared with that of a truly segmented point cloud. The algorithm-segmented point cloud managed to detect 70–86% of patterns correctly. The eight types of spatial patterns analyzed the spatial distribution of trees, the spatial correlation between tree size and facilitated or competitive interactions of sycamore and other species. These four types of univariate patterns jointly showed that, at smaller scales, the trees tend to be clustered, and taller, with larger crowns due to the detected facilitations among trees in the study area. The four types of bivariate patterns found that at smaller scales there are taller trees and more facilitation among sycamore and other species, while crown size is mostly homogeneous across scales. These results indicate that interspecific facilitation and competition mainly affect tree height in the study area. This work further confirms the connection of tree size with individual facilitation and competition, revealing the potential spatial structure that previously was hard to detect. |
|---|---|
| AbstractList | Analysis of spatial patterns to describe the spatial correlation between a tree location and marks (i.e., structural variables), can reveal stand history, population dynamics, competition and symbiosis. However, most studies of spatial patterns have concentrated on tree location and tree sizes rather than on crown asymmetry especially with direct analysis among marks characterizing facilitation and competition among of trees, and thus cannot reveal the cause of the distributions of tree locations and quantitative marks. To explore the spatial correlation among quantitative and vectorial marks and their implication on population dynamics, we extracted vertical and horizontal marks (tree height and crown projection area) characterizing tree size, and a vectorial mark (crown displacement vector characterizing the crown asymmetry) using an airborne laser scanning point cloud obtained from two forest stands in Oxfordshire, UK. Quantitatively and vectorially marked spatial patterns were developed, with corresponding null models established for a significance test. We analyzed eight types of univariate and bivariate spatial patterns, after first proposing four types. The accuracy of the pattern analysis based on an algorithm-segmented point cloud was compared with that of a truly segmented point cloud. The algorithm-segmented point cloud managed to detect 70–86% of patterns correctly. The eight types of spatial patterns analyzed the spatial distribution of trees, the spatial correlation between tree size and facilitated or competitive interactions of sycamore and other species. These four types of univariate patterns jointly showed that, at smaller scales, the trees tend to be clustered, and taller, with larger crowns due to the detected facilitations among trees in the study area. The four types of bivariate patterns found that at smaller scales there are taller trees and more facilitation among sycamore and other species, while crown size is mostly homogeneous across scales. These results indicate that interspecific facilitation and competition mainly affect tree height in the study area. This work further confirms the connection of tree size with individual facilitation and competition, revealing the potential spatial structure that previously was hard to detect. Analysis of spatial patterns to describe the spatial correlation between a tree location and marks (i.e., structural variables), can reveal stand history, population dynamics, competition and symbiosis. However, most stud-ies of spatial patterns have concentrated on tree location and tree sizes rather than on crown asymmetry especially with direct analysis among marks characterizing facilitation and competition among of trees, and thus cannot reveal the cause of the distributions of tree locations and quantitative marks. To explore the spatial correlation among quantitative and vectorial marks and their implication on population dynam-ics, we extracted vertical and horizontal marks (tree height and crown projection area) characterizing tree size, and a vectorial mark (crown displacement vector characterizing the crown asymmetry) using an airborne laser scanning point cloud obtained from two forest stands in Oxfordshire, UK. Quantitatively and vectorially marked spatial patterns were developed, with corresponding null models established for a significance test. We analyzed eight types of univari-ate and bivariate spatial patterns, after first proposing four types. The accuracy of the pattern analysis based on an algorithm-segmented point cloud was compared with that of a truly segmented point cloud. The algorithm-segmented point cloud managed to detect 70-86% of patterns correctly. The eight types of spatial patterns analyzed the spatial dis-tribution of trees, the spatial correlation between tree size and facilitated or competitive interactions of sycamore and other species. These four types of univariate patterns jointly showed that, at smaller scales, the trees tend to be clustered, and taller, with larger crowns due to the detected facilitations among trees in the study area. The four types of bivariate patterns found that at smaller scales there are taller trees and more facilitation among sycamore and other species, while crown size is mostly homogeneous across scales. These results indicate that interspecific facilitation and competi-tion mainly affect tree height in the study area. This work further confirms the connection of tree size with individual facilitation and competition, revealing the potential spatial structure that previously was hard to detect. |
| Audience | Academic |
| Author | Zhang, Huanyuan Jackson, Toby Shenkin, Alexander Lin, Yi Xin, Honglu Cao, Yujie |
| AuthorAffiliation | Institute of Remote Sensing and Geographic Information Systems,School of Earth and Space Science,Peking University,Beijing 100871,People's Republic of China;Environmental Change Institute,School of Geography and the Environment,University of Oxford,South Parks Road,Oxford OX13QY,UK%Department of Plant Sciences,University of Cambridge, Downing Street,Cambridge CB23EA,UK%College of Surveying and Geo-Informatics,Tongji University,Shanghai 200092,People's Republic of China%Environmental Change Institute,School of Geography and the Environment,University of Oxford,South Parks Road,Oxford OX13QY,UK%Institute of Remote Sensing and Geographic Information Systems,School of Earth and Space Science,Peking University,Beijing 100871,People's Republic of China%Environmental Change Institute,School of Geography and the Environment,University of Oxford,South Parks Road,Oxford OX13QY,UK;SICCS,Northern Arizona University,Flagstaff,AZ 86001, USA |
| AuthorAffiliation_xml | – name: Institute of Remote Sensing and Geographic Information Systems,School of Earth and Space Science,Peking University,Beijing 100871,People's Republic of China;Environmental Change Institute,School of Geography and the Environment,University of Oxford,South Parks Road,Oxford OX13QY,UK%Department of Plant Sciences,University of Cambridge, Downing Street,Cambridge CB23EA,UK%College of Surveying and Geo-Informatics,Tongji University,Shanghai 200092,People's Republic of China%Environmental Change Institute,School of Geography and the Environment,University of Oxford,South Parks Road,Oxford OX13QY,UK%Institute of Remote Sensing and Geographic Information Systems,School of Earth and Space Science,Peking University,Beijing 100871,People's Republic of China%Environmental Change Institute,School of Geography and the Environment,University of Oxford,South Parks Road,Oxford OX13QY,UK;SICCS,Northern Arizona University,Flagstaff,AZ 86001, USA |
| Author_xml | – sequence: 1 givenname: Honglu surname: Xin fullname: Xin, Honglu organization: Institute of Remote Sensing and Geographic Information Systems, School of Earth and Space Science, Peking University, Environmental Change Institute, School of Geography and the Environment, University of Oxford – sequence: 2 givenname: Toby surname: Jackson fullname: Jackson, Toby organization: Department of Plant Sciences, University of Cambridge – sequence: 3 givenname: Yujie surname: Cao fullname: Cao, Yujie organization: College of Surveying and Geo-Informatics, Tongji University – sequence: 4 givenname: Huanyuan surname: Zhang fullname: Zhang, Huanyuan organization: Environmental Change Institute, School of Geography and the Environment, University of Oxford – sequence: 5 givenname: Yi surname: Lin fullname: Lin, Yi organization: Institute of Remote Sensing and Geographic Information Systems, School of Earth and Space Science, Peking University – sequence: 6 givenname: Alexander surname: Shenkin fullname: Shenkin, Alexander email: alexander.shenkin@ouce.ox.ac.uk organization: Environmental Change Institute, School of Geography and the Environment, University of Oxford, SICCS, Northern Arizona University |
| BookMark | eNp9kV1rFDEUhgepYFv9A14FRPBmak4mk4_LUj8qFLxQwbuQTU7WrLPJmswq--_NdsRikZKLhPA85-TkPetOUk7Ydc-BXgCl8nUFEFL0lEFPgYPsxaPuFLQeeiqoPGnnRvVCsK9PurNaN5SOfBj4affm087O0U6kbTOWRGyy06HGSnIgIResM5kLYiUrW9GTnMj8DclPdHMuR29ry_en3eNgp4rP_uzn3Zd3bz9fXfc3H99_uLq86R3Xw9yjGKUHh3YVvHdqhQOCxmBHDytE55XnLAyeBe-0QIXI1QjARyWDFlLjcN69XOr-sinYtDabvC_tvdVMh8OGUcYopyAa92rhdiX_2LcRzDZWh9NkE-Z9NUyCYpoBQENf3EP_1mRCjVwrRsc7am0nNDGFPBfrjkXNpaSaywEkb9TFf6i2PG6ja4GF2O7_EdgiuJJrLRjMrsT2oQcD1BwTM0uupuVqbnM1x-HUPcnFuWWYU-sWp4fVYVFr65PWWO6GfcD6DZ_et5k |
| CitedBy_id | crossref_primary_10_3389_ffgc_2024_1354240 crossref_primary_10_1007_s11676_023_01657_8 |
| Cites_doi | 10.3390/rs12020309 10.1139/x01-161 10.3390/rs10060933 10.1890/ES11-00104.1 10.2307/3212829 10.2307/3237072 10.1080/01431161.2013.787501 10.1016/j.foreco.2019.02.031 10.14358/PERS.72.12.1349 10.1016/j.compag.2013.08.015 10.1590/01047760201925032630 10.1093/oxfordjournals.aob.a084076 10.1111/j.1365-2745.2010.01644.x 10.1016/j.foreco.2017.10.041 10.1007/s11258-012-0115-4 10.1111/j.0030-1299.2004.12497.x 10.1007/s11676-015-0205-y 10.1016/j.ecolmodel.2014.06.002 10.1007/s11284-010-0740-0 10.1002/ece3.5216 10.1073/pnas.1513417112 10.1111/jvs.12361 10.1080/17538947.2016.1247473 10.3390/f11010120 10.1201/b16195 10.1111/ecog.01579 10.1007/s00442-010-1718-x 10.1080/01431161.2014.967886 10.1016/j.foreco.2013.11.008 10.1007/s10310-007-0041-9 10.1007/s12224-017-9293-0 10.1117/1.JRS.15.034504 10.1016/j.rse.2020.112056 10.5194/isprs-archives-XLII-2-W13-657-2019 10.1109/IGARSS.2016.7729452 10.1007/978-3-642-19309-5_55 10.1002/9780470725160 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 COPYRIGHT 2022 Springer The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: COPYRIGHT 2022 Springer – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | C6C AAYXX CITATION 7S9 L.6 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.1007/s11676-021-01417-6 |
| DatabaseName | Springer Nature OA Free Journals CrossRef AGRICOLA AGRICOLA - Academic Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Forestry |
| EISSN | 1993-0607 |
| EndPage | 1315 |
| ExternalDocumentID | lyyj202204016 A709473174 10_1007_s11676_021_01417_6 |
| GroupedDBID | -04 -0D -4W -56 -5G -BR -EM -SD -S~ -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 188 199 1N0 2.D 29K 29~ 2B. 2B~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2XV 2~H 30V 3SX 4.4 406 408 40D 40E 5GY 5VR 5VS 5XA 67N 6NX 78A 8RM 8TC 8UJ 92G 92I 92M 93N 93Q 95- 95. 95~ 96X 9D9 9DD AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFRAH AFUIB AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BDATZ BGNMA C6C CAG CAJED CCEZO CHBEP CHDYS COF CS3 CSCUP CW9 D-I DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG6 HMJXF HRMNR HVGLF HZ~ IAG IAO IEA IEP IGS IJ- IKXTQ ITC IWAJR IXD I~X I~Z J-C JBSCW JUIAU JZLTJ KOV LLZTM M4Y MA- N2Q NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 PF0 PT4 PT5 Q-- Q-3 QOK QOR QOS R-D R89 R9I RHV ROL RPX RSV RT4 S16 S1Z S26 S27 S28 S3A S3B SAP SBL SCL SCLPG SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 T8T TCJ TGD TSG TUC U1F U1G U2A U5D U5N U9L UG4 UOJIU UTJUX UZ3 UZXMN VC2 VFIZW W48 WK6 WK8 YLTOR ZMTXR ZOVNA ~A9 ~MM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION TGMPQ 7S9 L.6 4A8 PSX |
| ID | FETCH-LOGICAL-c493t-e657d1ceabfddc8be3e19efa5d1beecd8d42f3d2fdc96e8ee485114587f9679e3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000726263200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1007-662X |
| IngestDate | Thu May 29 04:11:31 EDT 2025 Fri Sep 05 13:25:56 EDT 2025 Sun Nov 09 07:46:55 EST 2025 Sat Nov 29 13:31:01 EST 2025 Mon Nov 24 15:48:55 EST 2025 Tue Nov 18 21:43:55 EST 2025 Sat Nov 29 02:28:19 EST 2025 Fri Feb 21 02:45:29 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Quantitative mark Spatial pattern Vectorial mark Spatial correlation Summary statistics |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c493t-e657d1ceabfddc8be3e19efa5d1beecd8d42f3d2fdc96e8ee485114587f9679e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://link.springer.com/10.1007/s11676-021-01417-6 |
| PQID | 2685498205 |
| PQPubID | 2044294 |
| PageCount | 15 |
| ParticipantIDs | wanfang_journals_lyyj202204016 proquest_miscellaneous_2718292111 proquest_journals_2685498205 gale_infotracmisc_A709473174 gale_infotracacademiconefile_A709473174 crossref_primary_10_1007_s11676_021_01417_6 crossref_citationtrail_10_1007_s11676_021_01417_6 springer_journals_10_1007_s11676_021_01417_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-01 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Heidelberg |
| PublicationTitle | Journal of forestry research |
| PublicationTitleAbbrev | J. For. Res |
| PublicationTitle_FL | Journal of Forestry Research |
| PublicationYear | 2022 |
| Publisher | Springer Nature Singapore Springer Springer Nature B.V Institute of Remote Sensing and Geographic Information Systems,School of Earth and Space Science,Peking University,Beijing 100871,People's Republic of China Environmental Change Institute,School of Geography and the Environment,University of Oxford,South Parks Road,Oxford OX13QY,UK%Department of Plant Sciences,University of Cambridge, Downing Street,Cambridge CB23EA,UK%College of Surveying and Geo-Informatics,Tongji University,Shanghai 200092,People's Republic of China%Environmental Change Institute,School of Geography and the Environment,University of Oxford,South Parks Road,Oxford OX13QY,UK%Institute of Remote Sensing and Geographic Information Systems,School of Earth and Space Science,Peking University,Beijing 100871,People's Republic of China%Environmental Change Institute,School of Geography and the Environment,University of Oxford,South Parks Road,Oxford OX13QY,UK SICCS,Northern Arizona University,Flagstaff,AZ 86001, USA |
| Publisher_xml | – name: Springer Nature Singapore – name: Springer – name: Springer Nature B.V – name: Environmental Change Institute,School of Geography and the Environment,University of Oxford,South Parks Road,Oxford OX13QY,UK%Department of Plant Sciences,University of Cambridge, Downing Street,Cambridge CB23EA,UK%College of Surveying and Geo-Informatics,Tongji University,Shanghai 200092,People's Republic of China%Environmental Change Institute,School of Geography and the Environment,University of Oxford,South Parks Road,Oxford OX13QY,UK%Institute of Remote Sensing and Geographic Information Systems,School of Earth and Space Science,Peking University,Beijing 100871,People's Republic of China%Environmental Change Institute,School of Geography and the Environment,University of Oxford,South Parks Road,Oxford OX13QY,UK – name: Institute of Remote Sensing and Geographic Information Systems,School of Earth and Space Science,Peking University,Beijing 100871,People's Republic of China – name: SICCS,Northern Arizona University,Flagstaff,AZ 86001, USA |
| References | Lin, Wei, Yang, Knyazikhin, Zhang, Sato, Fang, Liang, Yan, Sun (CR19) 2016; 10 Butt, Campbell, Malhi, Morecroft, Fenn, Thomas (CR3) 2009 Gu, O'Hara, Li, Gong (CR13) 2019; 9 Velázquez, Martínez, Getzin, Moloney, Wiegand (CR32) 2016; 39 Moreno-Fernández, Ledo, Cañellas, Montes (CR23) 2020; 11 Genet, Grabarnik, Sekretenko, Pothier (CR10) 2014; 288 CR16 CR38 Taubert, Jahn, Dobner, Wiegand, Huth (CR31) 2015; 112 CR36 Zhang, Hu, Zhu, Luo, Ni (CR39) 2010; 25 Carrer, Castagneri, Popa, Pividori, Lingua (CR6) 2018; 407 Miao, Liu, Yu, Shi, Moermond, Liu (CR21) 2014; 313 Kwak, Lee, Lee, Biging, Gong (CR17) 2007; 12 Pillay, Ward (CR28) 2012; 213 Xu, Su, Feng, Xu, Jiao, Yan (CR37) 2013; 98 Zhao, Pang, Li, Liu (CR40) 2014; 35 Nguyen, Uria-Diez, Wiegand (CR25) 2016; 27 Alvarez, Epstein, Li, Okin (CR1) 2011; 2 Calders, Origo, Burt, Disney, Nightingale, Raumonen, Akerblom, Malhi, Lewis (CR5) 2018; 10 Wiegand, Moloney (CR34) 2004; 104 Wiegand, Moloney (CR35) 2013 Brisson (CR2) 2001; 31 Wang, Wiegand, Hao, Li, Ye, Lin (CR33) 2010; 98 Ripley (CR30) 1976; 13 CR4 CR8 Hastings, Ollinger, Ouimette, Sanders-DeMott, Orwig (CR14) 2020; 12 Lin, Chang, Yang, Wang, Sun (CR18) 2011; 165 CR9 CR26 CR24 Podlaski (CR29) 2019; 439 Goreaud, Pélissier (CR11) 1999; 10 Packalen, Vauhkonen, Kallio, Peuhkurinen, Pitkänen, Pippuri, Strunk, Maltamo (CR27) 2013; 34 Graves (CR12) 1996 Henning, Radtke (CR15) 2006; 72 Mead (CR20) 1966; 30 Millikan, Silva, Rodriguez, Oliveira (CR22) 2019; 25 Erfanifard, Saborowski, Wiegand, Meyer (CR7) 2016; 27 1417_CR4 T Pillay (1417_CR28) 2012; 213 B Ripley (1417_CR30) 1976; 13 J Henning (1417_CR15) 2006; 72 J Brisson (1417_CR2) 2001; 31 R Mead (1417_CR20) 1966; 30 R Podlaski (1417_CR29) 2019; 439 F Taubert (1417_CR31) 2015; 112 A Genet (1417_CR10) 2014; 288 Y Erfanifard (1417_CR7) 2016; 27 WH Xu (1417_CR37) 2013; 98 1417_CR36 L Gu (1417_CR13) 2019; 9 1417_CR16 1417_CR38 J Hastings (1417_CR14) 2020; 12 1417_CR9 L Alvarez (1417_CR1) 2011; 2 Y Lin (1417_CR19) 2016; 10 1417_CR8 D Moreno-Fernández (1417_CR23) 2020; 11 H Nguyen (1417_CR25) 2016; 27 N Butt (1417_CR3) 2009 N Graves (1417_CR12) 1996 M Carrer (1417_CR6) 2018; 407 F Goreaud (1417_CR11) 1999; 10 D Kwak (1417_CR17) 2007; 12 T Wiegand (1417_CR35) 2013 D Zhao (1417_CR40) 2014; 35 YC Lin (1417_CR18) 2011; 165 P Packalen (1417_CR27) 2013; 34 K Calders (1417_CR5) 2018; 10 N Miao (1417_CR21) 2014; 313 T Wiegand (1417_CR34) 2004; 104 E Velázquez (1417_CR32) 2016; 39 P Millikan (1417_CR22) 2019; 25 1417_CR26 ZH Zhang (1417_CR39) 2010; 25 XG Wang (1417_CR33) 2010; 98 1417_CR24 |
| References_xml | – volume: 12 start-page: 309 issue: 2 year: 2020 ident: CR14 article-title: Tree species traits determine the success of LiDAR-based crown mapping in a mixed temperate forest publication-title: Remote Sensing doi: 10.3390/rs12020309 – volume: 31 start-page: 2151 issue: 12 year: 2001 end-page: 2159 ident: CR2 article-title: Neighborhood competition and crown asymmetry in Acer saccharum publication-title: Can J for Res doi: 10.1139/x01-161 – volume: 10 start-page: 933 issue: 6 year: 2018 ident: CR5 article-title: Realistic forest stand reconstruction from terrestrial LiDAR for radiative transfer modelling publication-title: Remote Sens doi: 10.3390/rs10060933 – volume: 2 start-page: 1 issue: 9 year: 2011 end-page: 30 ident: CR1 article-title: Spatial patterns of grasses and shrubs in an arid grassland environment publication-title: Ecosphere doi: 10.1890/ES11-00104.1 – volume: 13 start-page: 255 issue: 2 year: 1976 end-page: 266 ident: CR30 article-title: The second-order analysis of stationary point processes publication-title: J Appl Probab doi: 10.2307/3212829 – volume: 10 start-page: 433 issue: 3 year: 1999 end-page: 438 ident: CR11 article-title: On explicit formulas of edge effect correction for Ripley’s K-function publication-title: J Veg Sci doi: 10.2307/3237072 – ident: CR4 – ident: CR16 – volume: 34 start-page: 5154 issue: 14 year: 2013 end-page: 5165 ident: CR27 article-title: Predicting the spatial pattern of trees by airborne laser scanning publication-title: Int J Remote Sens doi: 10.1080/01431161.2013.787501 – volume: 439 start-page: 1 year: 2019 end-page: 8 ident: CR29 article-title: Models of the fine-scale spatial distributions of trees in managed and unmanaged forest patches with Mill. and L publication-title: For Ecol Manag doi: 10.1016/j.foreco.2019.02.031 – volume: 72 start-page: 1349 issue: 12 year: 2006 end-page: 1358 ident: CR15 article-title: Ground-based laser imaging for assessing three-dimensional forest canopy structure publication-title: Photogramm Eng Remote Sens doi: 10.14358/PERS.72.12.1349 – volume: 98 start-page: 242 year: 2013 end-page: 251 ident: CR37 article-title: Comparison of conventional measurement and LiDAR-based measurement for crown structures publication-title: Comput Electron Agr doi: 10.1016/j.compag.2013.08.015 – ident: CR8 – volume: 25 start-page: 273 issue: 3 year: 2019 end-page: 282 ident: CR22 article-title: Automated individual tree detection in Amazon tropical forest from airborne laser scanning data publication-title: Cerne doi: 10.1590/01047760201925032630 – volume: 30 start-page: 301 year: 1966 end-page: 309 ident: CR20 article-title: A relationship between individual plant spacing and yield publication-title: Ann Bot doi: 10.1093/oxfordjournals.aob.a084076 – volume: 98 start-page: 674 issue: 3 year: 2010 end-page: 686 ident: CR33 article-title: Species associations in an old-growth temperate forest in north-eastern China publication-title: J Ecol doi: 10.1111/j.1365-2745.2010.01644.x – volume: 407 start-page: 125 year: 2018 end-page: 134 ident: CR6 article-title: Tree spatial patterns and stand attributes in temperate forests: the importance of plot size, sampling design, and null model publication-title: For Ecol Manag doi: 10.1016/j.foreco.2017.10.041 – volume: 213 start-page: 1609 issue: 10 year: 2012 end-page: 1619 ident: CR28 article-title: Spatial pattern analysis and competition between trees in humid savannas publication-title: Plant Ecol doi: 10.1007/s11258-012-0115-4 – volume: 104 start-page: 209 issue: 2 year: 2004 end-page: 229 ident: CR34 article-title: Rings, circles, and null-models for point pattern analysis in ecology publication-title: Oikos doi: 10.1111/j.0030-1299.2004.12497.x – volume: 27 start-page: 583 issue: 3 year: 2016 end-page: 594 ident: CR7 article-title: Efficiency of sample-based indices for spatial pattern recognition of wild pistachio ( ) trees in semi-arid woodlands publication-title: J Forestry Res doi: 10.1007/s11676-015-0205-y – volume: 288 start-page: 143 year: 2014 end-page: 154 ident: CR10 article-title: Incorporating the mechanisms underlying inter-tree competition into a random point process model to improve spatial tree pattern analysis in forestry publication-title: Ecol Model doi: 10.1016/j.ecolmodel.2014.06.002 – volume: 25 start-page: 1151 issue: 6 year: 2010 end-page: 1160 ident: CR39 article-title: Spatial patterns and interspecific associations of dominant tree species in two old-growth karst forests publication-title: SW China Ecol Res doi: 10.1007/s11284-010-0740-0 – ident: CR38 – volume: 9 start-page: 6410 issue: 11 year: 2019 end-page: 6421 ident: CR13 article-title: Spatial patterns and interspecific associations among trees at different stand development stages in the natural secondary forests on the Loess Plateau publication-title: China Ecol Evol doi: 10.1002/ece3.5216 – volume: 112 start-page: 15125 issue: 49 year: 2015 end-page: 15129 ident: CR31 article-title: The structure of tropical forests and sphere packings publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1513417112 – volume: 27 start-page: 318 issue: 2 year: 2016 end-page: 327 ident: CR25 article-title: Spatial distribution and association patterns in a tropical evergreen broad-leaved forest of north-central Vietnam publication-title: J Veg Sci doi: 10.1111/jvs.12361 – year: 2009 ident: CR3 publication-title: Initial results from establishment of a long-term broadleaf monitoring plot at Wytham Woods – year: 1996 ident: CR12 publication-title: Null models in ecology – volume: 10 start-page: 701 issue: 7 year: 2016 end-page: 718 ident: CR19 article-title: TLS-bridged co-prediction of tree-level multifarious stem structure variables from worldview-2 panchromatic imagery: a case study of the boreal forest publication-title: Int Digital Earth doi: 10.1080/17538947.2016.1247473 – volume: 11 start-page: 120 issue: 1 year: 2020 ident: CR23 article-title: Strategies for modeling regeneration density in relation to distance from adult trees publication-title: Forests doi: 10.3390/f11010120 – year: 2013 ident: CR35 publication-title: Handbook of spatial point-pattern analysis in ecology doi: 10.1201/b16195 – ident: CR9 – volume: 39 start-page: 1042 issue: 11 year: 2016 end-page: 1055 ident: CR32 article-title: An evaluation of the state of spatial point pattern analysis in ecology publication-title: Ecography doi: 10.1111/ecog.01579 – volume: 165 start-page: 175 issue: 1 year: 2011 end-page: 184 ident: CR18 article-title: Point patterns of tree distribution determined by habitat heterogeneity and dispersal limitation publication-title: Oecologia doi: 10.1007/s00442-010-1718-x – ident: CR36 – volume: 35 start-page: 7199 issue: 20 year: 2014 end-page: 7218 ident: CR40 article-title: Isolating individual trees in a closed coniferous forest using small footprint LiDAR data publication-title: Int J Remote Sens doi: 10.1080/01431161.2014.967886 – ident: CR26 – volume: 313 start-page: 104 year: 2014 end-page: 111 ident: CR21 article-title: Spatial analysis of remnant tree effects in a secondary - forest on the eastern edge of the Qinghai-Tibetan Plateau, China publication-title: For Ecol Manag doi: 10.1016/j.foreco.2013.11.008 – ident: CR24 – volume: 12 start-page: 425 issue: 6 year: 2007 end-page: 434 ident: CR17 article-title: Detection of individual trees and estimation of tree height using LiDAR data publication-title: J for Res doi: 10.1007/s10310-007-0041-9 – volume: 34 start-page: 5154 issue: 14 year: 2013 ident: 1417_CR27 publication-title: Int J Remote Sens doi: 10.1080/01431161.2013.787501 – volume-title: Null models in ecology year: 1996 ident: 1417_CR12 – volume: 104 start-page: 209 issue: 2 year: 2004 ident: 1417_CR34 publication-title: Oikos doi: 10.1111/j.0030-1299.2004.12497.x – ident: 1417_CR8 doi: 10.1007/s12224-017-9293-0 – volume: 35 start-page: 7199 issue: 20 year: 2014 ident: 1417_CR40 publication-title: Int J Remote Sens doi: 10.1080/01431161.2014.967886 – volume: 98 start-page: 242 year: 2013 ident: 1417_CR37 publication-title: Comput Electron Agr doi: 10.1016/j.compag.2013.08.015 – volume: 39 start-page: 1042 issue: 11 year: 2016 ident: 1417_CR32 publication-title: Ecography doi: 10.1111/ecog.01579 – volume: 25 start-page: 1151 issue: 6 year: 2010 ident: 1417_CR39 publication-title: SW China Ecol Res doi: 10.1007/s11284-010-0740-0 – volume: 165 start-page: 175 issue: 1 year: 2011 ident: 1417_CR18 publication-title: Oecologia doi: 10.1007/s00442-010-1718-x – volume: 407 start-page: 125 year: 2018 ident: 1417_CR6 publication-title: For Ecol Manag doi: 10.1016/j.foreco.2017.10.041 – volume: 313 start-page: 104 year: 2014 ident: 1417_CR21 publication-title: For Ecol Manag doi: 10.1016/j.foreco.2013.11.008 – volume: 10 start-page: 433 issue: 3 year: 1999 ident: 1417_CR11 publication-title: J Veg Sci doi: 10.2307/3237072 – volume: 439 start-page: 1 year: 2019 ident: 1417_CR29 publication-title: For Ecol Manag doi: 10.1016/j.foreco.2019.02.031 – volume-title: Initial results from establishment of a long-term broadleaf monitoring plot at Wytham Woods year: 2009 ident: 1417_CR3 – volume: 10 start-page: 933 issue: 6 year: 2018 ident: 1417_CR5 publication-title: Remote Sens doi: 10.3390/rs10060933 – ident: 1417_CR36 doi: 10.1117/1.JRS.15.034504 – volume: 72 start-page: 1349 issue: 12 year: 2006 ident: 1417_CR15 publication-title: Photogramm Eng Remote Sens doi: 10.14358/PERS.72.12.1349 – volume: 2 start-page: 1 issue: 9 year: 2011 ident: 1417_CR1 publication-title: Ecosphere doi: 10.1890/ES11-00104.1 – ident: 1417_CR9 doi: 10.1016/j.rse.2020.112056 – ident: 1417_CR38 doi: 10.5194/isprs-archives-XLII-2-W13-657-2019 – volume: 288 start-page: 143 year: 2014 ident: 1417_CR10 publication-title: Ecol Model doi: 10.1016/j.ecolmodel.2014.06.002 – volume: 12 start-page: 425 issue: 6 year: 2007 ident: 1417_CR17 publication-title: J for Res doi: 10.1007/s10310-007-0041-9 – ident: 1417_CR4 doi: 10.1109/IGARSS.2016.7729452 – volume: 213 start-page: 1609 issue: 10 year: 2012 ident: 1417_CR28 publication-title: Plant Ecol doi: 10.1007/s11258-012-0115-4 – volume: 98 start-page: 674 issue: 3 year: 2010 ident: 1417_CR33 publication-title: J Ecol doi: 10.1111/j.1365-2745.2010.01644.x – volume: 27 start-page: 318 issue: 2 year: 2016 ident: 1417_CR25 publication-title: J Veg Sci doi: 10.1111/jvs.12361 – volume: 12 start-page: 309 issue: 2 year: 2020 ident: 1417_CR14 publication-title: Remote Sensing doi: 10.3390/rs12020309 – volume: 10 start-page: 701 issue: 7 year: 2016 ident: 1417_CR19 publication-title: Int Digital Earth doi: 10.1080/17538947.2016.1247473 – ident: 1417_CR24 doi: 10.1007/978-3-642-19309-5_55 – volume: 13 start-page: 255 issue: 2 year: 1976 ident: 1417_CR30 publication-title: J Appl Probab doi: 10.2307/3212829 – volume: 30 start-page: 301 year: 1966 ident: 1417_CR20 publication-title: Ann Bot doi: 10.1093/oxfordjournals.aob.a084076 – volume: 25 start-page: 273 issue: 3 year: 2019 ident: 1417_CR22 publication-title: Cerne doi: 10.1590/01047760201925032630 – volume: 31 start-page: 2151 issue: 12 year: 2001 ident: 1417_CR2 publication-title: Can J for Res doi: 10.1139/x01-161 – volume: 9 start-page: 6410 issue: 11 year: 2019 ident: 1417_CR13 publication-title: China Ecol Evol doi: 10.1002/ece3.5216 – ident: 1417_CR16 doi: 10.1002/9780470725160 – ident: 1417_CR26 – volume: 11 start-page: 120 issue: 1 year: 2020 ident: 1417_CR23 publication-title: Forests doi: 10.3390/f11010120 – volume: 27 start-page: 583 issue: 3 year: 2016 ident: 1417_CR7 publication-title: J Forestry Res doi: 10.1007/s11676-015-0205-y – volume: 112 start-page: 15125 issue: 49 year: 2015 ident: 1417_CR31 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1513417112 – volume-title: Handbook of spatial point-pattern analysis in ecology year: 2013 ident: 1417_CR35 doi: 10.1201/b16195 |
| SSID | ssj0054334 |
| Score | 2.25243 |
| Snippet | Analysis of spatial patterns to describe the spatial correlation between a tree location and marks (i.e., structural variables), can reveal stand history,... |
| SourceID | wanfang proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1301 |
| SubjectTerms | Airborne lasers Algorithms Analysis Asymmetry Biomedical and Life Sciences Bivariate analysis Competition data collection Forestry forests Life Sciences Original Paper Pattern analysis Population biology Population dynamics Spatial analysis Spatial distribution Symbiosis tree height Trees |
| Title | Spatial pattern analysis of forest trees based on the vectorial mark |
| URI | https://link.springer.com/article/10.1007/s11676-021-01417-6 https://www.proquest.com/docview/2685498205 https://www.proquest.com/docview/2718292111 https://d.wanfangdata.com.cn/periodical/lyyj202204016 |
| Volume | 33 |
| WOSCitedRecordID | wos000726263200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Nature - Connect here FIRST to enable access customDbUrl: eissn: 1993-0607 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0054334 issn: 1007-662X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1daxQxcNBWpC-29YOu1pJCoQ-6cJvNJruPRVt8kCJ-lHsL2WQi1bpX7q6F_ntn9rK9nkhBnzMTQjKfmS-AA1QlaqdCrn0lc5KSbe7MKOSVQk8E4KLux3SefTSnp_V43HxKRWGzIdt9CEn2knpZ7FZowwmz7P4qkq36IayTuquZHT9_ORvkb6XKRSyZP-G0luNUKvP3PVbU0Z9C-U50tK_p6aLrvt9RPyeb_3fwLXiSzE1xtKCPbXiA3VN4zPM4ecjbM3jPI4mJBMVl32ezEy41KRGTKGIPJjhuPROs7oKYdIIsRnHd__Uz3i83_fkcvp0cf333IU-DFXKvmnKeo65MKDy6Nobg6xZLLBqMrgpFi-hDHZSMZZAx-EZjjajYLlNVbWKjTYPlC1jrJh3ugNAjQw6fbOLItUrHmgyMKGUILrS6akeYQTHcr_Wp6zgPv7iwy37JfD2Wrsf212N1Bm9ucS4XPTfuhT7kZ7PMkLSzd6mugM7Hra3skSEP1pCZpDLYXYEkRvKry8PD28TIMyt1TR40mUlVBvu3y4zJyWkdTq4IhvS7bMiTLjJ4O5DAcov7jr6XiGoJfXFz80Ny-TM5vvrlv-33CjYYdZGfuAtr8-kVvoZH_np-Ppvu9VzyGz0ACbs |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1daxQxcNAq2hc_K9221giCD7pwm80mu49FLRXPQ7SWewvZZCJqu1furoX--87s7fZ6IgV9zmQIk_lM5gPgFaoctVMh1b6QKWnJOnVmENJCoScGcFG3YzqPhmY0Ksfj6ktXFDbrs937L8lWUy-L3TJtOGGWw19FulXfhjuKLBYn8n39dtTr30Lli79kfoTTWo67Upm_41gxR38q5Wu_o21NTxNd8-Oa-dl_-H8HfwQPOndT7C344zHcwuYJ3ON5nDzk7Sm855HExILitO2z2QjXNSkRkyhiCyb433om2NwFMWkEeYzivH3r530nbvp7A77vfzh8d5B2gxVSr6p8nqIuTMg8ujqG4Msac8wqjK4IWY3oQxmUjHmQMfhKY4mo2C9TRWlipU2F-TNYayYNboLQA0MBn6ziwNVKx5IcjChlCC7UuqgHmEDW09f6rus4D784tst-yUweS-SxLXmsTuDN1Z7TRc-NG6Ff87VZFkjC7F1XV0Dn49ZWds9QBGvITVIJ7KxAkiD51eX-4m0nyDMrdUkRNLlJRQIvr5Z5JyenNTg5Ixiy77KiSDpL4G3PAksUNx19t2OqJfTxxcUvyeXPFPjqrX_D9wLuHxx-Htrhx9GnbVhnNItcxR1Ym0_P8Dnc9efzn7Ppbisxl7ahDJ8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1ra9RAcNAqxS_WJ8Y-XEHwg4ZeNptN8rG0PRTLUVDLfVs2u7NFrbnj7lrov3cmj96dSKH4ObPDZjLPzAvgHaoUtVU-1i6TMWnJKrb5wMeZQkcMYINu1nSeneSjUTEel6crXfxNtXufkmx7GnhKU73Yn_qwv2x8S3TOxbMcCivSs_o-PFC8NIjj9a9nvS7OVNrmlfmHnNZy3LXN_BvHmmn6W0GvZEqb_p462Pp8xRQNt_7_JZ7A484NFQct3zyFe1g_g03e08nL357DEa8qJtYU02b-Zi1sN7xETIIIDZjgfPZcsBn0YlIL8iTFVZMD4HO_7ezXC_g-PP52-CnuFi7ETpXpIkad5T5xaKvgvSsqTDEpMdjMJxWi84VXMqReBu9KjQWiYn9NZUUeSp2XmL6EjXpS4ysQepBTICjLMLCV0qEgxyNI6b31lc6qAUaQ9LQ2rptGzksxLsxyjjKTxxB5TEMeoyP4cHNm2s7iuBX6PX9Cw4JKmJ3t-g3ofjzyyhzkFNnm5D6pCHbWIEnA3PrjnglMJ-BzI3VBkTW5T1kEb28e80kuWqtxckkwZPdlSRF2EsHHnh2WKG67-l7HYEvoi-vrn5Lboikg1q_vhu8NbJ4eDc3J59GXbXjEWNoSxh3YWMwucRceuqvFj_lsrxGeP-MXFYM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+pattern+analysis+of+forest+trees+based+on+the+vectorial+mark&rft.jtitle=Journal+of+forestry+research&rft.au=Xin%2C+Honglu&rft.au=Jackson%2C+Toby&rft.au=Cao%2C+Yujie&rft.au=Zhang%2C+Huanyuan&rft.date=2022-08-01&rft.pub=Springer&rft.issn=1007-662X&rft.volume=33&rft.issue=4&rft.spage=1301&rft_id=info:doi/10.1007%2Fs11676-021-01417-6&rft.externalDocID=A709473174 |
| thumbnail_s | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Flyyj%2Flyyj.jpg |